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The sensitivity of Advanced LIGO

Advanced LIGO, or aLIGO, has
detected gravitational waves
from many black-hole and
neutron-star mergers.

However, signals from many of
these objects still lie below the
detector sensitivity limit.

An improvement in LIGO’s
sensitivity would allow us to
uncover these objects and make
gravitational-wave detections a
more routine occurrence.
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The sensitivity of LIGO Livingston (L1) and
LIGO Hanford (H1) during the first observation
run O1 [1].
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Noise regression analysis at LIGO

LIGO keeps track of its noise sources via the physical environmental
monitor (PEM) channels, or witness channels.

A noise source can couple linearly or non-linearly into the detector
differential arm length (DARM).

The current regression method, the Wiener-Kolmogorov filter, fails to
remove the non-linear contributions.

Characterizing and filtering out these non-linear noises is challenging
because the coupling mechanisms are sophisticated.

Despite these complexity, a neural network may be able to learn
them.
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Fundamental v. Non-fundamental noises

We can categorize the noise sources into:

Fundamental noises:
I Define LIGO’s baseline sensitivity limit.
I Can only be reduced by improving the detector design.
I Example: quantum noise, thermal noise, etc.

Non-fundamental noises:
I Instrumental and environmental effects.
I Can be subtracted given there are witness channels monitoring them.
I Example: seismic noise, magnetic noise, calibration lines, beam jitter,

suspension noise, etc.

Goal: predict and subtract the non-fundamental noises while keeping the
signals and the fundamental noises intact.
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Mathematical formulation

Given a witness channel wi at time t, the DARM output is:

h(t) = hs(t) + T [wi(t)]

where:

hs is the gravitational-wave signal.

T is the transfer function, linear or non-linear, coupling the witness
channel and the DARM.

The network will predict a transfer function T̃ and the DARM h̃(t′) at
time t′ > t:

h̃(t′) = T̃ [wi(t
′)]

Goal: minimize the mean square error (MSE) or the mean absolute
error (MAE) between h and h̃ at t′ > t.
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Mock v. Real data
We perform our analysis on both mock and real data.
While mock data provide a reliable gauge to measure the network
capacity, ultimately we want to test on real data.
To generate mock data, we couple white noises into the DARM via
the resonance function:

y(w) =
x(w)

w2
0 − w2 + iw0w

Q

Left: Resonance spectra w0 = 5 rad/s and Q = 100. Right: DARM spectra from LIGO Hanford
on August 14, 2017.
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Visualizing the data

The input data consists of multiple witness channels.

Each witness channel has a duration of 2048 seconds and a sample
rate of 512 Hz. The number of samples is 1,048,576.

Sample witness channels by subsystems from LIGO Hanford on August 14, 2017.
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Data preprocessing

Sample-rate conversion: Up-sample or down-sample so all channels
have the same sampling rate of 512 Hz.

Standard scaling: Normalize the mean and standard deviation of
each channel to 0 and 1:

xnormij =
xij − 1

N

∑
k xkj√
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2
for each j

where xij is the ith data point of the witness channel j, and N is the
number of samples.

Bandpass filter: Attenuate frequencies outside a certain range.

Lookback window: Divide each channel into short and overlapping
series, each consisting of 16 samples, or 0.03125 seconds. After
lookback, the dataset has 1,048,546 data examples, each of length 16.
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Neural networks: Basics

Neural networks are a set of non-parametric, supervised machine
learning algorithms.

A neural network may consist of up to few thousands of nodes. Each
carries parameters (weights and biases) to characterize data features.

Often used in classification, it is capable of recognizing highly
complex patterns (e.g. language models, stock market, etc.)

Neural networks block diagram. Refer to [2].
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Neural networks: Learning
Neural networks learn by looping over a training set and minimizing a
loss function:

1. Forward propagation: Compute the output.
2. Backward propagation: Compute the gradients of weights and

biases by applying the chain rule recursively.
3. Gradient descent: Update the weights and biases:

Xi+1 = Xi − α∇J(Xi)

where α is the learning rate and J is the loss function.

Foward and backward pass block diagram [3].
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Recurrent neural networks

A recurrent neural network (RNN) is a subclass of neural networks
which specializes in processing sequential inputs, like
gravitational-wave data.

A major strength of RNNs over traditional networks is the ability to
store and use information from past inputs.

For our analysis, we use a special type of RNNs called a Long
Short-Term Memory (LSTM) network.

Unrolled RNN structure. Refer to [4].
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Long Short-Term Memory networks
The advantages of LSTM networks over RNNs:

The cell state carry information from past inputs ⇒ The network
can learn long-term dependencies and eliminate the vanishing
(exploding) gradient problem.

Gates let information to be added to (input gates) and removed from
(forget gates) the cell state.

A typical LSTM layer
contains four interacting
sub-layers. Refer to [4].
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Current framework: DeepClean

The current analysis framework, DeepClean1, consists of five separate
LSTM networks.

Each network has a different set of parameters and runs on a different
frequency band. The frequency bands are 3-9 Hz, 10-13 Hz, 20-30
Hz, 30-41 Hz, and 57-63 Hz.

Each network consists of layers of different type:
I LSTM: Return a sequence which get fed into the next LSTM layer.
I Dense: Followed the LSTM layers. Predict the DARM.
I Batch normalization: Followed each LSTM and Dense layer (except for

the output layer). Normalize the mean and standard deviation across
each batch to 0 and 1.

Each network has in total 5869 trainable parameters (weights and
biases).

1Available at https://git.ligo.org/rich.ormiston/DeepClean
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Hyperparameter tuning

Hyperparameters determine the network structure (e.g. number of
LSTM layers) and govern the learning process (e.g. learning rate).

They cannot be learned from data. Different problems require
different sets of hyperparameters.

Finding the optimal hyperparameters requires experimenting with
different networks and evaluate their relative performance ⇒
computationally expensive.

General procedure:

1. Pick a simple network architecture and increase complexity as needed.
2. Overfit a small training dataset ⇒ the network is capable of learning

the transfer function.
3. Reduce the overfitting by choosing the optimal learning parameters.
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Hyperparameter tuning
Picking the best learning parameters

We apply holdout cross-validation: partition data into a training
and a validation set. After each iteration through the training set, the
network is tested on the validation set.

To search for the optimal parameters, we apply these algorithms:
I Random search: Randomly sample the hyperparameters given some

prior guesses.
I Tree-structured Parzen estimators: Divide past evaluations into two

groups: the best parameters and the rest. Pick the parameter belong
most likely to the first group and less likely to the second group by
constructing a likelihood ratio.

I Gaussian process: Assume the loss function is a Gaussian stochastic
function. Predict the loss by constructing posterior distribution given a
prior distribution and past evaluations.
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Results: Mock data

When tested on the resonant noise with w0 = 13.15 rad/s and Q = 1000,
the network successfully subtracted the noise and left out the 60-Hz AC
power line and the rest of the bucket noise.

Left: The subtraction in the 10-250 Hz band. Right: The expected outcome. The spectra is
dominated by the resonant noise.
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Results: Real data
When tested on LIGO Hanford data, the network successfully subtracted
the calibration lines at 7 Hz and 60 Hz.

Subtraction results on LIGO Hanford data on August 14, 2017.
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Results: Real data

Subtraction results on the band 3-9 Hz (top left), 10-13 Hz (top right), and 57-63 Hz (bottom).
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Future works

Further study and tuning is needed before DeepClean can be applied
to real-time noise filtering.

Not all witness channels carry the same weight. Ultimately, we would
like to understand which and why a channel is important.
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Extra Slide: Grid v. Random search

Random search explores the parameter space more efficient than grid search. Refer to [5].
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Extra Slide: TPE
TPE picks the parameter x with the highest expected improvement:

r(x) =
l(x|D)

g(x|D)

where l(x|D) and g(x|D) are the likelihoods of x belong to first and
second groups.

TPE predicts the best parameters by constructing a likelihood ratio of the two groups. Refer to
[6].

Tri Nguyen Non-linear Noise Regression August 23, 2018 29 / 31



Extra Slide: Gaussian process

The Gaussian process algorithm predicts the number of hidden units that will maximize the
validation accuracy of a Dense network. Refer to [6].
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Extra Slide: Loss Curves

Loss curves of Loop 0 (top left), Loop 1 (top right), Loop 4 (bottom left), and resonance Loop
0 (bottom right).
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