
Draft version May 10, 2018
Typeset using LATEX twocolumn style in AASTeX62

Extending the reach of gravitational-wave detectors with machine learning

Tri Nguyen

ABSTRACT

In this paper, I propose the use of Long Short-Term Memory (LSTM) neural networks, a subclass

of machine learning algorithms, as a time series regression analysis technique to filter instrumental

noise sources from gravitational-wave detectors at LIGO. Unlike traditional neural networks, LSTM

networks can store and use information from their past inputs, thus making them robust in handling

sequential data such as gravitational-wave signals. An LSTM network, once trained on the detector

noise data from LIGO auxiliary channels, should be able to learn, forecast, and subtract both linear

and non-linear noise coupling mechanisms. This would result in a sensitivity improvement, most

greatly at the low-frequency limit where noise features are expected to be easier to learn, and allow

the detection of gravitational-wave sources currently below the noise floor. I propose training and

testing such a network first on simulated detector data. Once the desired performance is reached

(i.e. the network successfully removes the targeted noise sources without removing injected signals),

I will apply the algorithm on real data from LIGO past observations. I will be able to uncover more

physical properties of binary sources, especially during their inspiral stage, thanks to the sensitivity

improvement in the low-frequency limit.

1. INTRODUCTION

1.1. Noise Regression Analysis at LIGO

The Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) is the world’s largest gravitational-wave

observatory. Adopting a Michelson interferometer de-

sign, LIGO detects passing gravitational waves by mea-

suring the induced differential arm length (DARM) be-

tween its two perpendicular 4-km arms (Adhikari 2004;

Tiwari et al. 2015; LIGO Scientific Collaboration 2007).

Since its sensitivity upgrade in 2015 (The LIGO Sci-

entific Collaboration 2015), LIGO has observed grav-

itational waves from multiple stellar-mass black-hole

and neutron star mergers (Abbott, B. P. et al 2016).

The gravitational waves from many of these objects,

however, are still lying below the detector sensitiv-

ity limit. LIGO’s noise sources include contributions

from instrumental and environmental noises, each cou-

pling to DARM with a different, both linear and non-

linear, mechanism. A detailed study of these mecha-

nisms would allow us to filter out the noise, improve

LIGO’s sensitivity, and make gravitational-wave detec-

tions a more routine occurrence.

The current noise regression method at LIGO is based

on the Wiener-Kolmogorov filter, which minimizes the

squared error between the gravitational-wave channel

and the predicted noises from physical environment

monitor (PEM) channels (Tiwari et al. 2015; LIGO Sci-

entific Collaboration 2007). The Wiener filter, however,

fails to remove non-linear contributions. In fact, charac-

terizing and filtering out these non-linear noise sources

has proven to be a challenging process, because the cou-

pling mechanisms are often sophisticated. For example,

two or more noise sources may interfere before coupling

to the DARM.

1.2. Neural Networks as a Noise-Filtering Technique

Despite the complexity of the non-linear noise cou-

pling mechanisms, a neural network may be able to learn

them. A neural network is a non-parametric, supervised

machine learning algorithm often used for data classifi-

cation and clustering. Modeled loosely after a human

brain, a typical network may consist of up to a few

thousands of nodes, each carrying parameters charac-

terizing the features of the data. The network learns by

looping over a labeled dataset (called the training set)

and minimizing a set loss function via gradient descent.

Once sufficiently trained, neural networks are capable of

recognizing highly complex patterns, such as language

models, stock market, etc.

In this project, I propose to filter LIGO’s noise sources

by using Long Short-Term Memory (LSTM) networks, a

subclass of neural networks which specializes in process-

ing sequential input, like the time-series from LIGO’s

data and PEM channels. A major strength of LSTM

networks over traditional neural networks is their abil-

ity to store and use information from previous inputs.

As a result, LSTM networks are capable of taking into

account the long-term dependencies in the data (Olah

2015). They are frequently used in speech recognition,



2

grammar learning, and even DNA pattern recognition

(Karpathy 2015). Given enough training data, an LSTM

network should be able to learn, predict, and subtract

both linear and non-linear noise coupling mechanisms,

resulting in an improvement in LIGO’s sensitivity.

2. OBJECTIVES

2.1. Fundamental vs. Non-fundamental Noises

LIGO’s noise sources can be categorized into funda-

mental and non-fundamental noise sources (The LIGO

Scientific Collaboration 2015). Fundamental noises are

those imposed by quantum and statistical mechanics;

these include photo shot noise, thermal noise, etc. Be-

cause fundamental noises define LIGO’s baseline sensi-

tivity limit, they can only be reduced by improving the

detector design. On the other hand, non-fundamental

noises consist of instrumental and environmental effects,

such as seismic noise, magnetic noise, beam jitter, etc.

Non-fundamental noises can be removed, given there ex-

ist witness channels monitoring the disturbances.

The goal of the network is to successfully predict and

filter out the non-fundamental noises while keeping the

gravitational-wave signals and fundamental noises in-

tact.

2.2. Criteria for Success

Given a witness channel i at some time t, the network

will predict the induced DARM at some time t′ > t.

Mathematically speaking,

D̃(t′) = f [wi(t)], t′ > t

where f [wi(t)] is some non-linear function learned by

the network. In general, we do not know the full func-

tional form of f [wi(t)]. The performance of the net-
work is instead evaluated by computing the coherence

c(f) between the DARM D(t′) and the clean DARM

Dclean(t′) = D(t′)− D̃(t′). The coherence measures the

correlation between these two DARM channels at each

frequency f and can be computed from their Fourier

transforms. It is related to the ideal noise suppression

factor r(f) by the relation:

r(f) =
1√

1 − c2(f)
, 0 ≤ c ≤ 1

For example, if the coherence between D(t′) and

Dclean(t′) at some frequency is 0.9, the noise reduc-

tion factor at that frequency will be approximately

2.3 (M Coughlin 2014). The goal of this project is to

achieve a noise reduction factor of 2, corresponding to

a coherence of about 0.87.

2.3. Expected Outcomes

Once the network reaches the desired performance, it

will be ready to run on real gravitational-wave data. I

expect an overall sensitivity improvement, leading to an

increase in the number of gravitational-wave sources de-

tected. Moreover, as low-frequency noise features are of-

ten stronger (louder bins in the power spectral density)

and thus should be easier to learn, I predict an addi-

tional increase in sensitivity at the low-frequency limit.

This improvement is especially important for observing

binary sources because it increases the observation time

frame during the inspiral stage where the orbital fre-

quency is generally low.

3. APPROACH AND WORK PLAN

I propose the following analysis and timeline for devel-

oping the computational procedure: 1. (week 1) Gen-

erating mock data. 2. (week 2-6) Building the optimal

LSTM network. 3. (week 7-10) Running on real LIGO

data.

3.1. Generating Mock Data

In this step, I will generate mock data to train and

test the LSTM network. To introduce non-linearities,

bilinear data are generated by adding the product of

angular sensing noise (from ASC channels) and beam

spot motion (from beam spot channels) to the DARM.

Note while the true coupling mechanisms are not known

(as the objective of this project is to characterize these

mechanisms), I expect the mock data to be similar

enough to real data and sufficiently capture their com-

plexity. To ensure the network only removes the tar-

geted noises, I will also inject gravitational-wave signals

and other noise sources into the mock, and later check

if they are removed or distorted.

Generating mock data should be straight-forward, so

I expect this step to consume the least amount of time

and propose a timescale of less than one week.

3.2. Building the Optimal LSTM Network

In this step, I will focus on building the optimal LSTM

network via hyperparameter tuning. In machine learn-

ing, hyperparameters are those that govern the learning

process, such as the learning rate or the number of hid-

den layers and hidden units. They are set before train-

ing, and can heavily affect the optimization and per-

formance of the neural network. Different algorithms

usually require different sets of hyperparameters. Find-

ing the optimal set of hyperparameters, or hyperparam-

eter tunning, is an empirical process. In other words,

it requires experimenting with the network on different

sets of hyperparameters and evaluate their performance.



3

Therefore, I expect this step to be the most challenging,

time-consuming, and computationally expensive. I pro-

pose a timescale of about 5-6 weeks.

3.2.1. Hyperparameter Tunning

I will apply the holdout cross-validation method. In

particular, the mock data are partitioned into a train-

ing set and a test/development set. After each epoch, or

each iteration through the training set, the network is

run on the test set. As mentioned in Section, the perfor-

mance is evaluated by computing the coherence between

DARM and the clean DARM. This gives an insight on

how the network performs on an independent, unknown

dataset. There are three possible outcomes:

• High Bias, High Variance: The network performs

poorly on both the training set and the test set.

This is due to underfitting. An immediate diag-

nosis is to check if the gradient descent converges

and subsequently increase the number of iterations

and/or the learning rate. If underfitting persists,

I propose to increase the network’s size (e.g. add

more hidden layers and hidden units) as this will

allow the network to recognize more complex pat-

terns (more non-linearities).

• Low Bias, High Variance: The network performs

well on the training set but poorly on the test set.

This is due to overfitting and is one of the biggest

problems in machine learning. The general solu-

tion is to apply regularization during the train-

ing process, or, if regularization is already used,

increase the degree of regularization. Regulariza-

tion reduces overfitting because it, roughly speak-

ing, introduces noises into the training data. In

addition, generating more training data also helps

reduce overfitting.

• Low Bias, Low Variance: The network performs

well on both the training set and the test set. This

is the ideal result. The hyperparameters are opti-

mal for the analysis.

Alternatively, changing the network’s architecture, such

as the network’s type or the output function in each

layer, may also reduce underfitting and overfitting. This

serves only as a last resort because it requires rebuilding

the analysis pipeline.

Finally, another important set of hyperparameters is

the size of the training set and test set. In principle, each

set should be large enough to represent the mock data.

Because more mock data can be generated as needed,

the training set and test set are usually the same sizes.

In practice, however, this ratio may vary slightly.

3.2.2. Current Analysis Pipeline

The current analysis pipeline, DeepClean, is available

in the Python programming language. It consists of

three separate LSTM networks: Low, Mid, and High.

Each uses a different set of hyperparameters and opti-

mization (gradient descent) algorithm, and runs on a

different frequency band. The frequency cutoffs are 3-

19 Hz, 18-40 Hz, and 37-80 Hz respectively. On each

run, DeepClean loops over each frequency band and per-

forms subtraction using the assigned network; the final

subtraction will be a combined result of three networks.

Each network is trained and tested independently.

I will use DeepClean as my main analysis pipeline

and make some adjustments if required. For example,

the number of frequency bands, itself a hyperparameter,

may be subject to change.

3.3. Running on real LIGO data

Once the optimal set of hyperparameters is chosen,

I will test DeepClean on real data from LIGO’s past

observation. If DeepClean successfully removes non-

fundamental (subtractable) noises without removing the

signals or the fundamental (non-subtractable) noises, it

will be ready to run on real-time, future LIGO’s data.

Because the training and testing processes are similar

for real and mock data, I expect this step to be relatively

straight-forward, possibly with some minor twitches of

the hyperparameters. I propose a timescale of about 3-4

weeks.

REFERENCES

Abbott, B. P. et al. 2016, Phys. Rev. Lett., 116, 061102

Adhikari, R. 2004, PhD thesis, Massachusetts Institute of

Technology, Massachusetts, USA

Karpathy, A. 2015, The Unreasonable Effectiveness of

Recurrent Neural Networks

LIGO Scientific Collaboration. 2007, arXiv, 0711.3041

M Coughlin, J Harms, e. a. 2014, Classical and Quantum

Gravity, 31, 215003

Olah, C. 2015, Understanding LSTM Networks

The LIGO Scientific Collaboration. 2015, Classical and

Quantum Gravity, 32, 074001

Tiwari, V., et al. 2015, Class. Quant. Grav., 32, 165014


