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Computing the remnant mass, spin, and recoil of a black hole binary in principle requires numerical
relativity (NR) simulations. Unfortunately, NR simulations cannot be performed quickly enough
for some waveform models and LIGO data analysis routines that require remnant parameters. We
develop phenomenological formulae for the remnant mass, spin, and recoil of binary systems given
arbitrary initial spins and mass ratios. We do this by constructing fits to NR simulations in the
SXS catalog. In particular, we explore the use of gaussian process regression. We use the SXS
catalog to compare the accuracy of our remnant mass and spin fits with that of the remnant mass
and spin formulae in the Effective One Body (EOB) waveform model in the LSC Algorithm Library
(LALSuite).

MOTIVATION FOR PHENOMENOLOGICAL
FITS AND METHODS OF FOCUS

The detection of gravitational waves by the advanced
LIGO interferometers [1] represents a confirmation of a
substantial prediction of Einstein’s theory of general rel-
ativity. This discovery has additionally established grav-
itational waves as a new source of information about the
observable universe.

Of particular relevance is the use of gravitational-wave
data to estimate the parameters (masses and spins) of
mergers of black-hole binary systems. For this purpose, it
is often beneficial to predict the post-merger mass, spin,
and recoil velocity as a function of the initial mass ra-
tio and spins of the binary. For example, the SEOB-
NRv3 waveform model [2] used for LIGO data analy-
sis uses such a prediction of the post-merger mass and
spin to compute the ringdown portion of the waveform.
Predicting the parameters of the remnant black hole re-
quires numerical relativity simulations, and exhausting
the input parameter space through direct simulation is
not tractable. Approximate formulas for these final pa-
rameters are useful because they provide a procedure for
obtaining final parameter values at a continuum of initial
parameter inputs at a lower computational cost.

To address this need, phenomenological fits of final pa-
rameters as functions of initial parameters have been de-
veloped by several efforts for the case of aligned spins
[3, 4] and some cases of generic and precessing spins [5, 6].
Our goal is to expand upon this work using a new set
of over 1000 simulations of binary mergers from the SXS
public and incoming catalogs [7], improving upon the for-
mulas particularly in the case of generic spins. We also
hope to explore whether it is advantageous to use general
machine learning methods to obtain fits.

We hope to see improvement from two angles: first,
from fitting to a newer and larger set of black-hole bi-
nary simulations. And second, from new approaches to
fitting the results of the simulations. In particular, we

evaluate the suitability of Gaussian Process Regression
for remnant parameter fits.

It will be important to compute the error of the new fits
constructed here. The reduction of this error compared
to the results of previous studies will serve as a measure
of success of the project.

An objective is to release public code with subroutines
to compute the fits obtained in the analysis. This will be
key to allowing these results to be easily replicated and
used in further work.

REGRESSION ON NUMERICAL RELATIVITY
SIMULATIONS

Our ultimate goal is to fit the remnant mass, spin, and
recoil as a function of all seven input parameters in the
case of generic spins. As a first step, we fit the remnant
mass and spin for the case where the initial black holes
have zero spin and we found good agreement between the
data and the model (see Figures 1, 2, 3). Next, we treat
the case where the black holes have spins aligned or anti-
aligned with the orbital angular momentum and compare
this with [8]; residual plots are given in Figures 4 and
5. The remnant mass for generic spins is then fit with
results summarized in Figure 6 and Table I. Work for
the remainder of the project will focus on fitting remnant
spin in the arbitrary spin case, followed by fitting of recoil
in the aligned and arbitrary spin case.

Gaussian Process Regression

A Gaussian Process can be viewed as a means of ap-
plying a nonlinear transformation to training data, and
then linearly combining the results to predict the value of
a function at a new input point [9]. This nonlinear trans-
formation is given by a “kernel” function defined between
two input points, which is often a squared-exponential or
“radial basis function” (RBF) [9]. Parameters of this
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function are referred to as “hyperparameters”. In con-
trast to a parametric fit, which optimizes parameters of
a given function according to training data, Gaussian
Process Regression optimizes kernel hyperparameters, so
that the trained model uses the training data itself to
predict function values at new points [9].

The Gaussian Process Regression class provided by
sklearn is used to perform the fits. This package pro-
vides a procedure to train a Gaussian Process model in
which kernel hyperparameters are determined by max-
imizing log-marginal-likelihood [10]. Unless otherwise
noted, the default RBF kernel is used.

Training / Validation Partitioning and Cross
Validation Routine

In order to accurately estimate fitting error, a valida-
tion set is separated from remaining data and excluded
from the fit; a model’s ability to predict correct values for
the validation set is used as a proxy for its error in gen-
eral. The histograms in Figures 4, 5, 6 report residuals
for both the training and validation subsets of data.

In addition, a 10-fold cross validation rou-
tine was developed using the KFold class in
sklearn.model_selection. In this procedure, the
data is shuffled and then partitioned into ten equal
blocks. For each of these blocks, a fit is performed on
the other nine blocks and then evaluated on the block
not used in fitting. Table I contains norms produced by
the cross validation procedure for the Gaussian Process
Regression fit to the remnant mass of the generic spin
case, when setting the noise parameter “alpha” [10] to
10−4.

Fitting residuals

Zero initial spin

Gaussian Process Regression was used to fit the final
remnant mass and spin magnitude in the case of initial
spins with a squared magnitude of less than 10−10. Forty-
eight points meeting this criterion were used in the fits.

From the residuals in Figure 2 it can be seen that the
error in the fit is within 0.1% for all simulations. In the
top plot in Figure 1 the best value fit appears smooth and
appears to interpolate well for input mass ratios between
1 and 10. Plots for the remnant spin and residuals in the
initially spinless case appear in Figures 1 (bottom) and
3.
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FIG. 1. Plot of predicted remnant mass (solid curve, top)
and predicted remnant spin (solid curve, bottom) for spinless
case from Gaussian Process Regression fit, each with training
data set (solid dots) and validation set (plus signs) overlayed.
The training set was used to fit the Gaussian Process model,
while the validation set was used only in assessing residuals.
Fitting was performed on the relaxed masses of each input
black hole (two input features). Note that the mass ratio can
be similar between different simulations, and so some points
at certain mass ratios represent more than one training or
validation simulation.

Aligned / anti-aligned initial spin

The validation residuals obtained from the Gaussian
Process Regression fit for remnant mass and spin magni-
tude on the SXS catalog aligned spin data improved on
residuals produced by the remnant mass formula in Ref.
[8] using the published coefficients (see Figure 4 - the
Gaussian Process Regression fit errors are clustered closer
to zero in both the training and validation sets). Addi-
tionally, a least-squares fit of the remnant mass formula
in Ref. [8] was performed on the SXS catalog aligned
spin data, and the Gaussian Process fit performed better
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FIG. 2. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process Regression fit of the
remnant mass for the spinless data. Here 36 randomly se-
lected training points were used for the fit out of the 48 spin-
less simulations, and the remaining 12 formed the validation
set. The histogram bins are divided into ranges of relative er-
rors, and the height of each bar corresponds to the number of
simulations for which the error lies within the bin boundaries.

(Figure 4).

Arbitrary initial spin

A Gaussian Process Regression fit was performed for
the remnant mass in the generic spin case. In Figure 6
and Table I, it can be seen that typical errors are well
under 1% and the maximum absolute error is estimated
to be of order 1%. Table I summarizes normed quantities
from a cross validation analysis of the generic input spin
fit.
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FIG. 3. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process Regression fit of the
remnant spin magnitude for the spinless data.

TABLE I. Relative error norms for the cross validation of the
Gaussian Process Regression fit of remnant mass for the ar-
bitrary spin case. Units are in percent or 10−2. The norms
are computed for the residual set X as L1 = 1

|X|
∑

x∈X |x|,

L2 = 1
|X|

√∑
x∈X x2, Linf = maxx∈X |x|. Columns 1-10 rep-

resent the partition subset withheld from fitting and used in
validation; the mean of each norm is given in the final column.

Validation Subset
1 2 3 4 5 6 7 8 9 10 Mean

L1 0.15 0.11 0.12 0.15 0.11 0.12 0.12 0.12 0.14 0.1 0.12

L2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Linf 1.43 0.84 1.09 1.57 0.76 1.14 0.96 0.85 0.82 1.34 1.08



4

10 8 10 7 10 6 10 5 10 4 10 3 10 2

Relative Error
0

10

20

30

40

50

Si
m

ul
at

io
n 

Co
un

t
Remnant Mass Residuals

(Aligned / Anti-aligned Spins)
Training Set

GPR
RIT published
RIT least squares

10 7 10 6 10 5 10 4 10 3 10 2

Relative Error
0

10

20

30

40

Si
m

ul
at

io
n 

Co
un

t

Remnant Mass Residuals
(Aligned / Anti-aligned Spins)

Validation Set
GPR
RIT published
RIT least squares

FIG. 4. Training set residuals (top) and validation set resid-
uals (bottom) for Gaussian Process Regression and Ref. [8]
fits of the remnant mass in the aligned / anti-aligned input
spin case (3 dimensional input parameter space). A total of
212 aligned spin data points were chosen from the public and
incoming SXS catalogs by selecting all BBH simulations for
which both initial spins retained at least 99.9 percent of their
magnitude when the inner product was taken with the initial
angular momentum direction; these points were partitioned
into a training set and a smaller validation set. “RIT pub-
lished” refers to residuals obtained using the remnant mass
model in Ref. [8] with the published coefficients. “RIT least
squares” refers to the same model using coefficients deter-
mined by a least squares fit against the training set. Fitting
was performed on the relaxed input parameters (parameters
measured after the dissipation of junk radiation). The his-
togram bins are divided into ranges of relative errors, and the
height of each bar corresponds to the number of simulations
for which the error lies within the bin boundaries.
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FIG. 5. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process fit of the remnant spin
in the aligned / anti-aligned input spin case.
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FIG. 6. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process fit of the remnant spin
in the arbitrary spin case (7 dimensional input space). The
training and validation sets were partitioned from 1352 black
hole binary simulations with arbitrary initial spins.
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TABLE II. Relative error norms of remnant mass predictions
on the SXS catalog data from models currently used in LAL-
Simulation. Units are in percent or 10−2. The L1, L2, and
Linf norms are defined as in Table I

L1 L2 Linf

EOBNR 0.85 0.03 7.76

EOBNRv2 0.78 0.03 7.44

EOBNRv2HM 0.78 0.03 7.44

SEOBNRv1 0.45 0.02 4.48

SEOBNRv2 0.14 0.01 0.93

SEOBNRv4 0.14 0.01 0.93

Comparison to SEOBNRv4 in LALSimulation

The implementation of the SEOBNRv4 model in
src/LALSimBlackHoleRingdown.c was used to predict
remnant parameters for the SXS catalog data. The
source code was minimally modified and incorporated
into fitting python scripts using ctypes.

Table II summarizes the normed residuals for the mod-
els currently implemented in LALSimulation when ap-
plied to the SXS catalog data. In Table I, the mean max-
imum absolute relative error is 1.08% for the Gaussian
Process Regression mass fit, which is slightly higher than
the Linf of 0.93% for SEOBNRv2 and SEOBNRv4. Con-
versely, the average absolute relative error is improved in
the Gaussian Process Regression fit from 0.14% to 0.12%.

CHALLENGES

Uncertainties in recoil computations

Although the output of the code includes the final co-
ordinate velocity of the remnant, this is only a coordinate
velocity and not physically meaningful. Much better is
to compute recoils from the gravitational waveform; in
our case we use the spherical harmonic decomposition of
the Weyl scalar Ψ4 [11]. This is currently implemented
in a script in SpEC.

So far, the magnitude of the radiated linear momen-
tum calculated by this procedure has varied by up to or-
der 10% or higher between resolution levels in the same
simulation, even for cases with high recoil. For compari-
son, initial and remnant mass and spin typically vary by
less than 0.1% between resolution levels for the same data
set. The problem was initially worse due to contributions
from “junk radiation” (gravitational radiation produced
by artifacts of the simulation itself) at early times. Al-
though integrating starting at a time after the dissipation
of the junk radiation has improved results, the aforemen-
tioned discrepancies still exist. It will be important to
establish the extent to which the differences are due to
expected numerical uncertainties, and whether there are

any mistakes in the current data treatment.

Parameter choices in full dimensional spin and recoil
fits

Although good residuals have been obtained for rem-
nant mass in the full dimensional case, it may be more
difficult to fit the remnant spin. This is primarily due
to the fact that input and output parameters must be
chosen carefully; it is possible that the current Carte-
sian representation of the spins will not work well for
fitting. Although there is no information difference be-
tween different coordinate representations of the spins,
these choices may be significant in fitting; for example,
in the spinless case it was observed that directly using
the mass ratio q or not normalizing masses by the total
initial mass in fitting yielded errors which were higher by
several orders of magnitude1. Using the larger normal-
ized mass2 as the input parameter and using the normal-
ized remnant mass as the output parameter yielded the
results shown in Figures 1, 2, and 3.

Fitting the recoil will similarly require well chosen pa-
rameters, and in addition is expected to have much higher
uncertainties than the other quantities. Because large
numbers of the simulations are not expected to have re-
coil, and indeed currently have a computed recoil which
appears to be numerical noise, it will be important to
account for this to avoid overfitting and when measuring
relative error.

GOALS

The first priority will be implementing fits to spin in
the general initial spin case. After this, the current values
for recoil will be revisited and recomputed if any errors
are found in how they were computed. Once this is done,
and appropriate uncertainty is determined for the recoil
of each simulation, fits to the recoil will be performed.

A thorough comparison between the Gaussian Process
fits and the EOB waveform models implemented in LAL-

1 The two suboptimal choices of parameters reflect two separate
issues: fitting from the mass ratio q did not work well be-
cause Gaussian Process Regression fits seem to perform better
when the input parameters are normalized; fitting using non-
normalized masses did not work well because a relatively small
number of early simulations did not normalize all masses by
the initial mass [12]. Because Gaussian Process Regression uses
locality to predict function values at new points, error can be
higher when predicting a function at points far away from the
training set points. Because remnant mass scales linearly with
initial mass, failing to normalize masses by the initial mass causes
artificially large distances between some data points.

2 Here, the larger normalized mass refers to the quantity q/(q+1),
where q is the ratio of the larger mass to the smaller mass.
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Suite will be performed as well, and work on this will
proceed throughout the remainder of the project.
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