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Computing the remnant mass, spin, and recoil of a black hole binary in principle requires numerical
relativity (NR) simulations. Unfortunately, NR simulations cannot be performed quickly enough
for some waveform models and LIGO data analysis routines that require remnant parameters. We
develop phenomenological formulae for the remnant mass, spin, and recoil of binary systems given
arbitrary initial spins and mass ratios. We do this by constructing fits to NR simulations in the
SXS catalog. In particular, we explore the use of gaussian process regression. We use the SXS
catalog to compare the accuracy of our remnant mass and spin fits with that of the remnant mass
and spin formulae in the Effective One Body (EOB) waveform model in the LSC Algorithm Library
(LALSuite).

MOTIVATION FOR PHENOMENOLOGICAL
FITS AND METHODS OF FOCUS

The detection of gravitational waves by the advanced
LIGO interferometers [1] represents a confirmation of a
substantial prediction of Einstein’s theory of general rel-
ativity. This discovery has additionally established grav-
itational waves as a new source of information about the
observable universe.

Of particular relevance is the use of gravitational-wave
data to estimate the parameters (masses and spins) of
mergers of black-hole binary systems. For this purpose, it
is often beneficial to predict the post-merger mass, spin,
and recoil velocity as a function of the initial mass ra-
tio and spins of the binary. For example, the SEOB-
NRv3 waveform model [2] used for LIGO data analy-
sis uses such a prediction of the post-merger mass and
spin to compute the ringdown portion of the waveform.
Predicting the parameters of the remnant black hole re-
quires numerical relativity simulations, and exhausting
the input parameter space through direct simulation is
not tractable. Approximate formulas for these final pa-
rameters are useful because they provide a procedure for
obtaining final parameter values at a continuum of initial
parameter inputs at a lower computational cost.

To address this need, phenomenological fits of final pa-
rameters as functions of initial parameters have been de-
veloped by several efforts for the case of aligned spins
[3, 4] and some cases of generic and precessing spins [5, 6].
Our goal is to expand upon this work using a new set of
over 1000 simulations of binary mergers from the SXS
public and “incoming” catalogs [7], with an emphasis on
the use of general machine learning methods to obtain
fits. In particular, we evaluate the suitability of Gaus-
sian Process Regression for remnant parameter fits.

In the appendix, some code is provided for the cross
validation routine used in this analysis. This is provided
in order to assist in replication of the results and use of
these fits in further work.

REGRESSION ON NUMERICAL RELATIVITY
SIMULATIONS

Our ultimate goal is to fit the remnant mass, spin, and
recoil as a function of all seven input parameters in the
case of generic spins. As a first step, we fit the remnant
mass and spin for the case where the initial black holes
have zero spin and we found good agreement between the
data and the model (see Figures 1, 2, 3). Next, we treat
the case where the black holes have spins aligned or anti-
aligned with the orbital angular momentum and compare
this with [8]; residual plots are given in Figures 4 and 5.
The remnant mass for the full dimensional case (generic
spins) is then fit with results summarized in Figure 6 and
Table I. Fits for the remnant spin magnitude in this case
are also summarized in Figure 7 and Table II. Work on
recoil fits is ongoing.

Gaussian Process Regression

A Gaussian Process can be viewed as a means of ap-
plying a nonlinear transformation to training data, and
then linearly combining the results to predict the value of
a function at a new input point [9]. This nonlinear trans-
formation is given by a “kernel” function defined between
two input points, which is often a squared-exponential or
“radial basis function” (RBF) [9]. Parameters of this
function are referred to as “hyperparameters”. In con-
trast to a parametric fit, which optimizes parameters of
a given function according to training data, Gaussian
Process Regression optimizes kernel hyperparameters, so
that the trained model uses the training data itself to
predict function values at new points [9].

The Gaussian Process Regression class provided by
sklearn is used to perform the fits. This package pro-
vides a procedure to train a Gaussian Process model in
which kernel hyperparameters are determined by max-
imizing log-marginal-likelihood [10]. Unless otherwise
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noted, the default RBF kernel is used.

Extremely Randomized Trees Regression

Tree regression methods construct a decision tree from
a training data set. When predicting function values at
new data points, the values of input features are used to
traverse the tree until a leaf node is reached, at which
point a final regression model is applied.

“Extremely Randomized Tree” regression uses several
decision trees, each trained on a random subset of the
data using random [11]. When predicting the function
value at a new point, an average of the predictions of the
trees is taken.

In sklearn, this is implemented in
ExtraTreesRegressor in the ensemble subpackage
[11].

Training / Validation Partitioning and Cross
Validation Routine

In order to accurately estimate fitting error, a valida-
tion set is separated from remaining data and excluded
from the fit; a model’s ability to predict correct values
for the validation set is used as a proxy for its error in
general. The histograms in Figures 2, 3, 4, 5, 6, 7 report
residuals for both the training and validation subsets of
data.

In addition, a 10-fold cross validation rou-
tine was developed using the KFold class in
sklearn.model_selection. In this procedure, the
data is shuffled and then partitioned into ten equal
blocks. For each of these blocks, a fit is performed on
the other nine blocks and then evaluated on the block
not used in fitting. Table I contains norms produced by
the cross validation procedure for the Gaussian Process
Regression fit to the remnant mass of the generic spin
case, when setting the noise parameter “alpha” [10] to
10−4.

Fitting residuals

Zero initial spin

Gaussian Process Regression was used to fit the final
remnant mass and spin magnitude in the case of initial
spins with a squared magnitude of less than 10−10. Forty-
eight points meeting this criterion were used in the fits.

From the residuals in Figure 2 it can be seen that the
error in the fit is within 0.1% for all simulations. In the
top plot in Figure 1 the best value fit appears smooth and
appears to interpolate well for input mass ratios between
1 and 10. Plots for the remnant spin and residuals in the
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FIG. 1. Plot of predicted remnant mass (solid curve, top)
and predicted remnant spin (solid curve, bottom) for spinless
case from Gaussian Process Regression fit, each with training
data set (solid dots) and validation set (plus signs) overlayed.
The training set was used to fit the Gaussian Process model,
while the validation set was used only in assessing residuals.
Fitting was performed on the relaxed masses of each input
black hole (two input features). Note that the mass ratio can
be similar between different simulations, and so some points
at certain mass ratios represent more than one training or
validation simulation.

initially spinless case appear in Figures 1 (bottom) and
3.

Aligned / anti-aligned initial spin

The validation residuals obtained from the Gaussian
Process Regression fit for remnant mass and spin magni-
tude on the SXS catalog aligned spin data improved on
residuals produced by the remnant mass formula in Ref.
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Spinless - Mass Residuals
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FIG. 2. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process Regression fit of the
remnant mass for the spinless data. Here 36 randomly se-
lected training points were used for the fit out of the 48 spin-
less simulations, and the remaining 12 formed the validation
set. The histogram bins are divided into ranges of relative er-
rors, and the height of each bar corresponds to the number of
simulations for which the error lies within the bin boundaries.

[8] using the published coefficients (see Figure 4 - the
Gaussian Process Regression fit errors are clustered closer
to zero in both the training and validation sets). Addi-
tionally, a least-squares fit of the remnant mass formula
in Ref. [8] was performed on the SXS catalog aligned
spin data, and the Gaussian Process fit performed better
(Figure 4).
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FIG. 3. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process Regression fit of the
remnant spin magnitude for the spinless data.

Arbitrary initial spin

A Gaussian Process Regression fit was performed for
the remnant mass and spin magnitude in the generic spin
case.

In Figure 6 and Table I, it can be seen that typical
errors for remnant mass are well under 1% and the maxi-
mum absolute error is estimated to be of order 1%. Table
I summarizes normed quantities from a cross validation
analysis of the generic input spin fit. For remnant mass,
a fit using Extremely Randomized Tree regression was
performed as well, and residual norms are present in I
for comparison.

The remnant spin magnitude Gaussian Process fit was
performed by fitting each spin component (x, y, z) indi-
vidually and then taking the magnitude of the result.
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Aligned / Anti-aligned - Mass
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FIG. 4. Training set residuals (top) and validation set resid-
uals (bottom) for Gaussian Process Regression and Ref. [8]
fits of the remnant mass in the aligned / anti-aligned input
spin case (3 dimensional input parameter space). A total of
212 aligned spin data points were chosen from the public and
incoming SXS catalogs by selecting all BBH simulations for
which both initial spins retained at least 99.9 percent of their
magnitude when the inner product was taken with the initial
angular momentum direction; these points were partitioned
into a training set and a smaller validation set. “RIT pub-
lished” refers to residuals obtained using the remnant mass
model in Ref. [8] with the published coefficients. “RIT least
squares” refers to the same model using coefficients deter-
mined by a least squares fit against the training set. Fitting
was performed on the relaxed input parameters (parameters
measured after the dissipation of junk radiation). The his-
togram bins are divided into ranges of relative errors, and the
height of each bar corresponds to the number of simulations
for which the error lies within the bin boundaries.
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FIG. 5. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process fit of the remnant spin
in the aligned / anti-aligned input spin case.
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Full Dimensional - Mass
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FIG. 6. Training set residuals (top) and validation set residu-
als (bottom) for a Gaussian Process and Extremely Random-
ized Trees fit of the remnant spin in the arbitrary spin case
(7 dimensional input space). The training and validation sets
were partitioned from 1352 black hole binary simulations with
arbitrary initial spins. The residuals of the remnant mass fit
used in the SEOBNRv4 waveform model as implemented in
LALSimulation are also overlayed on each plot for compari-
son.

Full Dimensional - Spin
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FIG. 7. Training set residuals (top) and validation set resid-
uals (bottom) for a Gaussian Process fit of the remnant spin
magnitude in the case of arbitrary initial spins. The ’LAL’
labeled line refers to the SEOBNRv4 model fit, while the
’LALPrec’ labeled line refers to the SEOBNRv3 model (which
accounts for non-aligned spins, unlike SEOBNRv4).
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TABLE I. Relative error norms for the cross validation of the
Gaussian Process Regression fit of remnant mass for the ar-
bitrary spin case. Units are in percent or 10−2. The norms
are computed for the residual set X as L1 = 1

|X|
∑

x∈X |x|,

L2 = 1
|X|

√∑
x∈X x2, Linf = maxx∈X |x|. Columns 1-10 rep-

resent the error evaluated on each subset when withheld from
fitting during cross validation; the mean of each norm across
these 10 values is given in the final column.

Validation Subset GPR
1 2 3 4 5 6 7 8 9 10 Mean

L1 0.12 0.12 0.12 0.14 0.13 0.1 0.11 0.14 0.13 0.12 0.12

L2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Linf 1.0 0.73 1.06 0.96 1.34 0.84 1.3 1.28 0.96 1.2 1.07

Validation Subset Extra Trees Regressor

1 2 3 4 5 6 7 8 9 10 Mean

L1 0.09 0.08 0.08 0.08 0.1 0.09 0.08 0.1 0.08 0.09 0.09

L2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Linf 1.03 0.48 0.53 0.38 0.97 0.75 0.86 0.57 0.63 0.53 0.67

TABLE II. Relative error norms for the cross validation of
the Gaussian Process Regression fit of remnant spin for the
arbitrary spin case. Units are in percent or 10−2. The norms
are computed for the residual set X as L1 = 1

|X|
∑

x∈X |x|,

L2 = 1
|X|

√∑
x∈X x2, Linf = maxx∈X |x|. Columns 1-10 rep-

resent the error evaluated on each subset when withheld from
fitting during cross validation; the mean of each norm across
these 10 values is given in the final column.

Validation Subset GPR

1 2 3 4 5 6 7 8 9 10 Mean

L1 0.61 0.7 0.59 0.55 0.55 0.62 0.56 0.51 0.51 0.64 0.58

L2 0.08 0.17 0.08 0.07 0.08 0.08 0.08 0.06 0.07 0.13 0.09

Linf 3.95 20.91 4.1 4.16 4.15 4.09 3.8 2.68 3.71 13.58 6.51

Validation Subset Extra Trees Regressor

1 2 3 4 5 6 7 8 9 10 Mean

L1 1.01 1.13 0.88 1.1 1.0 1.12 0.99 0.86 1.2 1.19 1.05

L2 0.13 0.15 0.11 0.14 0.16 0.15 0.13 0.11 0.29 0.16 0.15

Linf 4.83 7.29 3.73 7.12 12.46 7.35 4.82 5.41 33.93 8.65 9.56
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DISCUSSION AND FUTURE WORK

Evaluation of Gaussian Process Regression

Gaussian Process Regression proved robust in predict-
ing remnant mass and spin, and matched or improved
upon other implementations available. Residuals are
small in the spinless case, and the interpolation between
data points is smooth (Figures 1, 2, 3). Residual plots
in the aligned initial spin case show lower error obtained
for a Gaussian Process Regression fit on the SXS data
than both the “RIT” fit (Ref [8]) as published and when
trained on SXS data by least squares regression (Fig-
ures 4, 5). In the arbitrary initial spin case, Gaussian
Process Regression matches the best EOB formula for
remnant mass and improves upon the best EOB formula
for remnant spin (Figures 6, 7).

Extremely Randomized Tree Regression for
Remnant Mass

In the full dimensional input case, the
ExtraTreesRegressor implementation provided by
Scikit-learn performed better than the Gaussian Process
Regression package provided by the same package; this
can be seen in Table I where the mean L1 improves
from 0.12 to 0.09 percent, and mean Linf improves from
1.07 to 0.67 percent. This advantage did not hold for
spin magnitude predictions though, where Extremely
Randomized Tree regression increased all error norms
(Table II).

Comparison to EOB fits in LALSimulation

The implementation of the SEOBNRv4 model in
src/LALSimBlackHoleRingdown.c was used to predict
remnant parameters for the SXS catalog data. The
source code was minimally modified and incorporated
into fitting python scripts using ctypes.

Table III summarizes the normed mass residuals for the
models currently implemented in LALSimulation when
applied to the SXS catalog data. In Table I, the mean
maximum absolute relative error is 1.08% for the Gaus-
sian Process Regression mass fit, which is slightly higher
than the Linf of 0.93% for SEOBNRv2 and SEOBNRv4.
Conversely, the average absolute relative error is im-
proved in the Gaussian Process Regression fit from 0.14%
to 0.12%. A fit to the remnant mass using Extremely
Randomized Tree Regression (ETR) yielded more defini-
tive improvements over the EOB model, as is summarized
in the previous section.

A graphical comparison between GPR, ETR, and the
SEOBNRv4 model for remnant mass is shown in Fig-
ure 6.

TABLE III. Relative error norms of remnant mass predictions
on the SXS catalog data from models currently used in LAL-
Simulation. Units are in percent or 10−2. The L1, L2, and
Linf norms are defined as in Table I

L1 L2 Linf

EOBNR 0.85 0.03 7.76

EOBNRv2 0.78 0.03 7.44

EOBNRv2HM 0.78 0.03 7.44

SEOBNRv1 0.45 0.02 4.48

SEOBNRv2 0.14 0.01 0.93

SEOBNRv4 0.14 0.01 0.93

In Figure 7, a comparison for the spin magnitude
residuals is shown between an EOB model which as-
sumes aligned spins (“LAL Non-Prec” / SEOBNRv4),
an EOB model fit to the precessing spins case (“LAL
Prec” / SEOBNRv3), and a Gaussian Process Regres-
sion fit. The precessing model improves on the non-
precessing model, and the Gaussian Process Regression
fit has smaller error when evaluated on the validation set
than both EOB models. When the SEOBNRv3 model
was evaluated for remnant mass, the residuals were sim-
ilar to those given by the SEOBNRv4 model.

Implication for Gravitational Wave Searches

The Effective One Body (EOB) waveform models im-
plemented in the LSC Algorithm Library (LAL) expand
the waveform in quasi normal modes of the remnant black
hole; these quasi normal modes depend on the final mass
and spin of the remnant [12]. An improvement to these
remnant parameter predictions could improve the accu-
racy of EOB waveforms, which could in turn improve
searches.

Future Analysis of Recoil

Although the output of the code includes the final co-
ordinate velocity of the remnant, this is only a coordinate
velocity and not physically meaningful. Much better is
to compute recoils from the gravitational waveform; in
our case we use the spherical harmonic decomposition of
the Weyl scalar Ψ4 [13]. This is currently implemented
in a script in SpEC.

Upon inspection, the magnitude of the radiated lin-
ear momentum calculated by this procedure has varied
by up to order 10% or higher between resolution levels
in the same simulation, even for cases with high recoil.
For comparison, initial and remnant mass and spin typ-
ically vary by less than 0.1% between resolution levels
for the same data set. The problem was initially worse
due to contributions from “junk radiation” (gravitational
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radiation produced by artifacts of the simulation itself)
at early times. Although integrating starting at a time
after the dissipation of the junk radiation has improved
results, the aforementioned discrepancies still exist.

This uncertainty is likely because the recoil has not
converged in several simulations, and re-running these at
higher resolutions may be necessary [14].

Eccentricity

The eccentricity of the binary system orbit is a feature
present in the simulation data. One line of future work
will be to include an eccentricity cutoff, above which sim-
ulations would be removed from the training data for fits.
It is possible that this will reduce the uncertainty in the
input recoils, allowing for meaningful fits [14]. In addi-
tion, the remnant mass and spin fits performed did not
exclude high eccentricity binary simulations; an eccen-
tricity cutoff could improve these fits as well.
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APPENDIX

Importance of Careful Parameter Choices

Although there is no information difference between a
given input feature and a reversible mathematical trans-
formation of this feature, these choices may be significant
in fitting; for example, in the spinless case it was observed
that directly using the mass ratio q or not normalizing
masses by the total initial mass in fitting yielded errors
which were higher by several orders of magnitude. The
two suboptimal choices of parameters reflect two sepa-
rate issues: fitting from the mass ratio q did not work
well because Gaussian Process Regression fits seem to
perform better when the input parameters are normal-
ized; fitting using non-normalized masses did not work
well because a relatively small number of early simula-
tions did not normalize all masses by the initial mass [14].
Because Gaussian Process Regression uses locality to pre-
dict function values at new points, error can be higher
when predicting a function at points far away from the
training set points. Because remnant mass scales linearly
with initial mass, failing to normalize masses by the ini-
tial mass causes artificially large distances between some
data points.

Using the larger normalized mass1 as the input pa-

rameter and using the normalized remnant mass as the
output parameter yielded the results shown in Figures 1,
2, and 3.

Package Management

Package management of python mod-
ules on the wheeler machine used by SXS
has presented some challenges. The class
sklearn.gaussian_process.GaussianProcessRegressor,
which is necessary for the Gaussian Process Regression
code, is present only in sklearn version 0.18.1 and
above; wheeler has version 0.17.1 installed system-wide
using the default python environment.

To obtain an updated version of sklearn, a custom
local root was created using the conda package manager
using the following commands:

conda create -n name_of_local_root \

--clone=/anaconda/install/directory

source activate name_of_local_root

conda remove conda-env

conda update anaconda

1 Here, the larger normalized mass refers to the quantity q/(q+1), where q is the ratio of the larger mass to the smaller mass.



10

Code Sample

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.ensemble import ExtraTreesRegressor

def cross_validate(X, Y, folds = 10, regressor = GaussianProcessRegressor,

**kwargs):

"""

Returns a dictionary of norms on the residuals from a fit

using the specified regressor (provide class for regressor and

provide class arguments in kwargs)

X: function input

Y: function output

regressor: Regression model to evaluate

Must implement fit and predict functions

folds: Number of cross validation partitions

kwargs: Arguments to be passed to regressor

"""

assert(len(X) == len(Y))

kf = KFold(n_splits = folds, shuffle = True)

norms = {"L1":[], "L1_train":[], "L2":[], "L2_train":[],

"Linf":[], "Linf_train":[]}

for train, test in kf.split(X):

(X_train, X_test,

Y_train, Y_test) = (X[train], X[test], Y[train], Y[test])

gp = regressor(**kwargs)

gp.fit(X_train, Y_train)

residuals_train = (Y_train - gp.predict(X_train)) / Y_train

residuals_test = (Y_test - gp.predict(X_test)) / Y_test

# quick sanity check

assert(len(residuals_test) < len(residuals_train))

norms["L1"].append(L1(residuals_test))

norms["L2"].append(L2(residuals_test))

norms["Linf"].append(Linf(residuals_test))

norms["L1_train"].append(L1(residuals_train))

norms["L2_train"].append(L2(residuals_train))

norms["Linf_train"].append(Linf(residuals_train))

return norms

def L1(residuals):

return sum(abs(residuals)) / len(residuals)

def L2(residuals):

return (sum(residuals**2))**0.5 / len(residuals)

def Linf(residuals):

return max(abs(residuals))
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