Luca Naticchioni - INFN

on behalf of the Virgo Collaboration

VIR-0404A-17

Amaldi 12

AdV Payloads

MAmaldi 12

- AdV vs Virgo/Virgo+ Payloads
- Payload geometry: BS, INPUT, END, PR and SR
- Integrated Payloads specifics
- Optical Levers deployment for Payload control

Payload characterization

- FP Payload pitch, yaw and roll modes
- FP Payload angular noise projection
- Mirror suspension Quality Factor (actual steel-wires setup)

- Payload Upgrades after O2

- Back to TM monolithic suspension
- Fiber guards design
- Payload upgrade plan

AdV Payloads vs Virgo/Virgo+

to SA F7

M Amald 12

Virgo

Photo: M Perciballi

Interface to _ steering filter

Marionette •

Actuation Cage

Recoil Mass

Mirror -

L. Naticchioni – 12° Amaldi Conference on Gravitational Waves @ Pasadena, CA, USA – 2017 July

Photo: M Perciballi

to SA F7

M Amaldi 12

AdV Payloads vs Virgo/Virgo+

M Amaldi 12

AdV Payloads

Payload TF VS top-stage inertial damping activation

AdV Payloads

Manaldi 12

Beam Splitter Payload

7

M Amaldi 12

Input Payloads

M Amaldi 12

Input Payloads

M Amaldi 12

End Payloads

PR & SR Payloads

M Amaldi 12

Payload Integration

	Last Integration	Payload Weight*	Mirror Weight	Mirror Suspension
Beam Splitter	2014/12/17 th	100.5 kg	34.2 kg	steel wires
West Input	2016/07/19 th	145.2 kg (avg)	42 kg	steel wires ⁺
West End	2016/07/26 th	145.2 kg (avg)	42 kg	steel wires ⁺
North Input	2016/10/19 th	145.2 kg (avg)	42 kg	steel wires ⁺
North End	2016/10/26 th	145.2 kg (avg)	42 kg	steel wires ⁺
Power Recycling	2015/11/19 th	85.9 kg	21 kg	steel wires
Signal Recycling	2016/01/12 th	85.9 kg	21 kg	steel wires

M Amaldi 12

Payload Integration

Optical Levers for payload control

M Amald 12

Optical Levers for payload control

N Lever	Suspension	Reflection	PSD location	D.o.F.	N D.o.F.	N sensors
1	INJ	Bench	Focal, Image	$\theta_x\theta_yz$	3	2
2	INJ	MarioT	Focal	$\theta_y \; \theta_z$	1 (2)	1
3	MC	Mirror	Focal, Image	$\theta_x \theta_y z$	3	2
4	MC	RmT	Focal	$\theta_y \theta_z x$	2 (3)	1
5	PR	Mario	Focal	$\theta_x \theta_y$	2	1
6	PR	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
7	PR	Mirror	Focal, Image	$\theta_x \theta_y z$	3	2
8	BS	Mario	Focal	$\theta_x \theta_y$	2	1
9	BS	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
10	BS	Mirror	Focal, Image	$\theta_x\theta_yz$	3	2
11	NI	Mario	Focal	$\theta_x\theta_y$	2	1
12	NI	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
13	NI	Mirror	Focal, Image	$\theta_x\theta_yz$	3	2
14	NE	Mario	Focal	$\theta_x\theta_y$	2	1
15	NE	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
16	NE	Mirror	Focal, Image	$\theta_x \theta_y z$	3	2
17	WI	Mario	Focal	$\theta_x \theta_y$	2	1
18	WI	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
19	WI	Mirror	Focal, Image	$\theta_x\theta_yz$	3	2
20	WE	Mario	Focal	$\theta_x \theta_y$	2	1
21	WE	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
22	WE	Mirror	Focal, Image	$\theta_x\theta_yz$	3	2
23	PR	Mario	Focal	$\theta_x\theta_y$	2	1
24	PR	MarioT	Focal	$\theta_y \theta_z$	1 (2)	1
25	PR	Mirror	Focal, Image	$\theta_x \theta_y z$	3	2

M Amaldi 12

FP Payloads pitch, yaw and roll

Pitch and Roll around (or even below) 100mHz \rightarrow reduced microseism impact on residual tilt

FP Payloads pitch, yaw and roll

Pitch and Roll around (or even below) 100mHz \rightarrow reduced microseism impact on residual tilt

Mi Amaldi 12

FP Payloads pitch, yaw and roll

Pitch and Roll around (or even below) 100mHz \rightarrow reduced microseism impact on residual tilt

M Amaldi 12

FP Payloads angular noise projection

L. Naticchioni – 12° Amaldi Conference on Gravitational Waves @ Pasadena, CA, USA – 2017 July

M Amaldi 12

FP Payloads Q of steel-wire suspension

M Amaldi 12

Back to the Future : monolithic suspension of FP Payloads → F. Travasso's talk!

Payload Upgrades after O2

Integration of Fiber Guards (FG) to avoid any possible failure due to the impact of high speed particles related to vacuum operations

FG must be clamped to the actuation cage Constraints:

M Amaldi 12

- FG size must be compatible with local controls
- FG integration must be compatible with the assembly procedure
- FG must not change significantly the overall suspended weight

Payload Upgrades after O2

Integration of Fiber Guards (FG)

Final Design:

- FG integrated to the cage legs
- FG compatible with local controls and marionette/mirror max oscillations
- FG overal (both sides) weight: 3.2 kg
- Cage+FG resonant frequencies variation has been computed with FEM (< 3% at f < 250Hz)

ANSYS equency: 106.10 0/03/2017 19:40 0,16719 Max 16006 Ma 0 15066 0 13414 0.12869 0.1176 011301 0.1011 0.097326 0.081642 0.065959 0.05154 0.035021 0.034591 0.0185 Mi •

M Amaldi 12

e.g. 1° mode: from 106.19 Hz to 103.78 Hz

P. Rapagnani, P. Puppo VIR-0421A-17

M Amaldi 12

Payload Upgrades after O2

Integration of Fiber Guards (FG)

Payload Upgrade Planning

Payload upgrade activities will start in September

Mi Amaldi 12

- Expected time required to *extract, disassemble, re-assemble* with monolithic suspension + fiber guards and *re-integrate* one Payload:
 ~ 3 weeks
- Minimal time required for 4 FP Payloads: 3 months
- Partial overlap of extraction and integration phases of two payloads is possible → required time may be reduced with appropriate schedule;

The upgrade planning also depends on *commissioning activities* on single ITF arm (TBD) after reintegration of FP In & End Payloads, and other ITF upgrades (e.g. vacuum system, integration of squeezer, etc.)

From 3 to 4 months starting from September 2017

Conclusions

- AdV Payload integration started on 2014 (BS) and ended on 2016 (FP Payloads re-integration);
- The temporary setup with the steel-wires suspension of TMs in FP Payloads allowed the full ITF commissioning of Advanced Virgo and to join Advanced LIGO during O2;
- Mirror (steel-wires) suspension Quality Factor consistent with expectations;
- Reduced impact of microseismic noise on Payloads due to low frequency pitch and roll;
- After O2 we will upgrade AdV FP Payloads: monolithic suspension, installation of Fiber Guards, re-integration of FP Payloads with low frequency pitch and roll (NI case);
- Payload Upgrades will last 3-4 months, starting from September 2017.

Thank you for your attention!

L. Naticchioni – 12° Amaldi Conference on Gravitational Waves @ Pasadena, CA, USA – 2017 July

M Amaldi 12

Payload TF from the actuation cage to the mirror

Payload actuation cage + Fiber Guards FEM simulations

M Amaldi 12

mode	With guards	No guards
1,	103,78	106,19
2,	113,51	114,77
3,	127,13	130,49
4,	149,95	145,26
5,	244,38	251,79
6,	245,88	262,54
7,	263,37	263,9
8,	272,12	333,03
9,	292,11	343,07
10,	306,31	368,51

Payload actuation cage + Fiber Guards FEM simulations

M Amaldi 12

mode	With guards	No guards
1,	103,78	106,19
2,	113,51	114,77
3,	127,13	130,49
4,	149,95	145,26
5,	244,38	251,79
6,	245,88	262,54
7,	263,37	263,9
8,	272,12	333,03
9,	292,11	343,07
10,	306,31	368,51

P. Rapagnani, P. Puppo VIR-0421A-17