Calibration Improvements

in Advanced LIGO's Second Observing Run

Alex L. Urban

LIGO Laboratory
California Institute of Technology
ON BEHALF OF THE ADVANCED LIGO CALIBRATION GROUP

Amaldi 12, July 10, 2017 LIGO Document <u>G1701302</u>

Outline of This Talk

- (Extremely) cartoonish picture of Advanced LIGO calibration
- ullet Overview of h(t) calibration pipeline
- Improvements in O2: online tracking and compensating for slow variations
- Impact of these changes on astronomy

Who are we?

Laser Interferometer Gravitational-wave Observatory

L1 H1

+ Virgo (V1; Italy), GEO (Germany), KAGRA (Japan)

THIS TALK FOCUSES ON LIGO

Observing Run Schedule

Abbot et al., Living Rev Relativ, 19: 1 (2016)

slightly out of date: O2 lasts from late 2016 through August, Virgo recently began taking data this summer

$$h(t) = \frac{\delta L_x(t) - \delta L_y(t)}{L}$$

Signals in Strain Data: GW150914

see also Abbot et al., Phys Rev Lett 116, 061102 (2016)

Calibration 101

Abbot et al., Phys Rev D, 95, 062003 (2017)

Calibration 101

Abbot et al., Phys Rev D, 95, 062003 (2017)

Sensing and Actuation

Inverse Sensing

converts from photodiode counts to residual length change

Actuation

converts from control signal to controlled length change

Calibrated Strain

computed within ~5 s and broadcast to computing clusters received by analysis pipelines for rapid transient searches

Online vs. Offline

C00 (online)

- Computed within~5 s
- Computed by filtering output of front-end controls
- May contain gaps and data dropouts

C01 (offline)

- Available within ~a few weeks/months
- Computed directly from error and control signals
- Fills in gaps and data dropouts

Calibration Lines

Karki et al., Review of Scientific Instruments **87**, 114503 (2016)

SNR ~ 100 sinusoidal excitations at certain frequencies

injected using suspension actuators and a photon calibrator

most deviations from sensing and actuation models can be approximated as slowly changing gains

makes a ~1-10% difference across all frequencies particularly low- and mid-range

translates into a ~few percent difference in BNS range (sometimes an improvement, sometimes not)

however, the coupled cavity pole is a time-changing corner frequency in a low-pass filter (the sensing function)

much harder to compensate for, but work is in progress

Systematic and Statistical Error

Viets et al., in prep (see also Cahillane et al., in prep)

Conclusion

- Low-latency data are calibrated with higher precision and smaller systematics in O2 (compared to O1 — see Craig's talk!)
- Slow variations in the interferometer are tracked and compensated for, both online and offline
- In the future we can improve yet further by compensating for time- and frequency-dependent changes

MORE INFORMATION

Craig Cahillane: calibration uncertainty during O2 Shreya Anand: effects of calibration errors on sky localization

EXTRA SLIDES

2000

Calibrated Strain

raw timeseries output can have DC offset, must be bandpassed (and notched) to visualize signals

Online Pipeline

Offline Pipeline

LIGO Data Grid

Data stored on computer clusters at Caltech, LIGO Hanford, LIGO Livingston, UW-Milwaukee, Syracuse, MIT, Cardiff, AEI Hannover, and AEI Berlin