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1 Abstract

LIGOs gravitational wave detections have not only established the existence of black hole
binaries, but also confirmed the presence of stellar mass black holes larger than 20 solar
masses. Our project aims to study these binaries and their mass distribution throughout
space. Currently, LIGO has made 4 detections of binary black hole mergers. However, this
sample is too small to draw significant conclusions about the mass distribution. To circum-
vent this problem, our project looks towards the future. Within the next 10 years, LIGO
expects the number detections to rise significantly. With these future detections in mind, our
project utilizes simulated data to generate a large population of black hole binaries. From
our general astrophysical knowledge about black holes and nature, we expect the underlying
population to fall like a power-law in the mass of the larger black hole, M−α, in which α is
the power-law index. With the large sample of events our simulations provide, we aim to
constrain the value of the power-law index more precisely and accurately. By doing so, we
will be able to constrain the black hole mass distribution and use that information to make
inferences about the formation and evolution of black hole binaries.
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2 Background and Motivation: Exploring Binary Black

Hole Formation and Evolution From the Mass Dis-

tribution

On September 14, 2015, LIGO confirmed the existence of black hole binaries by detecting the
gravitational waves emitted from the merger of the black holes within the binary [1]. This
discovery was not only remarkable because it confirmed Einstein’s prediction of gravitational
waves within his theory of general relativity, but because it revealed a population of black
hole binaries– particularly black hole binaries larger than 20 solar masses. Before LIGO’s
detections, astronomer’s had primarily relied on x-ray studies to find black holes. This
method, while effective, did not detect any black holes above 20 solar masses. As a result,
LIGO’s 3 detections, extend the range of the known mass distribution of black holes [?].

This mass distribution is important to astronomers because it can tell us how black hole
binaries form and evolve over time [2]. Currently, there are two scenarios that dominate the
potential origin of black hole binaries: dynamical capture and isolated binary evolution. In
dynamical capture, one black hole captures another black hole from another system into an
orbit. You can tell the black holes did not evolve together originally because their spins are
misaligned. In isolated binary evolution, the black hole binary is developed from a previous
star-star binary. Both stars evolved into black holes, meaning that each star withstood being
blown away by each other’s supernova.

The mass distribution is one method by which astronomers may confirm which formation
scenario dominates binary black hole systems.

In the future, as the network of ground-based GW detectors grows, LIGO expects to have
increased detector sensitivity and more observing runs [3]. As a result of this expansion and
overall improvement, we expect there to be on the order of tens, hundreds, and eventually
thousands of gravitational wave events. This will allow us to form a population of events that
we can be able to draw significant conclusions about the mass distribution. By constraining
the mass distribution, we will be gaining valuable information on how black hole binaries
formed and evolved over time.

However, before we project into the future, we must focus on the present and prepare for
the data to come. With 4 known events, we have begun to form a small population of
binary black hole (BBH) mergers. This number, however, is too small to make substantial
inferences about the nature of BBH systems. Because we will not have a large sample of
events for decades to come, we must devise methods to make inferences about BBHs from
the data and knowledge we have available now. This is where our research becomes relevant.

The overarching goal of our project is to project into the future where LIGO has multiple
events by making use of simulated data. To do this, we aim to create a simulated mass
distribution of black hole binaries to the farthest distances of the observable universe and
recover that mass distribution from the simulated events we would expect LIGO to detect.
By doing this, we will be able to determine the actual mass distribution of black hole binaries
when LIGO has more events in the future.
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3 Method and Results

3.1 Simulating Black Hole Binaries

We created simulations of black hole binaries by taking into account parameters that de-
scribed the binary and the parameters that described the black holes within the binary.
These parameters are listed in Tables 1 and 2 below. We used our astrophysical knowledge
of black holes to create models that would describe the distribution of BBH based on each
parameter.

3.1.1 Parameters Describing The Binary

Parameter Symbol BBH Distribution

Right Ascension α Uniform
Declination δ Uniform in cosδ
Luminosity Distance dL Volumetric
Orbital Inclination ι Uniform in cos ι
Time of Coalescence tc Uniform
Phase of Coalescence ϕc Uniform in [0,2]pi

Table 1: Summary of Parameters Describing The Binary

Sky Location: Right Ascension and Declination

According to the cosmological principal [4], the large scale spatial distribution of matter in
the universe is homogeneous. Therefore, the universe should look the same when viewed on
a large enough scale, and there should be no observable pattern anywhere. Following the
cosmological principal, we expect to see a random distribution of BBH across the sky because
BBH are not concentrated in one single area of the universe. To best see the distribution of
BBH according to sky location we used a Mollweide Projection map, as shown in Figure 1.

Figure 1: The distribution of Binary Black Holes in a Mollweide Projection. As expected,
the simulation of 10,000 BBHs are randomly distributed throughout the sky.
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Luminosity Distance

To simulate the distribution of binary black holes according to luminosity distance, we may
assume a population of BBHs lie within a given radial distance. Given the cosmological
principal and the radial distribution of BBHs, we expect the distribution of BBHs to increase
exponentially as we observe further from Earth, as shown in Figure 2. This is because as
the distance increases, the volume of BBH increases as a power law due to the r3 factor in
the volume equation.

Equation..1 : V =
4

3
πr3

Figure 2: The radial distribution of Binary Black Holes within a luminosity distance of 1
Gpc. We expect the distribution of BBH to increase exponentially as we observe further
from Earth.

Orbital Inclination

Binary black holes do not always directly face our detectors. Instead, many BBH systems
are inclined at a certain angle with respect to the detectors. The inclination angle of the
system directly effects the magnitude of the gravitational wave strain detected. Gravita-
tional Waves from a BBH system with a face-on orbital plane will have larger amplitude
than from a system of an edge-on orbital plane; thus, one needs to know both the amplitude
and the orbital inclination of the system to infer the luminosity distance of a BBH merger.
We expect the inclination angle of the system to range anywhere between 0 and π and be
uniform in cos(ι).
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Figure 3: Orbital Inclination Angle (ι). We can see the inclination angle of the system ranges
randomly between 0 and π.

Time of Coalescence

BBH mergers may occur at any given time during an observation run. However, the detectors
are not always on-line to detect the merger. The Livingston detector is on approximately
61% of the observing run and the Hanford detector 56%. In order to confirm a BBH merger,
LIGO requires both detectors to be on-line to check the time consistency as the gravitational
waves travel from one detector to another. Gravitational waves travel near the speed of light.
Therefore, the difference in time of detection between the Livingston and Hanford detectors
serves as an additional means of confirmation. Figure 4 shows the probability of one detector,
both detectors or neither detector being on during the observing run.

Figure 4: Number of detectors on during an observing run. We expect both detectors to be
on at the same time for about 30% of the run.
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Phase of Coalescence

Each black hole within the BBH system orbits around the other. As time passes and they
begin to orbit each other faster and faster, they emit more and more energy and get closer
and closer together. This is known as the phase of coalescence. The phase of coalescence
of BBH systems determines whether the gravitational waveform emitted is cosine-like, sine-
like, or in-between, relative to the time of coalescence. We expect BBH systems to have
random ϕc between 0 and 2π, as shown in Figure 5, because the phase at coalescence is
observer-dependent, and there is nothing special about us as observers.

Figure 5: Phase of Coalescence. As see, we expect the distribution of phases for BBH to
range from 0 to 2π.

3.1.2 Parameters Describing The Black Holes Within the Binary

Parameter Symbol BBH Distribution

Total Mass M Power Law
Symmetric Mass Ratio η (m1,m2) Gaussian
Spin Magnitude a1, a2 Gaussian
Spin Azimuthal Angle φa1, φa2 Uniform in [0, 2π]
Spin Polar Angle µa1, µa2 Uniform in cosµ

Table 2: Summary of Parameters Describing The Black Holes Within the Binary

Total Mass

To simulate the distribution of BBH masses, we used the Initial Mass Function for massive
stars postulated by Edwin Salpeter shown in Equation 2 [5].

Equation..2 : ξ(M)∆M = ξ0(M/M�)−2.35(∆/M�)
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N =

∫ Mu

Ml

ξ0

[
(M/Msun)−2.35

]
dM

According to the Initial Mass Function, there are more low mass stars than high mass stars
because low mass stars live longer and therefore contribute to most of the stellar mass in a
system. Since black holes are formed from the collapse of stars, we may also apply the IMF
to the distribution of BBH. In our simulations, we chose to generate BBH masses between 10
and 100M� because higher mass systems produce louder (higher amplitude) GWs, so we can
detect them over a larger volume. As a result of using the IMF, we expected the majority
of our simulated BBHs to lie between 10-30M�, as shown in Figure 6.

Figure 6: Distribution of Total Mass in BBHs. As seen, in the distribution of BBH in the
range from 10-100M�,the majority of the BBH are between 10-30M�.

Figure 7: Log Fit of Mass Distribution. The distribution is linear, as expected from a log fit
of a power law.
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Symmetric Mass Ratio

Each black hole within the binary has its own individual mass. We postulate that the
formation mechanisms dominating in nature favor roughly equally distributed mass, so we
expect the mass ratio, q, between the two black holes in the binary to be close to 1.

To simulate the symmetric mass ratio parameter eta, η, we decided to extend q’s range from
1 to 10. η allows us to characterize the BBH system.

Equation..3 : η =
q

(1 + q2)
=

(M1 ∗M2)

(M1 +M2)2

We know the total mass of the binary.

Equation..4 : Mtotal = M1 +M2

Using these two equations, we can solve for M1 and M2 in terms of total mass and eta.

Equation..5a : M1 =
Mtotal + 2

√
(M2

total ∗ (1− 4 ∗ η))

2

Equation..5b : M2 =
Mtotal − 2

√
(M2

total ∗ (1− 4 ∗ η))

2

Figure 8: Distribution of Symmetric Mass Ratios (η) for BBH. We simulated it as a half-
Gaussian with mean of 0.25 and width of 0.05, with some cutoff. When η is 0.25, q is 1.
Seeing how the mass is distributed in the IMF, we should expect η to be near 0.25.
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Figure 9: Distribution of BBH Individual Masses. The average value for q appears to be less
than 2, which is expected due to the distribution of total mass according to the IMF.

Figure 10: Mass 1 Distribution. The average mass is 21 m�.
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Figure 11: Mass 2 Distribution. The average mass is 11 m�.

Spin Magnitude

The spin of a black hole is a dimensionless parameter that describes the ratio of black hole’s
observed angular momentum to the maximal angular momentum predicted by the Kerr
solution [6]. We assumed the spins of BBH are distributed in a Gaussian distribution of 0.7
mean and 0.1 std.

Figure 12: Distribution of Spin Magnitudes for BBH. The spins of BBH are distributed in
a Gaussian distribution of 0.7 mean and 0.1 std. Values larger than 1 were not accepted, as
the spin is a ratio of angular momentum between 0 and 1.

page 10



LIGO-T1700223—v1

Spin Azimuthal and Polar Angles

If the spin of each black hole within the binary points in the same direction as the total
angular momentum of the system, the magnitude of the spins will not be influenced by the
inclination of the black holes. More generally, the black hole will spin at certain angles away
from the total angular momentum of the system. These angles are known as the polar and
azimuthal angles of the spin. We expect the polar angle of the spin to range from 0 to π and
the azimuthal angle of the spin to range from 0 to 2π.

Figure 13: Spin Azimuthal Angle Distribution. We can see the azimuthal angle of the spin
ranges from 0 to 2π.

Figure 14: Spin Polar Angle Distribution. We can see the polar angle of the spin ranges
from 0 to π.
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3.2 Modeling and Refining the Natural Rate Density of Black Hole Binaries

In our simulations of black hole binaries, we assumed the mass distribution of these systems
fell like a power law of mass raised to the negative power of alpha, the power-law index, in
which the power-law index is defined as 2.35 by Edwin Salpeter’s Initial Mass Function[5].

Figure 15: Total Mass Distribution of BBH Systems. The mass is distributed by the power
law M−2.35

The natural rate density of black hole binaries is the number of binaries of given mass per
unit volume in a given time frame. It is dominated by the power-law index. The goal of our
project is to recover our chosen power-law index from the number of detectable simulated
events. By successfully recovering our rate from simulated events, future LIGO may also
use our work to recover the rate density of binary black holes when they have more events.
Recovering the rate density will allow us to understand how the mass of binary black holes
is distributed, which in turn will allow us to infer how black hole binaries have formed and
evolved over time.

To create simulated observations of the natural rate density of black hole binaries, we must
find a way to relate the number of detectable observed events to the natural rate density. We
can do this using Equation 6, in which N(m) is the observed number of black hole binaries
of given mass, R(m) is the natural rate density, V(m) is the volume in which the black hole
binaries lie and T is a given time-frame.

Equation...6 : N(m) = R(m)V (m)T

To find N(m), we must recognize that not all of our simulated events are detectable by
LIGO. We consider events to be detectable if they have a signal-to-noise ratio (SNR) greater
than 8 in both the Hanford and Livingston detectors. To calculate the SNR, we generated
gravitational waveforms from our simulated parameters of black hole binaries. Using these
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waveforms, we created plots of the event in the time domain and plotted the frequency of
the event against a smooth model of LIGO’s Amplitude Spectral Density (ASD) curve for
visualization purposes.

Figure 16: Sample Simulated Gravitational Waveform in the Livingston Detector.

Figure 17: Sample Simulated Gravitational Waveform in the Hanford Detector.
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Figure 18: ASD curve of Detectors at Hanford and Livingston vs the Frequency of the
Sample Simulated Gravitational Waveforms.

After visualizing the waveforms, we calculated the SNR by making use of optimal matched
filtering. The matched filter is the optimal filter for detecting a signal in stationary Gaussian
noise (Sn(f)). In this process, we match the signal’s data(s̄(f)) with a filter template (h̄t(f))
and calculate the output using Equation 7. [7]

Equation..7 : z(t) = 4Re

∫ ∞
0

s̃∗(f)h̄t(f)

Sn(f)
e2πiftdf

The use of the FFT allows us to search for all possible arrival times of the signal. The peak
of the magnitude |z(t)| of the matched filter output tells us the SNR of the signal.

Figure 19: SNR at Hanford vs. SNR at Livingston. The SNR at Hanford is 14.7. The SNR
at Livingston is 13.9.

We generated a total of 100,000 gravitational waveforms and calculated the SNR of each
of our simulated events. We then conducted an acceptance-rejection process that accepted
events with SNR > 8 in both detectors and rejected all events that did not meet that
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requirement. Initially, we found that less than 10% of our events met these requirements.
To make our acceptance-rejection process more efficient, we decided to simulate each event
out to its optimal horizon distance only. For a single detector, the optimal horizon distance
is defined as the distance at which an optimally-oriented, overhead source may be detected
with a SNR ρ(Dhorizon) = 8, where [8]

ρ =
2

√
4

∫ fmax

0

|h(f)|2
Sn(F )

df

fmax is the Nyquist frequency, which is half of the sample rate. Advanced LIGO samples at
16384 Hz, so fmax = 8192 Hz [9]. However, we sampled at 4096 Hz (fmax = 2018 Hz) since
that’s the frequency needed for higher-mass BBH mergers.

By simulating out to the optimal horizon distance for each event, we increased the number
of accepted events to about 20,000, increasing our efficiency to 20%.

Figure 20: Observed events with SNR > 8 in both Hanford and Livingston detectors

Figure 21: Events with SNR > 8 vs events with SNR < 8.
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To calculate the volume of the observed events as a function of mass, we related the observed
volume to the volume of the universe using the fraction of detectable events. We chose the
radius of the universe to be 10 Gpc. This step allows us to account for the fact that we only
generated BBH randomly out to their horizon distance.

Vu =
4πd3u

3
, du = 10Gpc

Vo = fSNR>8 ∗ Vu

Figure 22: Observed volume of detectable events.

Now that we have determined the number of observable events, their volume and time, we
can calculate the rate density. We can relate the number of BBH in our simulated universe
to the Rate using:

R(mtotal) =
No(mtotal)

Vo(mtotal)T

With the rate, we now devised a method to constrain the alpha parameter of the rate
function. To do this, we look back to the IMF. From the IMF, we know that the Rate
Density is dominated by the power-law index α.

R(mtotal) = Cm−αtotal

Rtrue =

∫
dmtotalR(mtotal) = C

∫ mmax

mmin

m−αtotaldmtotal

Normalization factor: Iα =
∫ mmax

mmin
m−αtotaldmtotal

R(mtotal) =
R

Iα
m−αtotal,

R

Iα
= C

Using curve fit, we determined the rate and a rough estimate for α.
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Figure 23: Rate of Binary Black Holes. α = −2.688± 0.015 .

3.3 Using Bayesian Parameter Estimation to Constrain α

To analyze how well we recovered α, we used Bayesian parameter estimation by fitting the
Rate to a linear model.

log(Rate) = −α log(M) + log(c)

y = mx+ b

with f as the error on the log(Rate). According to Bayes’ Theorem

p(H|E) =
p(H) ∗ P (E|H)

P (E)

where p(H|E) is the posterior probability of hypothesis “H” given the evidence, P(H) is the
prior probability, p(E) is the evidence and P (E|H) is the likelihood of the evidence if the
hypothesis ”H” is true.

Prior function: p(m, b, f)

Priors: p(m) =

p(m) =

{
1/5, if − 5 < m < 0
0, otherwise

p(b) =

{
1/20, if0 < b < 20
0, otherwise

page 17



LIGO-T1700223—v1

p(lnf) =

{
1/10, if − 5 < lnf < 5
0, otherwise

Likelihood function: p(y|x, σ,m, b, f)

In our case, we take the log-likelihood because it is more convenient to work with. Log
Likelihood function: ln p(y|x, σ,m, b, f)

ln p(y|x, σ,m, b, f) = − 1

2

∑
n

[(yn −mxn − b)2

s2n
+ ln(2πs2n)

]
where

s2n = σ2
n + f 2(mxn + b)2

Posterior probability function:

p(m, b, f |x, y, σ ≈ p(m, b, f)p(y|x, σ,m, b, f)

Using Bayesian parameter estimation, we created corner plots of the posterior probability
distribution of α.

Figure 24: Corner plot showing the Posterior probability Distribution of α, β and ln f .
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3.4 Recovering the Natural Rate Density from Realistic Near-Future Event
Numbers

Initially, we simulated 100,000 detectable black hole binaries. However, LIGO will most
likely not detect this amount of black hole binaries within the next one hundred years. To
make this project more relevant to LIGO’s near-future goals, we scaled the number of events
down to a range of 10 to 1000. This allowed us to see how well we could recover the natural
rate density given a limited number of events.

Figure 25: α vs the number of events.

As shown in Figure 25, the error on α decreases as the number of events increases. Therefore,
as LIGO detects more events within the next 10-20 years, we will be able to constrain the
value of α more precisely and accurately.

4 Conclusions and Future-Work

The mass distribution of BBH can be a very useful tool in understanding how binary black
hole systems formed and evolved over time. Within the next 10-20 years, LIGO expects to
detect on the order of tens of events, which will provide a population large enough to draw
substantial conclusions about the mass distribution of BBH, as shown in Figure 25.

By simulating our own binary black hole mergers and recovering the mass distribution we
originally inputed from the observed simulated events within error, we have shown that it
will be possible to accurately recover the mass distribution of binary black holes in the future.
If the mass is distributed as power law in the total mass of the BBH system, our method of
modeling the rate density will be useful in recovering the mass distribution.

It is important to note that a more thorough version of this project would entail calculating
the rate density for all kinds of models for the mass distribution. Having a breadth of models
would allow us to explore other scenarios in which alpha is another value other than -2.35,
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the mass is not distributed in the total mass of the system or the rate density is not a power
law at all. Fortunately, more work can and is being done to test multiple models of the mass
distribution of binary black holes.
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