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1 Introduction

1.1 Gravitational Wave Detection

Gravitational Waves(GW) are ripples in space-time propogating at the speed of light. These
were predicted on the basis of the General Theory of Relativity proposed by A. Einstein(See
[1] and [2]). Detection of these GWs has always been a challenging objective as the interaction
of gravity and masses is inherently weak. Therefore, it is not possible to create GWs with
detectable amplitude in a laboratory wiht the current level of technoology. Hence, we look for
massive and higly accelerated astronomical and cosmological systems, like binary systems
formed by two compact stars such as black hole, neutron star and white dwarf, spinning
compact stars, and supernovae explosions as sources for GWs. For more information, check
[3]. These GWs can provide us with unique information of the Universe and its birth.

The first GW discovery by LIGO Livingston, Louisiana, and Hanford, Washington, USA on
September 14, 2015, the GW150914 has opened a lot of doors for research and progress in
the interferometers used for the detection. A schematic of the interferometers used for GW
detection is shown in Figure 1.

Figure 1: Michelson type Interferometer with Arm Cavities to Detect GWs.[4]

1.2 Impact of Mirror Figure Error on Detector Perfomance

The LIGO Fabry-Pérot Michelson interferometers consist of multiple optical cavities, and
hence multiple mirrors. Now these mirrors are not perfect, and hence have some imperfections
such as point defects, absorption losses, coating losses, contamination, etc. One such defect
is the mirror figure error . The mirror figure error is a low spatial frequency surface
defect present on the test masses, which causes low angle scattering of light. The primary
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objective of this project is to develop an in-situ technique for the measurement of the mirror
figure error. Due to these mirror imperfections, there are optical losses involved with the
cavities. As depicted in the following diagram, these optical losses result in a reduced total
circulating power inside the cavity arms and the destruction of the squeezzed state of light,
both of which, in turn cause an apparent rise in the shot noise GW output.

Optical Losses

↙ ↘
Reduced Circulating Power Destruction of Squeezed State

↘ ↙
Shot Noise ↑

1.3 Requirement of an In-Situ Measurement Technique

We often characterize the mirror surface defects using phase/mirror maps like the one shown
in Figure 2. Phase maps such as these are conventionally produced using techniques such as
Fizeau interferometry[5].

Figure 2: Phase Map of ITM surface using Fizeau interferometry

If possible, we would like to develop a technique to produce high resolution mirror maps for
the test masses. This technique should use the actual laser in the interferometer so that
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we can also specify which region of the mirror map is contributing towards the loss. Also,
we would like to produce a mirror map using a cavity interferometer of high sensitivity, like
the LIGO interferometers. Hence, we would like to have an in-situ measurement technique
for producing mirror maps. The in-situ technique that we have employed in this project is
called Mode Spectroscopy.

2 Mode Spectroscopy

2.1 Properties of an Optical Resonator

There can be various kinds of optical resonators, charecterized by the radii of curvartures of
the mirrors of the resonator and the absolute distance between them. An optical resonator
has, inturn, a certain set of Hermite-Gaussian modes which are allowed to resonate inside it.
Using the eigen H-G modes, we can construct any kind of laser signal, i.e. a laser with some
’dirty’ modes present in it can be expressed as a linear combination of these eigenmodes.
Now, depending upon the charecterizing paramaters of a resonator and the frequency of the
laser, only certain modes will be allowed to resonate inside it. This allows the resonator
to act as a filter for the laser.

The 40m as well as the aLIGO interferometers have Fabry Pérot resonators composed of ITMs
and the ETMs.. An important characteristic of the Fabry Pérot cavity is that the trans-

mittance of the two mirrors is extremely small(≈15 ppm†) and the reflectance is high(≈1).
This allows us to differentiate between the frequencies of light that have a round trip phase
difference as a multiple of 2π from other frequencies. This is discussed in more detail in
section 2.2

The Free Spectral Range(FSR) of a Fabry-Pérot Cavity is defined as the spacing in frequency
between two resonant longitudinal modes and is denoted by fFSR in the figure. The HOMs
are not shown in the plot but they too occur with the same period of fFSR as the fundamental
TEM00 mode. Another quantity used to characterize an optical cavity is the Transverse
Mode Spacing(TMS) and it is defined as the spacing in frequency between transverse modes.
Both the FSR and the TMS are uniquely determined by the defining parameters of an optial
cavity, i.e. the absolute length between the mirrors and the radii of curvature of the two
mirrors. Section 3 discusses some techniques for measuring these quantities.

2.2 Simulated 40m Fabry-Pérot Cavity

We will be analyzing the transmission plot for the 40m cavity. We perform a cavity scan to
obtain such a plot for the actual cavity. In this section we will see how such a transmission
plot would look like. The cavity equations, along with the relevant cavity parameters that
we require to simulate or analyze a scan have been described in Appendix B. Using the
values in table 1 as the ideal mirror parameters and taking the cavity length, L = 40m, a
simulated transmission plot is shown in figure 3

†These values are for the 40m.
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Table 1: Mirror Parameters

Parameter M1 M2

RoC R1 =∞ R2 = 60m

Reflectivity r1 =
√

0.986 r2 =
√

0.999985

Transmissivity t1 =
√

0.014 t2 =
√

0.000015

Figure 3: Transmission Intensity variation with Laser Frequency for an FP Cavity

This cavity is similar to the main interferometer arm used in the 40m interferometer. For the
simulation, I have assumed that the laser is perfectly mode matched into the cavity. I have
considered that the laser itself consists of the fundamental mode and the first two higher
order modes, i.e., TEMnm, for n + m = 0, 1, 2. The FSR and TMS frequencies have been
shown in the plot. These are as follows:

νFSR =
c

2L
≈ 3.74MHz

νTMS =
νFSR
π
× arccos

√
g1g2 ≈ 1.14MHz

2.3 Deviation of the Higer Order Modes from the equal spacing

Now that we have seen an ideally simulated cavity scan, let’s try and get a sense of how
the mirror figure error error will affect this scan. The figure error can be simply treated a
perturbation on the surface of the mirror. This suggests that we can account for the figure
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error by modifying the resonant frequencies for the eigen H-G modes inside the cavity. The
figure error will affect each H-G mode in a different manner, i.e. it will cause a shift in
the corresponding resonant frequency for that mode. Depending apon how the figure error
varies over the surface of the mirror, this shift will be different for each mode. The overall
plot would still remain periodic with a period of νFSR. The figure error in our mirrors is
assumed to be small, implying that the expected shift in each mode would not be a lot. An
extremely exaggerated version of the effect of figure error on the transmission plot in figure
3 is depicted in figure 4.

Figure 4: Over-exaggerated Shift in HOM1 Resonant Frequency

Using the mirror maps we already have(using other methods), we can provide a certain
bound over the figure error and assure ourselves that the mirror figure error would not cause
a large shift in the TMS values.

3 Experimental Methods

3.1 Cavity Scan

In principle, a cavity scan is simply sweeping the laser frequency and obtaining a transmis-
sion plot for the sweep. So, in an ideally stable system, a simple setup like the one shown
in figure 5 should work.
Once we have the transmission scan, we can identify the various HOMs and fit it with the
FP cavity equations in order to obtain the respective shifts in the resonant frequncies.

Perform a Cavity Scan and Obtain a Transmission Plot
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Laser Mirror 1 Mirror 2 PD

Figure 5: Simple Cavity Scan Setup

↓
Identify the HOMs

↓
Perform a Fit and Determine the Relative Shifts in Resonant Frequencies

This kind of a setup would only work in an ideally stable system, i.e., a system free of
any disturbances that might cause the mirrors to move. Unless externally controlled, it is
impractical to leave the cavity on its own while we perform the laser sweep and expect the
cavity to be stable throughout the this sweep. Hence we use other techniques to obtain a
transmission scan for the cavity.

3.2 Using an EOM

In this method, for a given carrier frequency, we generate ’sideband’ frequencies using an
Electric Optical Modulator(EOM), as shown in figure 6 and 7. We then bring the main
laser in resonance with the cavity and start varying the sideband RF frequency. We obtain
the transmission plot as we vary the sideband frequency. This technique has been used to
determine the FSR([6]) and TMS([7]) values using high-finesse Fabry-Pérot interferometers.

Laser
FP Cavity

EOM

Modulating
Frequency

PD

Figure 6: Using an EOM to generate sideband
frequencies

 

Figure 7: The carrier and sideband fre-
quncies.
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3.3 Using an Additional Slave Laser

The setup for this technique is as shown in figure 8. In this technique, we add an additional
’slave’ laser(Laser 2 in figure) along with our ’master’ laser(Laser 1 in figure). This slave
laser is offset in frequency from the master laser set by a local oscillator(LO). The Phase
Locked Loop(PLL) ensures that the relative frequency of the two lasers remains constant.
Both the lasers are injected into the cavity and then the cavity is locked with the master
laser’s fundamental mode in resonance using the Pound-Drever-Hall technique[8]. After
transmission from the cavity, the RF photodiode at the end detects the intensity of the beat
note between the two lasers. Now, in order to perform a cavity scan, we vary the laser
offset using the LO while the cavity is held stable in resonance with the master laser, and
obtain the transmission intensity using a spectrum analyzer connected to the photodiode.
The technique is described in more detail in Alberto’s paper[9].

Laser 1
FI

33 MHz

MC3MC1

MC2

PRM

ITMY

ETMY

BS

SRM

ITMX ETMX

Laser 2

Spectrum 
Analyzer

EOM

29.5 MHz

Coil 
Driver FI GPIB I/O

GPIB I/O

LO

PZT

21 MHz

Reference 
Cavity

Computer

Mode 
Cleaner

Coil 
Driver

Fig. 1. Interferometer setup for the X arm measurement. While the arm to

be measured is locked to Laser 1 (main) by PDH locking, the rest of the

interferometer is held misaligned. Laser 2 is phase-locked to Laser 1 and it

is then injected through the Signal Recycling Mirror (SRM). A beat note is

detected in transmission by a spectrum analyzer. Its amplitude is recorded as

the PLL’s LO frequency is swept through several FSRs.

over the photodetector’s transverse plane. To detect the beat note it is necessary to break

the symmetry of the beam spot just before the photodetector. This was done by partially

clipping the beam with a razor blade in front of the photodetector but could also be done

with a broadband quadrant photodetector.

2. Characterization of the arm cavities of a gravitational wave interferometer

This technique was tested on the arm cavities of the Caltech 40 m prototype, a testbed

facility for the Laser Interferometer Gravitational-wave Observatory (LIGO) [20]. For the

experiment, the interferometer was set in a dual-recycled Fabry-Perot Michelson configura-

tion. In this setup, the two (∼40 m long) Fabry-Perot cavities, are connected in a Michelson

configuration. Similar to the Advanced LIGO interferometers [21], the beam splitter’s sym-

metric and anti-symmetric outputs are coupled to the so-called recycling cavities : the Power

Recycling Cavity (PRC) at the symmetric port and the Signal Recycling Cavity (SRC) at

the anti-symmetric port. All the cavity mirrors are suspended and hang on wires as simple

pendulums, for seismic noise isolation.

Figure 1 shows the optical layout of this experiment. The main beam illuminating the

interferometer was provided by a Non-Planar-Ring-Oscillator laser (NPRO), amplified by a

5

Figure 8: Cavity Scan using an Additional Slave Laser

3.4 Arm Length Stabilization(ALS) Scheme

The schematic for the ALS scheme used in the 40m lab is shown in figure 9. In this technique
too we use an additional auxiliary laser along with the main pre stabilized laser(PSL).
This Aux laser(1064 nm) is fed to a KDP crystal and goes through a non-linear optical
process called Second Harmonic Genration(SHG)([10] and [11]). In this process the laser
frequency gets exactly doubled(wavelength gets halved) and hence the output from this
crystal is of wavelength 532nm(green in colour). Now this green beam is incident on the
main interferometer arm from the ’back’ side, i.e. from the end test mass(ETM). Also, a
part of the PSL is taken aside(as seen in the schematic) and passed through another KDP
crystal too obtain another green beam. Now the this beam and the green beam coming
through the input test mass(ITM) side of the cavity, corresponding to the Aux laser are
made incident on a RF photodiode connected to a delay-line frequency discriminator. The
frequency discriminator then feeds this data to the arm length control system to stabilize the
cavity. The Aux control system is programmed such that the Aux laser ’follows’ the cavity
length, i.e. its frequency is modulated such that it is always resonant inside the cavity. We
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can provide the arm length control system with a frequency offset, which is simply the
beat note between the second harmonics of the PSL and the Aux laser. As we vary the offset,
the arm length changes, and sequentially, so does the Aux laser frequency. Now using the
frequency discriminator, we can obtain the beat frequency data along with the transmission
intensity of the PSL. The ALS scheme, particularly for the 40m, is described in much more
detail in Izumi’s paper[12].
Note: The delay-line frequency discriminator has some non-linear characteristic which limits
the precision of the scan. 3

arm length 
control system

Delay-line Frequency 
Discriminator

= SHG

residual
displacement

= servo filter

beat note detection system

laser frequency 
prestabilization

system
AUX laser 

control system

PSL PDH
sensing system

vacuum
system

photo
detector= oscillator= frequency

mixer=

offset

AUX laser

PSL
ITM

ITM ETM

Fabry-Perot cavity
(40 m long)

PRM

SRM

EOM

MC
(13 m long)

BS

=

Fig. 1. Experimental setup. Red lines indicate the path of the 1064 nm PSL beam, and green lines indicate the path
of the 532 nm AUX beam. The colored regions correspond to logical sections of the control and readout, described in
more detail in Section 3. Optics in shadow are part of the larger interferometer not used in this experiment.
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Fig. 2. Spectral reflectivity of one of the dichroic cavity
mirrors.

D. Sensing, acquisition and control

Initially, the AUX laser frequency is locked to the arm
cavity length via a standard PDH locking scheme. The
AUX laser is locked to the cavity, rather than vice versa,
because the laser frequency actuator has much greater
bandwidth than the cavity mirror displacement actua-
tors. Phase modulation sidebands at 217 kHz are in-
troduced on the AUX beam by directly driving the laser
frequency actuator. This modulation frequency is chosen
to minimize the ratio of amplitude to phase modulation.

The green light reflected from the ETM is used for the
PDH lock.

Once the AUX laser is locked to the cavity, the AUX
beam transmits through the ITM and is extracted from
the vacuum system. The extracted AUX beam is used
in a heterodyne measurement with a frequency-doubled
sample of the PSL beam. The frequency of the beat
note between the AUX laser and the frequency-doubled
PSL is measured by the a delay-line frequency discrim-
inator (DFD) (see section 2 E). The DFD has “coarse”
and “fine” paths which provide different dynamic ranges.
These outputs are the primary error signal for the cav-
ity control. They are digitized and a control signal is
generated with a digital feedback control system.

Figure 3 shows the control sequence and hand-off be-
tween the coarse and fine discriminator paths. Since seis-
mic noise acting on the length of the MC and arm cavi-
ties causes the beat note to fluctuate by about 10 MHz,
the large range coarse path is used to engage feedback
smoothly. After length control is achieved an artificial
offset is introduced in the discriminator signal to sweep
the length of the arm cavity until the length meets the
resonance condition for the PSL beam. This ability to
tune the cavity length directly is the key to the use of this
technique as a lock acquisition tool for Advanced LIGO.

In the end, control is passed to the fine discrimina-
tor by digitally fading over between the coarse and fine

Figure 9: Arm Length Stabilization Scheme for the 40m

4 Experiment Report and Result

4.1 Cavity Scan Data

Now that we have discussed the various techniques that can be used to obtain a cavity
scan, we can look at actual data from a cavity scan. Figure 10 corresponds to a cavity scan
taken using the Arm Length Stabilization technique in the 40m interferometer. It is easy
to see that there are certain peak resonances in the scan. These peaks correspond to the
fundamental as well as the higher order modes(HOMs). There are some other peaks present
corresponding to the sideband resonances of 11 MHz and 55 MHz.
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Figure 10: Raw Cavity Scan Data for the 40m.

4.2 Fitting Process to Evaluate the Cavity Scan Data

In order to evaluate the scan and determine some meaningful parameters(such as the free
spectral range(νFSR), Finesse, transverse mode spacing(νTMS)), we perform a fit on the scan
data. For this purpose we use the Fabry-Pérot cavity equations, as stated in the appendix
B, as our fitting model. But, instead of using these equations directly, we reduce the trans-
mission to a Lorentzian function in frequency around the peaks. The details on the
approximation of the cavity equations using a Lorentzian distribution is explained in ap-
pendix C. Now, the fitting has to be performed on each indivdual peak resonance and then
add the resulatant Lorentzian distributions to obtain a ’fit’ for the entire scan data. The
code to perform the fitting process and then evaluate the parameters can be found at [17].

4.2.1 Peak Identification

In order to perform the fit on the individual peak resonances, we first need to find a neat
way to identify them first. One can easily find the resonant peaks using some standard
functions/modules such as the ’peakutils’ module for Python. After finding the peaks we
need to identify each of them. For this, we use some prior knowledge we have about the cavity
parameters. Also, as we know that most of the laser power is contained in the fundamental
mode, we can directly identify the maximum transmission power peaks as the fundamental
resonances. The values stated in table 1 and the cavity length help us determine the rough
values for νFSR and νTMS. We know that the sideband resonances are 11 MHz and 55 MHz
away from the fundamental resonances. Studying this modulo the νFSR, we can identify
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Figure 11: Identified Peaks in the Cavity Scan Data

the sideband resonances as well. Now, the remaining peaks belong to the higher order
modes(HOMs). In order to identify these, we study how far these are from the fundamental
resonances and compare the values with the νTMS value to identify the order(n + m) of the
HOM. Figure 11 shows the identified peaks.

4.2.2 Fit and Residuals

Once we have identified all the peaks, we can proceed with fitting each of them with the
Lorentzian model we are using to approximate the cavity equations. This approximation is
only valid in a small interval about the peak resonance. The different Lorentzian functions

we obtain through fitting correspond to each peak and drops down to an extremely small†
value near other peaks. Hence, in order to reconstruct the cavity scan data, we add each
of the Lorentzians and obtain an overall ’fit’ for the scan data. The final fit along with the
residuals is shown in figure 12.

†Subject to the limitation of the Lorentzian approximation.

page 10



LIGO-T1700195–v1

0 2 4 6 8 10
Frequency [Hz]

10 4

10 3

10 2

10 1

100
Tr

an
sm

iss
io

n 
Po

we
r R

at
io

HOM2 HOM2 HOM2HOM3 HOM3
HOM3HOM4 HOM4 HOM4

HOM1 HOM1 HOM1

TEM00 TEM00 TEM00
Arm Cavity Scan

Fit

0 2 4 6 8 10
Frequency(Hz)

10 5

10 3

10 1

10 5
10 4
10 3
10 2
10 1

Re
sid

ua
ls

Figure 12: Fit and Residuals for the Cavity Scan Data

4.3 Parameter Determination

4.3.1 Free Spectral Range and Finesse

Now that we have performed the fit on the cavity scan data using a Lorentzian fitting model,
we can obtain the physically relevant parameters, viz. νFSR/Cavity Length, finesse and νTMS

from the fit parameters(′a′, ′b′ and ν0). The relations/equations shown in appendices B and
C are used to determine the parameters as follows:

1. For νFSR - The Free Spectral Range, by definition, is simply the periodicity in the cavity
scan data, i.e. it is simply the difference in frequencies between two ith order resonances.
But because our system isn’t ideal , the resonances aren’t perfectly periodic. Therefore

we consider the average† of the different values. The resulting FSR and Cavity Length
are:

FSR, νFSR = 3.9703± 0.00022 MHz

Cavity Length, L = 37.754± 0.00207 m

Note: The error shown here is only due to the fitting procedure. We are actually
limited in precision and accuracy because of the delay-line frequency discriminator due
its non-linear characteristics.

†The average is/can be weighted.
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2. For F - The Finesse is related to the linewidth parameter(′b′)† as:

F =
νFSR
2b

Again, we need to take an average†† of the different finesse values obtained using the
corresponding FSR and ′b′ values. The resulting Finesse is:

Finesse, = 402± 21

4.3.2 TMS Shifts

We have the fit parameters corresponding to each of the higher order mode(HOM) resonances.
Now, in an ideal cavity with perfectly spherical mirrors, the higher order modes are linearly
spaced(appendix B). But, in reality the HOM peaks would be shifted , not just due to the
statistical error in measurement, but also due to the presence of the mirror figure error on

the mirror surfaces. Therefore, we perform a linear fit‡‡ on the resonant frequencies for the
different HOM resonances and see the corresponding residuals to determine the relative
shifts in resonant frequencies for the HOMs. The result is shown in figure 13.
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Figure 13: Relative Shifts in resonant frequencies for HOMs

4.4 Inference and Discussion of the Result

We started off saying that the mirror figure error affects the cavity scan data by influencing,
or rather shifting the resonant frequencies for the different modes. Now that we have seen

†Linewidth is usually defined as the Full Width at Half Maximum(FWHM), but here we are considering
only Half Width at Half Maximum(HWHM) as the linewidth, ′b′.
††The average is/can be weighted.
‡‡The averages for each set of resonant HOM modes was considered.
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an actual cavity scan, a question arises, that with respect to what are we going to determine
the ’shifts’. This is important to discuss because, while accounting for the mirror figure
error, we don’t have an ideal cavity scan to compare the actual one with. It might be a bit
hard to fathom, but in other words, the physically relevant parameters like FSR and TMS
are only defined for ideal cavities and it can prove to be quite challenging and even more
confusing to define it for the actual cavity. Hence, while evaluating the cavity scan data,
we don’t consider the resonant frequencies for HOMs to be shifted with respect to those in
an ideal cavity scan. Instead we determine the relative shifts with respect to the linear fit
of the resonant frequencies. This, of course, corresponds to the least shift(so to say) and
might not be the correct/right estimate for it, but it cetainly can give us an idea of the
extent of figure error.

Now, coming to the actual result obtained for the reative shifts in the TMS values seen in
figure 13. Although quite a lot of further analysis is required to actually comment on this
observation and make further logical inferences, a quick look at the figure shows that the
second HOM is relatively shifted by more than 10 kHz whereas the other HOMs are within
a 5 kHz range from the fit data. Although there is a possibility that this is simply beacause
of statistical and systematic errors and only more such observations and further detailed
analysis would help us deduce as to what is the actual cause behind such an ’anomaly’, this
shift of 10 kHz certainly looks quite large compared to the others. It is quite possible that
this shift is actually present due to the figure error. If that is actually the case, the next step
would involve relating the figure error to the cavity scan. There is no such direct one-to-one
correspondance between the figure error and the shift in the resonant frequencies, and hence,
we woud need to develop another mechanism to relate the two. Section 5 would discuss more
on this regard.

5 Future Prospects

Strictly speaking, this project is still incomplete and a lot of things can still be explored
regarding it. A few of them are:

1. We would like to improve our measurement, i.e. have a more accurate and precise
cavity scan data which we can trust more reliably. One of the things that can be done
to improve the measurement is to use the frequency counter along with the delay-
line frequency discriminator. This will hopefully provide us with a better precision in
frequency.

2. In order to relate the mirror figure error to the shifts observed in the cavity scan for
the HOMs, we can use a software called Finesse([13]) to simulate the effects figure
error causes on the cavity scan data. It allows us to customize the mirror defects to
our need using Zernike polynomials([14]) and then generate a corresponding cavity
scan. This simple mechanism allows us to iteratively simulate various different kinds
of figure errors and repetitively generate cavity scans corresponding to these figure
errors. Using the Markov Chain Monte Carlo(MCMC)([15]) method, we can try
and obtain good and high resolution mirror maps. This has been explored more by
Naomi in her SURF project([16]).
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Appendices

A Higher Order Modes described by Hermite-Gaussian

Polynomials

We know that the Higher Order Modes(HOMs) that can stably resonate in an optical cavity
are described by the Hermite-Gaussian Polynomials for paraxial approximation. The general
Electric field distribution in rectangular co-ordinates is given as:

Enm(x, y, z) = E0
w0

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−x2 + y2

w(z)2

)
exp

(
−i

[
kz − (1 + n + m) arctan

(
z

zR

)
+

k(x2 + y2)

2R(z)

])
where E0 is the peak amplitude, w0, w(z) are the beam radius at the waist and at point

’z’ on the axis, Hn represents the nth order Hermite polynomial, k is the wavenumber of
the light(= 2π/λ), zR is the Rayleigh length and R(z) is the radius of curvature of the
wavefronts. For the details on the derivation of these Higher Order Modes, refer to [23].
Figure 14 shows how the first few TEMs appear.

Figure 14: Intensity profiles of the lowest-order HermiteGaussian modes.[24]

B A Simple Fabry Pérot Cavity

An ideal Fabry-Pérot Cavity, where-in the mirrors are assumed to be spherical, is shown in
Figure 15. These modes are obtained for different combinations of the parameters involved
witht he cavity and the laser, such as the frequency of the laser, the distance between the
two mirrors(arm length) and the radii of curvature of the two mirrors.
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Ein

Ecav.
Et

Figure 15: Schematic of a simple Fabry-Pérot Cavity

The electric fields are given as follows:

Ecav. =
t1

1− r1r2e−iφRT
Ein (1)

Er =

(
−r1 +

r2t
2
1e
−iφRT

1− r1r2e−iφRT

)
Ein (2)

Et = t2Ecav. (3)

where Ein, Er, Ecav. and Et are the incident, reflected, intra-cavity and transmitted electric
fields respectively. The reflectivity and transmissivity of the two mirrors M1 and M2 are
given by r1, t1 and r2, t2 respectively and φRT is the ’round trip’ phase difference that the
beam undergoes inside the cavity. The round trip phase difference distinctly depends upon
the laser frequency and the TEM mode as follows:

φRT =
4πνL

c
− 2NφG (4)

with, N = n+m+ 1 (5)

where ′n′ and ′m′ represent the TEMnm mode, ν is the laser frequency, L is the absolute
length between the two mirrors, c is the speed of light in the medium and φG is the Gouy
Phase Shift. The Gouy phase is given by the charecteristic cavity parameters, L and the
radii of curvatures of the two mirrors, R1 and R2, as follows:

φG = arccos
√
g1g2

where g1 and g2 are the g-factors of the two mirrors, given as:

g1 = 1− L/R1 and g2 = 1− L/R2

page 16



LIGO-T1700195–v1

For the derivation and the physical implication and meaning of the Gouy Phase Shift, refer
to [23]. F-P cavities are usually made so that the transmittance of each mirror is low(∼ 10−3)
and the reflectance is high(≈ 1). Putting these in the cavity equations and then analysing
them will tell us that the ratio of transmission power(∝ |Et|2) to that of incident power(∝
|Ein|2) is extremely small when φRT is not close to an integer multiple of 2π. On the other
hand, whenever φRT is an integer multiple of 2π, almost all power is transmitted. This
condition, where the round trip phase change is a multiple of 2π, is known as resonance.
Now, as φRT is a function of both frequency and the ′n′, ′m′ values of TEMnm mode, the
resonances are determined by both of these values. This gives rise to a few defintioning
parameters for an F-P cavity. These are as follows:

1. Free Spectral Range(FSR) - The FSR is defined as the frequency spacing between two
consecutive resonances of the fundamental, or any higher order mode. This simply
means that the φRT for the higher frequency is greater than that for the lower fre-
quency by 2π. By simply using the defination and equation 4 we can see that for a
change(increase/decrease) in phase by 2π, the corresponding change in the frequency,
which in turn is the FSR, is c

2L
.

2. Transverse Mode Spacing(TMS) - The TMS is defined as the frequency spacing between
two consecutive resonances between the different modes. This would mean a change
of 1 in equation 5 which can be either due to change in ′n′ or ′m′. As there is absolute
symmetry between ′n′ and ′m′, this causes degeneracy in the higher order modes as
several different values(simple counting mechanism will tell how many) of ′n′ and ′m′

might correspond to the same value of ′N ′ and in turn the same value of frequency.
Now for a change of ′1′ in the value of ′N ′, equation 4 will give us the TMS to be:

νTMS =
c

2πL
× φG (6)

or better expressed as

νTMS =
νFSR
π
× arccos(

√
g1g2) (7)

For the above formulation of the TMS, refer to [23].

3. Finesse(F) - Finesse is ’mathematically’ given by the following relationship:

F =
π
√
r1r2

1− r1r2
where r1 and r2 are respectively the reflectivities of the two mirrors M1 and M2.
Physically speaking, it denotes the ’sharpness’ in the resonances of the different modes.
It is directly related to the full width at half maxima of the power ratio, or ’linewidth’
as follows:

νFWHM =
νFSR
F

Higher the Finesse, steeper and sharper is the resonance of the modes. High Finesse
helps in better identification of the peak resonant frequencies in a cavity scan.

page 17



LIGO-T1700195–v1

C Fitting Model

Using the cavity equations 1 and 3 described in appendix B, and using the dact that the
laser intensity/power is proportional to the elctric fied magnitude(P ∝ |E|2) we can write
the ratio of the transmision power intensity to the incident power intensity as:

Pt =

∣∣∣∣ t1t2
1− r1r2e−iφRT

∣∣∣∣2 (8)

Equation 8 can be simplified to:

Pt =
t21t

2
2

1 + r21r
2
2 − 2r1r2 cos (φRT)

(9)

Now, equation 9 achieves a maxima whenever the round trip phase, φRT, is a multiple of
2π. The frequencies at which this happens corresponds to a resonant peak. Suppose ν0
corresponds to a particular resonant peak frequency giving φRT = 2kπ, for some k ∈ Z.
Equation 4 gives:

4πν0L

c
− 2NφG = 2kπ (10)

Now, consider the frequency of the laser, ν, to be extremely close to the resonant peak
frequency ν0.

⇒ 4πνL

c
− 2NφG = φRT

Subtracting equation 10 from the above gives us:

4π(ν − ν0)L
c

= φRT − 2kπ

⇒ φRT = 2kπ +
4π(ν − ν0)L

c

Substituting this back into equation 9, we get:

Pt =
t21t

2
2

1 + r21r
2
2 − 2r1r2 cos

(
2kπ + 4π(ν−ν0)L

c

)
⇒ Pt =

t21t
2
2

1 + r21r
2
2 − 2r1r2 cos

(
4π(ν−ν0)L

c

) (11)

Now, as specified earlier, ν is extremely close to ν0, i.e. (ν − ν0)→ 0.

⇒
(

4π(ν − ν0)L
c

)
→ 0, for appropriately chosen ′ν ′
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using the approximation, cos θ ≈ 1− θ2

2
in equation 11, we get:

Pt =
t21t

2
2

(1 + r21r
2
2 − 2r1r2) + r1r2

(
4π(ν−ν0)L

c

)2
⇒ Pt =

t21t
2
2

(1− r1r2)2 +
(

4π
√
r1r2(ν−ν0)L

c

)2 (12)

Equation 12 can be carefully re-written as follows:

Pt =
a

1 +
(
ν−ν0
b

)2 (13)

with

a =

(
t1t2

1− r1r2

)2

(14)

b =
c(1− r1r2)
4π
√
r1r2L

=
νFSR
2F (15)

ν0 → Resonant Peak Frequency (16)

Equation 13 is the famous Lorentzian distribution , and this is what we use as our fitting
model. Equations 14, 15 and 16 are what we use to determine the physical cavity parameters
using the ones given by the fitting procedure(viz. ′a′, ′b′ and ′ν ′0)

D Transfer Function Measurement

Transfer Function is a mathematical representation of the frequency response of system. In
the frequency/Laplace domain, for a linear, time invariant system, it is simply given as the
ratio of the output(Y ) to the input(X), when the system is subject to continuous time input
and output signals. Hence,

H(s) =
Y (s)

X(s)

where s = iω is the spatial frequency and H(s) = L{h(t)}, Y (s) = L{y(t)} and X(s) =
L{x(t)} are the Laplace transforms of the transfer function, output signal and input signal
in the time domain respectively. The transfer function has essentially two physically rele-
vant components, the magnitude/gain, |H(s)|, and phase, arg (H(s)). We usually represent
the frequency response of a system using a Bode plot, which consists of two plots, show-
ing respectively the magnitude(dB) vs frequency(Hz) and phase(degrees) vs frequency(Hz)
response. For details on electrical transfer functions and Bode plots, refer to [25].

For our purpose, we use the Network Analyzer, Agilent Technologies AG4395A([20]), to
measure the frequency response transfer function of Photodetectors. As the Network Ana-
lyzer does not have a an in-built mechanism for measuring the standard deviation(error) in
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the data for magnitude and phase, we also develop a python script to perform the measure-
ment multiple times. We also develop a script for assessing the multiple sets of data obtained
through the above script and report to us the mean magnitude and phase frequency response
along with errors in a Bode plot. Both these scripts can be found at [26]. These error values
are important because we would like to know how accurate and precise measurements and
information we can obtain for the magnitude and phase frequency response. This will allow
us to estimate the importance of points/regions where the transfer function varies rapidly
due to noise sources. This is especially true when the magnitude gain is extremely low and
the phase of the transfer function varies a lot.

The above assessment can also be extended by relating a quantity like coherence to the
measurements. This part of the measurement still isn’t that concrete and hence is left as it
is for now.

D.1 Frequency Response Measurement for Photodetectors

The Photodetectors(PDs) that are to be used for conducting the experiments need to be
quite sensitive and have a ’large’ enough bandwidth. For our purpose, we would like to
work with PDs with at least 30 MHz frequency bandwidth. In sections D.2 and D.3 , we’ll
determine the bandwidth of two PDs: ET-3040 and ET-3010. The PDs were bought from
Electro-Optics Technology, Inc. To refer to their datasheets, see [18]. The schematic of the
test is shown in figure 16. The laser used has wavelength 1064nm. It is pumped using a
current of 19.5 mA producing a power of 1.00 mW. In place of Detector Under Test(DUT),
we put the ET-3040 or ET-3010 PDs. The reference PD is one of the New Focus Inc.’s High-
Speed Photoreceivers, model 1611 with an DC transimpedance, Tref

DC = 10 kΩ and an AC
transimpedance, Tref

RF = 700 Ω. Its datasheet can be seen at [19]. The Network/Spectrum
Analyzer shown is the Agilent Technologies AG4395A([20]). The procedure for testing both
the PDs is similar. After allignment, we first observe readings for a DC source and then for
an RF modulated signal. We then, using the Network Analyzer obtain data points for the
modulated RF signal and then plot them to determine the approximate bandwidth of the
PDs.

The network analyzer measures the tranfer function of the system in dB. Once we obtain the
data points, we can calibrate the Bode plots with the transimpedance frequency response of
the PD, considering that the ratio of the currents would remain the same in both the DC
input as well as the RF modulated signal. The formula for that is given as:

TDUT
rf =

HDUT

Href
× Vref

DC

VDUT
DC

× TDUT
DC

Tref
DC

×Tref
rf

where TDUT
rf and Tref

rf are the ’rf’ transimpedances of the test detector and the reference
detector respectively, TDUT

DC and Tref
DC are the ’DC’ transimpedances of the test detector and

the reference detector respectively. Vref
DC and VDUT

DC are the measured ’DC’ output potentials

of the reference detector and the test detector respectively. The ratio HDUT

Href is obtained using
the Network Analyzer. We will use this equation to determine the response characteristics of
test detectors, particularly of the ones stated in sections D.2 and D.3. To learn more about
the transimpedance calibration and its premise, refer to [21].
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Figure 16: Schematic for Testing the PDs

D.2 ET-3040

For the DC measurement, we obtained the following values for the DC voltages for the ref
PD and the DUT respectively:

Vref
DC = 1.8V

VDUT
DC = 15mV

Using the DC transimpedances of Tref
DC = 10 kΩ and TDUT

DC = 50Ω for the reference detector
and the DUT respectively, we find the respective photocurrents in the two PDs to be:

IrefDC = 180µA

IDUT
DC = 300µA

The responsivities, in A/W, for the reference detector and the DUT are given to be nearly
0.75 and 0.9 respectively. Using these we calculate the power in the two PDs:

Pref
DC = 240µW

PDUT
DC ≈ 333.3µW

i.e. the fraction of the total power of the laser that went into the reference detector and the
DUT, respectively, were 24% and 33.33%.

Using the Netwrok Analyzer, we obtained data points for an RF signal swept from 100 kHz
to 500 MHz. The Bode plot for the ET-3040 PD in this sweep is shown in Figure 17.
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Figure 17: Bode Plot for PD ET-3040 in reference to High Speed Photoreceiver model:1611

D.3 ET-3010

The ET-3010 PD has an extremely small active area diameter of 100 µm. It requires a fiber
coupled input for proper testing but we performed on it with an extremely low powered
laser(1.00 mW). As the active area is so small, we used Stanford Research Systems’ low
noise voltage preamplifier, SR560 [22], to increase the votage output of these PDs by a gain
of 100.

For the DC measurement, we obtained the following values for the DC voltages for the ref
PD and the DUT respectively:

Vref
DC = 1.8V

SR560 offset voltage without detector signal = 120.6 mV
Voltage reading with detector signal = 348.6 mV
SR560 gain = 100

VDUT
DC = 2.28mV

Using the DC transimpedances of Tref
DC = 10 kΩ and TDUT

DC = 50Ω for the reference detector
and the DUT respectively, we find the respective photocurrents in the two PDs to be:

IrefDC = 180µA

IDUT
DC = 45.6µA

The responsivities, in A/W, for the reference detector and the DUT are given to be nearly
0.75 and 0.85 respectively. Using these we calculate the power in the two PDs:

Pref
DC = 240µW

PDUT
DC ≈ 53.6µW
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i.e. the fraction of the total power of the laser that went into the reference detector and the
DUT, respectively, were 24% and 5.36%.

Using the Netwrok Analyzer, we obtained data points for an RF signal swept from 100 kHz
to 500 MHz. The Bode plot for the ET-3010 PD in this sweep is shown in Figure 18.
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Figure 18: Bode Plot for PD ET-3010 in reference to High Speed Photoreceiver model:1611
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