

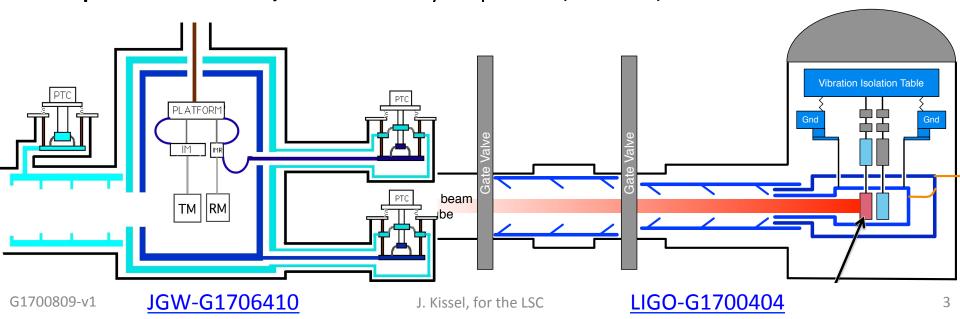
Current 2G Low Frequency Problems

Should consider two types of low frequency problems: One important for Volume the other for Time.

Excess Low-Frequency Motion Causing In-Band Noise

- Scattered Light
- Angular Control
- Glitches / Non-Stationarity

Low-Frequency/Environmental Impacts on Duty Cycle


- Intra-cavity Thermal Mode Evolution
- Environmental Thermal Control
- Tilt Confusion Noise
- Earthquakes

Excess Motion: Scattered Light

- As optical configurations get more sophisticated and beams get bigger there will lot more scattering surfaces in and around the core resonant cavities
 - May need more sophisticated math/physics too see <u>G1700320</u>
- aLIGO has learned that one must pay much attention to baffles and dumps early and often in the design
 - but somehow without occulting too many views of those optics (optical levers, cameras, photon calibrators, auxiliary interferometers)
- **2G Examples**: Parasitic IFOs and Scattering Ports are everywhere, not just in Arm Cavities

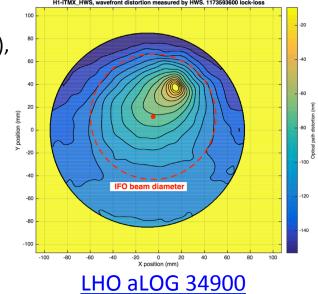
Input Optics Baffle <u>LHO aLOG 35735</u> PCAL Periscope <u>LLO aLOG 33015</u>

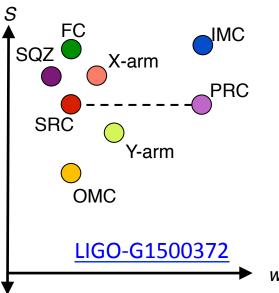
Implications for 2G+ / 3G IFOs: Many suspended / sensed / controlled Baffles

Excess Motion: Angular Control

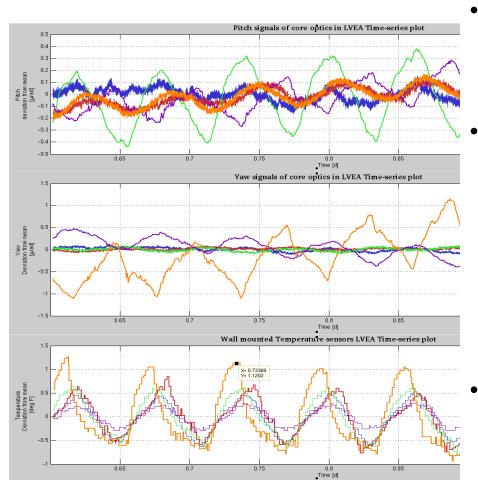
- 2G Examples: You just heard M. Kasprzack's Talk...
- Early commissioning phases are the most challenging for any generation
- If shot noise limited, light pickoffs for ASC error signals are a balance of
 - how much current can sensors handle
 - how much optical loss you are willing to tolerate
- If electronics noise limited -- are there areas for electronics noise improvements?
 - Rich Abbott says "Not that I know of, if there were I would used them!"
- Must be able to account for changes in plant with IFO power (especially during lock acquisition)
- Implications for 2G+ / 3G detectors: Elastic Waistband, Belt and Suspenders:
 - Reduce the input: We should continue to pay attention to Low-Frequency Seismic control in *all* degrees of freedom
 - Increase Observability and Control: Must have excellent noise, stable, local angular sensors to complement global sensors
 - Connect seismic platforms with Seismic Platform IFOs <u>LIGO-P1300043</u>
 - In-vacuum EUCLIDs? <u>LIGO-P1300051</u>, <u>LIGO-C1600066</u>
 - A 3G worthy optical lever?

Excess Noise: Intra-Cavity Thermal Control


Optic thermal modal distortions evolve on the time-scales of 1-4 hours


impacting (with **2G Examples**):

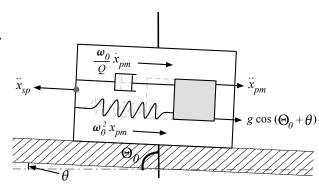
- Interferometric Sensing and Control Signals (<u>LLO aLOG 17792</u>),
- Noise couplings (<u>LHO aLOG 26264</u>),
- Parametric Instabilities (<u>LLO aLOG 17016</u>),
- Response to Gravitational Waves (<u>LHO aLOG 35041</u>)
- Spend time with your Optical Mode Sensor Array!
 - Sensors for optical mode matching like HWS and bullseye
 WFS should not be an after thought
- 2G+ / 3G optical layouts hope to push the limits of matching 5- 10 cavities:


PMC JAC IMC (IMC2?) PRC XARM YARM SRC SQZ FC1 (FC2?) OMC (OMC2?)

- Implications for 2G+ / 3G IFOs: Active wave-front sensing and control essential
 - See talks in Day 5 Plenary Session

Duty Cycle: Environmental Thermal Control

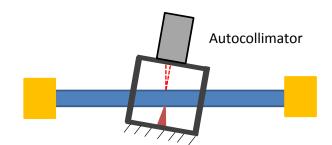
LIGO-G1500590

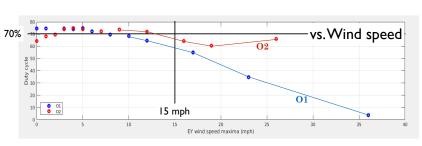

Vacuum Enclosure Area Temperatures evolve on 12 to 24 hour time-scales

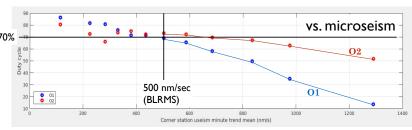
2G Examples:

- large changes in DC alignment
 LHO aLOG 32757
- suspensions sagging and rubbing LHO aLOG 32746
- laser polarizations swing around LHO aLOG 31471
- **2G+ / 3G Implications:** Suspensions are going to be long with low resonance frequencies
 - Low-noise in-vacuum temperature sensing
 - Excellent thermal control of Vacuum Enclosure Areas

Duty Cycle: Tilt Confusion Noise & EQs


- **2G Examples:** An array of ground rotation sensors Demonstrable Improvements to IFO Duty Cycle at LHO
 - Venkateswara, K., et al. RSI 85.1 (2014): 015005.
 - Venkateswara, K., et al. BSSA 107.2 (2017): 709-717.
 - <u>LIGO-G1700331</u>, <u>LIGO-G1700346</u>, <u>LIGO-G1700246</u>




- You just heard Conor's Talk...
 - 2G+ / 3G Implications:

You better have

- Rotation Sensors -- someone convince Krishna to commercialize!
- Seismic Platform Interferometers <u>LIGO-P1300043</u>, <u>arxiv:1201.4718</u>, <u>LIGO-G1401221</u>
- Adaptable local / global control for Eqs
 - <u>LIGO-G1700328</u>

Conclusion: Build the Control System into Your Design

1. Build mechanical elements with intent to control

- Simple plants
- Low-Q at all frequencies
 (ET-C and ET-D)

2. Observe and control as many DOFs as possible

— The ones you don't control will always give you a headache later!

3. Don't forget Early Commissioning Days when you don't have all the control systems tuned

- Build a large dynamic range into you global control or
- Accept several stages of "integrated testing" and a slow crawl to design sensitivity as you change out hardware

4. ... It'll still detect Gravitational Waves!

