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1 Review

This is a brief summary of the counting method developed by Farr, Gair, Mandel, and Cutler, hereafter
FGMC [1].

Given a set of event data {x1,x2, . . . ,xM }, and probability distributions p0(x) and p1(x) for background
(noise) and foreground (signal) models, the FGMC likelihood for the count of background events, Λ0, and
foreground events, Λ1, is

L(Λ0,Λ1 | {x1,x2, . . . ,xM }) ∝ exp(−Λ0 −Λ1)
M∏
i=1

[Λ0p0(xi) +Λ1p1(xi)]. (1)

With a (possibly improper) prior distribution, p(Λ0,Λ1), the posterior distribution is

p(Λ0,Λ1 | {x1,x2, . . . ,xM }) ∝ p(Λ0,Λ1)exp(−Λ0 −Λ1)
M∏
i=1

[Λ0p0(xi) +Λ1p1(xi)]. (2)

For an event x, the probability that it is a foreground event given Λ0 and Λ1 is

P1(x |Λ0,Λ1) =
Λ1p1(x)

Λ0p0(x) +Λ1p1(x)
. (3)

For any particular event in the set of observed events, xi ∈ {x1,x2, . . . ,xM }, the probability that that event is a
foreground event can be obtained by marginalizing over Λ0 and Λ1 using Eq. (2):

P1(xi | {x1,x2, . . . ,xM }) =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ1p1(xi)

Λ0p0(xi) +Λ1p1(xi)
. (4)

If sources are uniformly distributed in comoving spacetime intervals and a search is sensitive to sources
within a spacetime volume (V T ) then the rate (number per unit co-moving volume per unit source-frame
time) is

R =
Λ1

(V T )
. (5)

A change of variables in Eq. (2) gives the posterior distribution for R:

p(R | (V T ), {x1,x2, . . . ,xM }) = (V T )
∫ ∞

0
dΛ0p(Λ0,Λ1 = R(V T ) | {x1,x2, . . . ,xM }). (6)

Proof of Eq. (1). The proof follows Loredo & Wasserman (1995) [2] and Abbott et al. (2016) [3]. Suppose that
we divide the total observation time T into a large number N of subintervals of duration δt = T /N . If these
subintervals are small enough then each one will contain either 0 events or 1 event. There are M intervals
that have 1 event, {xi : i = 1,2, . . . ,M}, and N −M intervals with 0 events, {∅j : j =M + 1,M + 2, . . . ,N } where
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∅j indicates that no event was detected in interval j. The joint probability of these independent propositions
is

L(Λ0,Λ1 | {x1,x2, . . . ,xM ,∅M+1,∅M+2, . . . ,∅N }) =
(
N

M

) M∏
i=1

p(xi |Λ0,Λ1)


 N∏
j=M+1

p(∅j |Λ0,Λ1)

 . (7)

Here, I’ve put in the combinatoric factor
(N
M

)
representing the number of ways to distribute the M events in

the N intervals. I’m not sure about this factor, but it doesn’t matter for our purposes.
The first set of factors involves the probability of observing the event xi in the ith interval, p(xi |Λ0,Λ1).

The rate at which the experiment produces events with values between x and x+ dx is

dN
dt dx

= Λ̇0p0(x) + Λ̇1p1(x) (8)

where Λ̇0 = Λ0/T is the rate of background events and Λ̇1 = Λ1/T is the rate of foreground events. The
overall rate of events is

dN
dt

=
∫
dx

dN
dt dx

= Λ̇0 + Λ̇1 (9)

Therefore, p(xi | Λ0,Λ1) is the differential probability of a single event in the ith interval (we are free to
choose δt to be arbitrarily small, and by so doing make the probability of getting two events in the same
interval vanishingly small). We can write this as

p(xi |Λ0,Λ1) = p(xi | 1,Λ0,Λ1)p(1 |Λ0,Λ1) (10)

where

p(1 |Λ0,Λ1) =
(
dN
dt

δt

)
exp

(
−dN
dt

δt

)
= [(Λ̇0 + Λ̇1)δt]exp{(Λ̇0 + Λ̇1)δt} (11)

is the probability of getting a single event in the interval δt and

p(xi | 1,Λ0,Λ1) =
dN
dt dx

(xi)
/
dN
dt

(xi) =
Λ̇0p0(xi) + Λ̇1p1(xi)

Λ̇0 + Λ̇1
(12)

is the probability density function for one event over x evaluated at xi . Therefore,

p(xi |Λ0,Λ1) =
(
dN
dt dx

δt

)
exp

(
−dN
dt

δt

)
= δt[Λ̇0p0(xi) + Λ̇1p1(xi)]exp{−(Λ̇0 + Λ̇1)δt}. (13)

The second set of factors involves the probability of observing no events in the jth interval, p(∅j |Λ0,Λ1):

p(∅j |Λ0,Λ1) = exp
(
−dN
dt

δt

)
= exp{−(Λ̇0 + Λ̇1)δt}. (14)

Since δt = T /N , Λ̇0δt = Λ0/N and Λ̇1δt = Λ1/N , so we have

L(Λ0,Λ1 | {x1,x2, . . . ,xM ,∅M+1,∅M+2, . . . ,∅N })

=
(
N

M

) M∏
i=1

δt[Λ̇0p0(xi) + Λ̇1p1(xi)]exp{−(Λ̇0 + Λ̇1)δt}


 N∏
j=M+1

exp{−(Λ̇0 + Λ̇1)δt}


=

(
N

M

)
N−M exp(−Λ0 −Λ1)

M∏
i=1

[Λ0p0(xi) +Λ1p1(xi)]. (15)
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As N →∞, we have N �M and(
N

M

)
=
N (N − 1) · · · (N −M + 1)

M!
' N

M

M!
(16)

so

L(Λ0,Λ1 | {x1,x2, . . . ,xM ,∅M+1,∅M+2, . . . ,∅N }) =
1
M!

exp(−Λ0 −Λ1)
M∏
i=1

[Λ0p0(xi) +Λ1p1(xi)]. (17)

(Again, I am not sure about the combinatoric factor.)

2 Useful Identities

Lemma 1. Suppose that the prior distribution takes the form

p(Λ0,Λ1) ∝ p(Λ0)Λα
1 (18)

for some power α. Then the sum of the foreground probabilities of the events is related to the expectation value of
Λ1 by

M∑
i=1

P1(xi | {x1,x2, . . . ,xM }) = 〈Λ1〉 −α − 1. (19)

Proof. Consider

d

dΛ1
[Λ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })] = (α + 1)p(Λ0,Λ1 | {x1,x2, . . . ,xM })−Λ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })

+ p(Λ0,Λ1 | {x1,x2, . . . ,xM })
M∑
i=1

Λ1p1(xi)
Λ0p0(xi) +Λ1p1(xi)

.
(20)

Integrate over Λ0 and Λ1 to obtain

0 = α + 1− 〈Λ1〉+
M∑
i=1

P1(xi | {x1,x2, . . . ,xM }). (21)

Lemma 2. These same things supposed, then

M∑
i=1

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ2

1p1(xi)
Λ0p0(xi) +Λ1p1(xi)

= 〈Λ2
1〉 − (α + 2)〈Λ1〉. (22)

Proof. Consider

d

dΛ1
[Λ2

1p(Λ0,Λ1 | {x1,x2, . . . ,xM })] = (α + 2)Λ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })−Λ2
1p(Λ0,Λ1 | {x1,x2, . . . ,xM })

+ p(Λ0,Λ1 | {x1,x2, . . . ,xM })
M∑
i=1

Λ2
1p1(xi)

Λ0p0(xi) +Λ1p1(xi)
.

(23)

Integrate over Λ0 and Λ1 to obtain

0 = (α + 2)〈Λ1〉 − 〈Λ2
1〉+

M∑
i=1

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ2

1p1(xi)
Λ0p0(xi) +Λ1p1(xi)

. (24)
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Lemma 3. If p(Λ0,Λ1 | {x1,x2, . . . ,xM }) is the posterior distribution for theM events {x1,x2, . . . ,xM }, then if a new
event xM+1 is recorded, the posterior is updated to be

p(Λ0,Λ1 | {x1,x2, . . . ,xM ,xM+1}) = p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ0p0(xM+1) +Λ1p1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
(25)

where

〈Λ0〉M =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })Λ0 (26)

and

〈Λ1〉M =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })Λ1 (27)

are the mean values of Λ0 and Λ1 prior to the inclusion of event xM+1.

Proof. From the form of the FGMC posterior, we see that

p(Λ0,Λ1 | {x1,x2, . . . ,xM ,xM+1}) = Ap(Λ0,Λ1 | {x1,x2, . . . ,xM })[Λ0p0(xM+1) +Λ1p1(xM+1)] (28)

where A is a normalization constant. Integrating both sides over Λ0 and Λ1 yields

1 = A[〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)]. (29)

Solve this for A and insert into the original equation to get the desired result.

Theorem 1. When a new event xM+1 is added to an existing set of events {x1,x2, . . . ,xM }, the mean value of Λ1 is
increased as

〈Λ1〉M+1 = 〈Λ1〉M +
covM (Λ0,Λ1)p0(xM+1) + VarM (Λ1)p1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
(30)

where

VarMΛ1 =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM }) (Λ1 − 〈Λ1〉M )2 (31)

and

covM (Λ0,Λ1) =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM }) (Λ0 − 〈Λ0〉M )(Λ1 − 〈Λ1〉M ) (32)

are the variance of Λ1 and the covariance of Λ0 and Λ1 prior to the inclusion of event xM+1.
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Proof. Use the result of Lemma 3:

〈Λ1〉M+1 − 〈Λ1〉M

= −〈Λ1〉M +

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM ,xM+1})Λ1

= −〈Λ1〉M +

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ0p0(xM+1) +Λ1p1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
Λ1

= −〈Λ1〉M +
〈Λ0Λ1〉Mp0(xM+1) + 〈Λ2

1〉Mp1(xM+1)
〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)

=
(〈Λ0Λ1〉M − 〈Λ0〉M〈Λ1〉M )p0(xM+1) + (〈Λ2

1〉M − 〈Λ1〉2M )p1(xM+1)
〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)

=
covM (Λ0,Λ1)p0(xM+1) + VarM (Λ1)p1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
. (33)

Here we have

〈Λ2
1〉M =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })Λ2
1 (34)

and

〈Λ0Λ1〉M =

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })Λ0Λ1 (35)

from which it is seen that

VarMΛ1 = 〈Λ2
1〉M − 〈Λ1〉2M (36)

and

covM (Λ0,Λ1) = 〈Λ0Λ1〉M − 〈Λ0〉M〈Λ1〉M . (37)

Remark. In the case when 〈Λ1〉Mp1(xM+1) � 〈Λ0〉Mp0(xM+1), i.e., the new event is almost certainly a
foreground signal, then

〈Λ1〉M+1 ≈ 〈Λ1〉M +
VarMΛ1

〈Λ1〉M
. (38)

If VarMΛ1 > 〈Λ1〉M then the new event contributes more than one count to Λ1, even though P1(xM+1 |
{x1,x2, . . . ,xM ,xM+1}) ≈ 1 (see Theorem 2 below). This seems peculiar in light of Lemma 1, which seemingly
implies that the new event should contribute just one count; however, the new event also has the effect of
updating the foreground probabilities P1(xi | {x1,x2, . . . ,xM ,xM+1}) for all other events xi ∈ {x1,x2, . . . ,xM }.

Theorem 2. When a new event xM+1 is added to an existing set of events {x1,x2, . . . ,xM }, its probability of being a
foreground event is

P1(xM+1 | {x1,x2, . . . ,xM ,xM+1) =
〈Λ1〉Mp1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
. (39)
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Proof. Again use Lemma 3:

P1(xM+1 | {x1,x2, . . . ,xM ,xM+1})

=

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM ,xM+1})
Λ1p1(xM+1)

Λ0p0(xM+1) +Λ1p1(xM+1)

=

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ0p0(xM+1) +Λ1p1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
Λ1p1(xi)

Λ0p0(xi) +Λ1p1(xi)

=

∞"
0

dΛ0 dΛ1p(Λ0,Λ1 | {x1,x2, . . . ,xM })
Λ1p1(xi)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)

=
〈Λ1〉Mp1(xM+1)

〈Λ0〉Mp0(xM+1) + 〈Λ1〉Mp1(xM+1)
. (40)

3 Approximate 1-Dimensional Posterior

The FGMC likelihood induces correlations between Λ0 and Λ1 when there are events for which p0(xi) ≈ p1(xi).
This is expected: as events accumulate, we expect both Λ0 and Λ1 to grow. For a stationary experiment,
we would also expect that the ratio of the rate of growth of Λ1 to the rate of growth of Λ0 to be constant.
Furthermore, FGMC is intended to be applied when the rate of background events is larger than the rate
of foreground events so that most of the observed events are background. This motivates the change of
variables Λ0 =Mu and expressing the FGMC posterior in the form

p(u,Λ1 | {k1, k2, . . . , kM })

∝ p(u)p(Λ1)MMuM exp(−Mu)exp(−Λ1)
M∏
i=1

(1 +Λ1ki /u)

= p(Λ1)exp(−Λ1)h(u)exp[Mg(u)] (41)

where we have supposed the prior distribution factorizes, p(Λ0,Λ1) = p(Λ0)p(Λ1), have introduced the
functions

g(u) = log(Mu)−u = logM − 1− 1
2

(u − 1)2 +
1
3

(u − 1)3 − 1
4

(u − 1)4 + · · · , (42)

h(u) = p(u)
M∏
i=1

(1 +Λ1ki /u), (43)

and have defined

ki =
Ki
M

with Ki =
p1(xi)
p0(xi)

(44)

to be the reduced Bayes factor for the ith event, i.e., the ratio of the likelihood of the signal model to the noise
model, known as the Bayes factor Ki , divided by M. Next we assume that M � 1 and that h(u) is a slowly
varying function of u; then, since the factor exp[Mg(u)] is sharply peaked about u = 1, we can marginalize
over Λ0 using the method of Laplace to evaluate the integral:
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p(Λ1 | {k1, k2, . . . , kM })

=
∫ ∞

0
dup(u,Λ1 | {k1, k2, . . . , kM })

∝ p(Λ1)exp(−Λ1)
∫ ∞

0
duh(u)exp[Mg(u)]

≈ p(Λ1)exp(−Λ1)

√
2π

M |g ′′(1)|
h(1)exp[Mg(1)]

∝ p(Λ1)exp(−Λ1)
M∏
i=1

(1 +Λ1ki). (45)

Several results from the previous section carry over. In particular, the probability that a particular event
is a foreground event is

P1(ki | {k1, k2, . . . , kM }) =
∫ ∞

0
dΛ1p(Λ1 | {k1, k2, . . . , kM })

Λ1ki
1 +Λ1ki

(46)

for i ∈ [1,M] or, if i =M + 1 is a new event, Theorem 2 gives

P1(kM+1 | {k1, k2, . . . , kM }) =
〈Λ1〉MkM+1

1 + 〈Λ1〉MkM+1
, (47)

while the mean value of Λ1 is

〈Λ1〉 = 1 +α +
M∑
i=1

P1(ki | {k1, k2, . . . , kM }). (48)

for i ∈ [1,M] or, if i = M + 1 is a new event, the revised version of Theorem 1 describes how the mean
foreground count increases with the inclusion of a new event:

〈Λ1〉M+1 = 〈Λ1〉M +
VarM (Λ1)kM+1

1 + 〈Λ1〉MkM+1
. (49)

3.1 Application

Suppose that our zerolag analysis has yielded M events, {k1, k2, . . . , kM }, from which we derive the posterior
distribution on Λ1, p(Λ1 | {k1, k2, . . . , kM }). An injection campaign, in which Ninj events were injected, has
produced M ′ recorded events, {k′1, k

′
2, . . . , k

′
M ′ }. We wish to determine how many of the injections are found.

Suppose that we take a single injection event, k′j , 1 ≤ j ≤M ′ , and add it to the zerolag events so that our
events are now {k1, k2, . . . , kM , kM+1 = k′j }. By Theorem 1 we have

∆〈Λ1〉 =
VarM (Λ1)k′j
1 + 〈Λ1〉Mk′j

(50)

where

∆〈Λ1〉 = 〈Λ1〉M+1 − 〈Λ1〉M (51)

is the additional number of counts that injection would have contributed to the zerolag search. For our
injection set, the average number of counts that the injections would have contributed to our search is

∆〈Λ1〉 =
1
Ninj

M ′∑
j=1

VarM (Λ1)k′j
1 + 〈Λ1〉Mk′j

=
VarM (Λ1)
Ninj

M ′∑
j=1

k′j
1 + 〈Λ1〉Mk′j

. (52)
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This represents the efficiency of the search at detecting the injections. (Note that, if Ninj >M
′ , then there are

injections that did not produce any recorded event; these injections are presumed to be missed entirely.)
Specifically, if the injection set surveyed a spacetime volume (V T )0, then the search was sensitive to a
spacetime volume

V T = ∆〈Λ1〉(V T )0 =Nrec∆(V T ) (53)

where

∆(V T ) =
(V T )0

Ninj
(54)

is the incremental increase in V T per found injection and

Nrec = VarM (Λ1)
M ′∑
j=1

k′j
1 + 〈Λ1〉Mk′j

(55)

is the average number of recovered injections.
The posterior on the rate R = Λ1/V T is therefore

p(R | {k1, k2, . . . , kM }) ∝ p(R)exp(−V TR)
M∏
i=1

(1 +V TRki). (56)

To include uncertainties in the spacetime volume count and in such things as calibration, marginalize the
result with a log normal distribution:

p(R | {k1, k2, . . . , kM },S) =
1

S
√

2π

∫ ∞
0
dx exp[−(lnx)2/2S2]p(xR | {k1, k2, . . . , kM }) (57)

where S is the fractional error. This fractional error can consist of two components:

• A statistical error from counting uncertainty in the injection campaign. The fractional uncertainty is

S2
stat = Var

(
logV T

)
= Var(logNrec) =

1
Nrec

. (58)

• A systematic fractional error from calibration uncertainty is

Ssyst =
∆(h3)
(h3)

= 3
∆h

h
. (59)

• The total fractional error is

S =
√
S2

stat + S2
syst =

√
1
Nrec

+
(
3
∆h

h

)2

. (60)

4 Implementation Details

Many of the integrals that need to be computed are of the form∫ ∞
0
xαe−xdxP (x) (α > −1) (61)

where P (x) is a polynomial in x. Recall the 1-dimensional posterior, Eq. (45),

p(Λ1 | {k1, k2, . . . , kM }) ∝ p(Λ1)exp(−Λ1)
M∏
i=1

(1 +Λ1ki)
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and note that, if p(Λ1) ∝ Λα
1 , then moments of this distribution will be of the aforementioned form. In

particular, 〈Λ1〉 and VarΛ1 require integrals of the form of Eq. (61). Indeed, even the integral in Eq. (46),

P1(ki | {k1, k2, . . . , kM }) =
∫ ∞

0
dΛ1p(Λ1 | {k1, k2, . . . , kM })

Λ1ki
1 +Λ1ki

is of the form of Eq. (61) since the divisor is one of the factors in the probability density function. Such
integrals can be readily evaluated using generalized Gauss-Laguerre quadrature:∫ ∞

0
xαe−xdxP (x) =

n∑
j=1

wjP (xj ) (62)

where xj is the jth root of the Generalized Laguerre function L(α)
n (x), α > −1, and wj are the weighting factors

wj =
Γ (n+α)xj

n!(n+α)![L(α)
n−1(xj )]2

. (63)

The integral is exactly equal to the sum if the degree of the polynomial P (x) is 2M − 1 or less. In practice,
however, only a handful of events will contribute significantly to the posterior distribution and it is bound
that M = 20 is sufficient for evaluation of the integrals of interest.

The abscissas and weights for the generalized Gauss-Laguerre quadratures are obtained with the routine
scipy.special.la roots

>>> from scipy.special import la_roots

>>> x, w = la_roots(n = 20, alpha = -0.5)

>>> x

array([ 3.04632393e-02, 2.74444716e-01, 7.63887558e-01,

1.50180150e+00, 2.49283015e+00, 3.74341804e+00,

5.26205585e+00, 7.05962774e+00, 9.14989831e+00,

1.15501983e+01, 1.42824037e+01, 1.73743670e+01,

2.08620752e+01, 2.47930399e+01, 2.92319102e+01,

3.42704289e+01, 4.00468158e+01, 4.67888464e+01,

5.49315556e+01, 6.55899320e+01])

>>> w

array([ 6.77286555e-01, 5.31456504e-01, 3.26757465e-01,

1.56949212e-01, 5.86251311e-02, 1.69217760e-02,

3.74299366e-03, 6.27707189e-04, 7.87386796e-05,

7.26315230e-06, 4.82228833e-07, 2.24247217e-08,

7.05124158e-10, 1.43130561e-11, 1.76114153e-13,

1.20167176e-15, 3.97836202e-18, 5.13518673e-21,

1.70881139e-24, 5.18208743e-29])

Integrals of the form∫ ∞
0
p(Λ1 | {k1, k2, . . . , kM })dΛ1 f (Λ1)

can be accurately evaluated as∫ ∞
0
p(Λ1 | {k1, k2, . . . , kM })dΛ1 f (Λ1) =

n∑
j=1

pjf (xj ) (64)

where

pj ∝ wj
M∏
i=1

(1 + xjki). (65)

https://dcc.ligo.org/LIGO-T1700029-v2/public
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.la_roots.html
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The normalization is determined by

1 =
∫ ∞

0
p(Λ1 | {k1, k2, . . . , kM })dΛ1 =

n∑
j=1

pj (66)

whence

pj =
wj

∏M
i=1(1 + xjki)∑n

j=1

{
wj

∏M
i=1(1 + xjki)

} . (67)

The abscissas and probability-weights, {(x1,p1), (x2,p2), . . . , (xn,pn)} can be pre-computed one time and then
used to evaluate multiple integrals.

For example, to evaluate the probability that an event is a foreground event for every event, we compute

P1(ki | {k1, k2, . . . , kM }) = 1−
∫ ∞

0
dΛ1p(Λ1 | {k1, k2, . . . , kM })

1
1 +Λ1ki

= 1−
n∑
j=1

pj
1 + xjki

. (68)

This can be vectorized as follows: let

k =


k1
k2
...
kM

 , P1 =


P1(k1 | k)
P1(k2 | k)

...
1− P1(kM | k)

 , x =


x1
x2
...
xn

 , and p =


p1
p2
...
pn

 ; (69)

then

P1 = 1− 1
1 +k⊗ x

·p (70)

or, in Python code,

>>> from numpy import dot, logspace, outer, prod

>>> from scipy.special import la_roots

>>> K = logspace(-2, 2) # faked Bayes factors
>>> k = K / len(K) # Eq. (44)
>>> x, w = la_roots(n = 20, alpha = -0.5)

>>> p = w * prod(1.0 + outer(k, x), axis = 0) # Eq. (65)
>>> p /= sum(p) # Eq. (66)
>>> P1 = 1.0 - dot(1.0 / (1.0 + outer(k, x)), p) # Eq. (70)
>>> P1

array([ 0.00413129, 0.00498108, 0.00600455, 0.00723669, 0.00871931,

0.01050226, 0.01264486, 0.01521744, 0.01830312, 0.02199965,

0.02642145, 0.0317015 , 0.03799315, 0.04547152, 0.05433415,

0.06480062, 0.07711039, 0.09151845, 0.108288 , 0.12767956,

0.14993601, 0.17526363, 0.20380961, 0.23563752, 0.27070322,

0.30883437, 0.34971767, 0.39289726, 0.43778697, 0.48369712,

0.52987384, 0.57554655, 0.61997765, 0.66250771, 0.70259073,

0.73981599, 0.77391547, 0.80475829, 0.83233517, 0.85673671,

0.87812911, 0.89673032, 0.91278882, 0.92656592, 0.93832222,

0.94830784, 0.95675604, 0.96387959, 0.96986915, 0.97489318])

>>> 1 - 0.5 + sum(P1) # mean of counts posterior using Eq. (48)
20.747642701543494

>>> dot(p, x) # mean of counts posterior using Eq. (64)
20.747642701543498

>>> dot(p, x**2) - dot(p, x)**2 # variance of counts posterior using Eq. (64)
27.752127849039539

Notice that the computation of M values of P1 requires only O(nM) operations.

https://dcc.ligo.org/LIGO-T1700029-v2/public
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