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We develop a generic (method-independent) timing model for the F-statistic computation. We
present and quantify method-specific timing and memory models for the Resampling-FFT method,
as well as the (older) Demod method. The timing models are found to agree well with the measured
CPU times with a standard deviation on the error of less than 10%.

I. THE F-STATISTIC TIMING MODEL

In the following we denote as T any times (per detector) referring to a single call to XLALComputeFstat(), which
computes the F-statistic over a vector of NFbin frequency bins, τ any times per detector per output F-statistic
frequency bin NFbin, and τ (0) any “fundamental” timing coefficients that don’t scale with any of the algorithm
parameters (at least approximately), and which should only depend on the hardware and code optimization settings.

The general F-statistic timing model can be expressed in terms of two contributions:

1. the average core time τ core
F to compute a single F-statistic frequency bin for one detector, excluding the time

to compute any quantities that are stored in the buffer, and

2. the average time τbuffer
F per frequency bin per detector to (re-)compute all buffered quantities

We can write the effective average F-statistic time τ eff
F per template per detector as

τ eff
F = τ core

F + b τbuffer
F , (1)

where the “buffer miss fraction” b ∈ [0, 1] quantifies how many times the buffer needed to be recomputed per call to
XLALComputeFstat() per output frequency bin, i.e. b = 0 is 100% efficient buffering, i.e. the buffer never needed to
be re-computed, while b = 1 means the buffer needed to be re-computed for every call to XLALComputeFstat(). The
buffer contains sky-dependent quantities (antenna-pattern functions, SSB time delays, SSB-resampled time-series,
. . . ) as well as quantities that depend on the binary-orbital parameters (such as binary-orbital time delays and
corresponding resampled time-series). Typically we can re-use the buffer for all spindowns for given sky-position and
binary-orbital parameters, and so in most cases we will have

b =
1

N{ḟ ,f̈ ,...}
, (2)

in terms of the number of spindown templates of all orders computed per sky-position and binary-orbital parameters.
The timing collection within the F-statistic code measures and outputs these quantities as

tauF eff ≡ τ eff
F = τ core

F + b τbuffer
F , (3)

tauF core ≡ τ core
F , (4)

tauF buffer ≡ τbuffer
F , (5)

bufferMissFrac ≡ b . (6)

A timing model consists of expressing the F-statistic times τ core
F and τbuffer

F in terms of algorithm parameters and

fundamental timing coefficients τ (0)
... , which allows us to predict F-statistic compute times as a function of algorithm

parameters, assuming we have measured the fundamental timing coefficients for a given code and hardware.
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A. Resampling timing model

1. Notation

There are essentially four different vector lengths over which various operations are performed in the Resampling-
FFT F-statistic code:

NFbin: The user-requested number of output frequency bins, with spacing df , for which the F-statistic is computed.

NDET
samp: The (maximum over detectors) number of samples in the input timeseries (in the detector frame.

NSRC
samp: The (maximum over detectors) number of samples of the input timeseries, interpolated into the source-frame.

NFFT
samp: The length of the (zero-padded) timeseries on which the FFT is performed.

which are given by the following relations:
The sampling step dtDET of the input timeseries in the detector frame (DET) is given in terms of the frequency

bandwidth ∆fsft of the input SFTs, namely

dtDET ≡
1

∆fsft
, (7)

and the number of detector-frame time-samples are therefore

NDET
samp =

Tcoh

dtDET
= Tcoh ∆fsft , (8)

where Tcoh is the (maximum over IFOs) maximum coherent data span, which is determined by the actual SFTs used
and can therefore generally be less than the user-requested (e.g. via segment list) span. The duration TFFT of the
final timeseries to be FFT’ed is determined by the user-requested frequency resolution df , namely

TFFT =
D

df
, with D ≡ dTcoh dfe , (9)

where D ∈ N+ ensures that we always have TFFT ≥ Tcoh. A choice D > 1 is required when the user asked for a
coarse frequency resolution df > 1/Tcoh in order to still use all the data (i.e. we always use zero-padding rather than
truncating the input timeseries) and therefore not lose SNR. In the regular case of a frequency resolution df < 1/Tcoh

we have D = 1. The decimation factor D amounts to internally using a finer frequency resolution

dfinternal ≡
df

D
≤ 1

Tcoh
, (10)

and then returning only the user-requested frequency bins with resolution df , namely by returning only every D’th
frequency bin.

With the original detector-frame sampling step dtDET this would correspond to a number of time samples to be
FFT’ed:

NFFT(0)
samp =

TFFT

dtDET
=

∆fsft

dfinternal
. (11)

However, in order to ensure the most efficient (and most consistent) FFT performance, we round the number of FFT
bins up to the next power of 2, namely

NFFT
samp = 2dlog2 NFFT(0)

samp e , (12)

which is achieved by decreasing the sampling step (i.e. increasing the frequency band) of the resampled timeseries in
the source frame (SRC), i.e.

dtSRC ≡
TFFT

NFFT
samp

. (13)
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The (longest) coherent detector-frame time-series of span Tcoh interpolated into the source-frame will therefore have
NSRC

samp samples, given as

NSRC
samp ≡

Tcoh

dtSRC
= RNFFT

samp , (14)

where we defined the (internal) frequency resolution R ≤ 1 in “natural” units 1/Tcoh as

dfinternal = R 1

Tcoh
, (15)

namely

R ≡ Tcoh

TFFT
= Tcoh dfinternal ≤ 1 . (16)

From Eq. (8) and Eq. (11) we find a similar relation to Eq. (14) for NDET
samp, namely

NDET
samp = RNFFT(0)

samp . (17)

B. Required SFT frequency band ∆fsft

When the caller requests a physical SRC-frame frequency band ∆f to be analyzed, we need to expand this to
∆fload when loading the data from SFTs: this wider band contains an extra “frequency drift” sideband ∆fdrift to
account for Doppler shifts and spindowns (computed from XLALCWSignalCoveringBand() [1]), and an additional 16
extra SFT bins (8 on either side1) added to use similar noise bins as Demod near the SFT edges, i.e.

∆fload = ∆f + ∆fdrift +
16

Tsft
, (18)

∆fdrift ≈ 2.12× 10−4

(
fmax + |ḟ |max

Tspan

2
+ |f̈ |max

T 2
span

8
+ . . .

)
, (19)

where Tspan denotes the total duration of data included in this calculation. The handling of this can differ between
semi-coherent search codes, for example for the GCT code, Tspan denotes the total span of data over all semi-coherent
segments, whereas for the Weave code, this could be computed (and data loaded) on a per-segment basis, such that
for Weave Tspan = Tcoh. An additional “transition band” is added internally in order to allow for the roll-off from the
Hamming-windowed sinc-interpolation used in Barycentric resampling, which further increases this to

∆fsft = ∆fload

(
1 +

4

2 Dterms + 1

)
, (20)

where Dterms is the (user-specified) number of sinc-kernel terms to use (on either side, therefore the window-size is
2 Dterms + 1) in the barycentric resampling interpolation.

Note that these expressions (especially ∆fdrift) are only approximations of what is computed in the F-stat
codes, and due to the power-of-two rounding of Eq. (12), this can in some cases lead to relatively large devia-
tions from the actual measured runtimes. For the most accurate and reliable prediction use the octapps function
predictFstatTimeAndMemory() [2].

The “physical” number of maximal output frequency bins is

Nmax
Fbin =

∆f

df
, (21)

while calls to XLALComputeFstat() can request to compute fewer output frequency bins NFbin ≤ Nmax
Fbin , provided

they fall into the requested frequency band ∆f . Note that for semi-coherent codes such as the GCT code, ∆f will
not be just the user-requested search frequency band ∆f0, but will typically include additional sideband bins, for
example in the case of the GCT code we’ll have a wider band of

∆f = ∆f0 +
1

2

(
Tspan dḟ + T 2

span df̈
)
, (22)

where the extra sideband is referred to as extraBinsFstat in the GCT code.

1 called extraBinsMethod in the code
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1. Timing model contributions

We can break the time to compute the Resampling F-statistic into the following contributions: the core compute
time T core

F has the following contributions T core
F = TFbin +Tspin +TFFT, which scale differently with search parameters,

namely

1. Apply spindown-correction and frequency shift to source-frame timeseries, which scales withNSRC
samp, and therefore

Tspin = NSRC
samp τ

(0)
spin = RNFFT

samp τ
(0)
spin . (23)

2. Apply the FFT, which operates on the zero-padded timeseries of length NFFT
samp, therefore

TFFT = 5NFFT
samp log2(NFFT

samp) τ
(0)
FFT , (24)

which was defined in such a way that we can directly the FFT timing coefficient τ
(0)
FFT to the benchmark

“speed” definition of FFTW in http://www.fftw.org/speed/. This is defined in terms of “mega-flops” as
mflops ≡ 5NFFT

samp log2(NFFT
samp)/(TFFT 106), and so FFTW’s “flops” are simply

FFTflops =
1

τ
(0)
FFT

. (25)

The FFT timing coefficient τ
(0)
FFT is found to be relatively constant for FFTs of length NFFT

samp > 218 = 262144,
while it is noticeably smaller but also more variable for shorter FFTs (in agreement with FFTW’s bench-
mark results for single-precision complex FFTs on 64bit hardware shown here: http://www.fftw.org/speed/

CoreDuo-3.0GHz-icc64/). In practice we therefore use two FFT timing coefficients, τ
(0)
FFT(N ≤ 218) and

τ
(0)
FFT(N > 218).

3. various operations on the NFbin output bins, such as copying the bins, normalizing them, computing F from
Fa, Fb and summing them over detectors Fa,b =

∑
X FX

a,b (here considering time per detector), which can be

summarized as a time contribution per output frequency bin τ
(0)
Fbin, internally composed of these parts

TFbin = Tcopy + Tnorm + TsumFabX + TFab2F = NFbin τ
(0)
Fbin . (26)

We therefore obtain the core resampling time per detector per output frequency bin NFbin as

τ core
F ≡ T

core
F
NFbin

= τ
(0)
Fbin +

NFFT
samp

NFbin

[
R τ (0)

spin + 5 log2(NFFT
samp) τ

(0)
FFT

]
. (27)

We also need to compute all the buffered quantities: antenna-patterns and source-frame time-delays, barycenter and
interpolate the input detector-frame time-series into the source frame. This contribution contains some terms that
scale with the number of input SFTs, and others that scale with the number of input samples of the SFTs (in case of
gaps), as well as NSRC

samp and NDET
samp. However, we postulate the following approximate scaling relation for the dominant

contribution (barycentering) as

T buffer
F ∼ Tbary ∼ NSRC

samp τ
(0)
bary = RNFFT

samp τ
(0)
bary , (28)

and so

τbuffer
F ≡ T

buffer
F
NFbin

= R NFFT
samp

NFbin
τ

(0)
bary . (29)

The complete Resampling timing model for the effective average time per template per detector of Eq. (1) can therefore
be expressed as

τ eff
F = τ

(0)
Fbin +

NFFT
samp

NFbin

[
R
(
τ

(0)
spin + b τ

(0)
bary

)
+ 5 log2(NFFT

samp) τ
(0)
FFT

]
. (30)

http://www.fftw.org/speed/
http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/
http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/
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C. Demod Timing Model

The timing model for the Demod implementation of the F-statistic is much simpler. The core Demod F-statistic
time τ core

F per detector is simply proportional to the number of SFTs Nsft from the single detector, i.e.

τ core
F = Nsft τ

(0)
core,LD , (31)

where τ
(0)
core,LD is the fundamental timing coefficient expressing core Demod time per SFT.

In the Demod case, the time T buffer
F to compute all the buffered quantities (sky-dependent antenna-patterns and

sky- and binary-orbital dependent timings) for one detector is simply proportional to the number of SFTs from that
detector, and we can obtain

τbuffer
F =

Nsft

NFbin
τ

(0)
buffer,LD , (32)

in terms of a fundamental timing coefficient τ
(0)
buffer,LD, which denotes the time to compute all the buffered quantities

for a single SFT. We can therefore write the full Demod timing model τ eff
F for the time per template per detector as

τ eff
F = Nsft

[
τ

(0)
core,LD +

b

NFbin
τ

(0)
buffer,LD

]
, (33)

in terms of the number of SFTs Nsft coherently analyzed from one detector.

II. MEMORY MODEL

In a similar way to the timing model we can enumerate the amount of memory required to perform the calculation
of the F-statistic.

A. Resampling memory model

• Objects stored for each detector and each segment of a semi-coherent search:

– the original SFTs turned into a detector-frame COMPLEX8 timeseries:

mem [COMPLEX8TimeSeries-DET] = NDET
samp ×mem [C8] .

– two timeseries interpolated and barycentered into the source frame, multiplied by a(t) or b(t), respectively:

mem [COMPLEX8TimeSeries-SRC-[a|b]] = 2NSRC
samp ×mem [C8] .

– the FFTW plan: we’re assuming it should be roughly NFFT
samp COMPLEX8 numbers(?)

mem [FFT-plan] ≈ NFFT
samp ×mem [C8] .

• Objects stored only once for all segments, using a shared “workspace”:

– Two COMPLEX8 vectors for temporary storage of SRC-frame timeseries:

mem [TStmp[1|2]-SRC] = 2NSRC
samp ×mem [C8] ,

– One REAL8 timeseries holding time-differences between SRC and DET frames (only used for barycentering:

mem [SRCtimes-DET] = NSRC
samp ×mem [R8] .

– the input and output vectors for the FFT (currently not using in-place transform):

mem [TS-FFT + FabX-Raw] = 2NFFT
samp ×mem [C8] ,
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– temporary storage of FX
a,b and Fa,b:

mem [Fab] = 4NFbin ×mem [C8] .

where mem [C8] = mem [R8] = 8 bytes and mem [R4] = 4 bytes.
We can therefore express the different memory blocks as

mem [ResampDataPerDetPerSeg] =
[
RNFFT(0)

samp + (1 + 2R)NFFT
samp

]
× 8bytes , (34)

mem [ResampWorkspace] =
[
(2 + 3R)NFFT

samp + 4NFbin

]
× 8 bytes , (35)

(36)

and the total (multi-segment, multi-detector) “internal” memory usage of the Resampling F-statistic calculation is
therefore

mem [Resamp] = Nseg Ndet ×mem [ResampDataPerDetPerSeg] + mem [ResampWorkspace] . (37)

Note that this accounting does not including the “external” memory required to store the returned F-statistic
results from each call to XLALComputeFstat(), namely

mem [F-stats return] = NFbin ×mem [R4] ,

mem
[
per-IFO {FX}

]
= NdetNFbin ×mem [R4] ,

mem
[
per-segment per-IFO {FX,`}

]
= Nseg NdetNFbin ×mem [R4] ,

depending on whether the user requested just return of F-statistic, or per-detector FX , or also per-segment per-
detector FX,`. This memory is handled by the calling code and has to be accounted for according to its usage of this
memory (ie whether it is stored, or added to a toplist immediately, etc).

B. Demod Memory Model

The Demod code needs essentially no internal workspace other than the memory to hold the input SFTs, i.e.

mem [DemodDataPerSFT] = (∆fload Tsft)× 8 bytes , (38)

and so the total (multi-segment, multi-detector) Demod memory “internal” usage is

mem [Demod] = Nall
sft ×mem [DemodDataPerSFT] , (39)

where Nall
sft is the total number of all SFTs over all segments and detectors, i.e. Nall

sft = NdetNseg Nsft, if Nsft is the
average number of SFTs per detector per segment.
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III. TESTING THE TIMING MODEL

A. Timing on a Lenovo Thinkpad T520

CPU: Intel(R) Core(TM) i7-2620M CPU, 2.70GHz,
L2 cache: 4MB
Extensions: sse sse2 ssse3 sse4_1 sse4_2 avx
Kernel: Linux 3.16.0-4-amd64
Compiler: Debian clang version 3.5.0-10 (tags/RELEASE_350/final) (based on LLVM 3.5.0)

The timing measurements use lalapps ComputeFstatBenchmark:

$ lalapps_ComputeFstatBenchmark --FstatMethod="ResampBest" --numSegments=1 --numTrials=1000

for Resampling, and --FstatMethod="DemodBest" for Demod. The model comparison was done using the octapps
function predictFstatTimeAndMemory().

1. Demod timing: Thinkpad T520
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τ
(0)
core,LD [s]

2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

τ
(0)
buffer,LD [s]

10−7

10−6

10−5

10−4

10−7 10−6 10−5 10−4

τ
c
o
re

F
m
ea
su
re
d
[s
]

τ core
F predicted [s]

10−10

10−9

10−8

10−7

10−6

10−10 10−9 10−8 10−7 10−6

τ
b
u
ff

e
r

F
m
ea
su
re
d
[s
]

τbuffer
F predicted [s]

4.5e-08s ±3% 4.8e-07s ±18%

measured
predicted

measured
predicted



8

2. Resampling timing: Thinkpad T520
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B. Timing on ATLASDEV1

CPU: Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz
L2 cache: 12MB
Extensions: sse sse2 ssse3 sse4_1 sse4_2 avx
Kernel: Linux 3.16.0-4-amd64
Compiler: gcc (Debian 4.9.2-10) 4.9.2

1. Demod timing: ATLASDEV1
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2. Resampling timing: ATLASDEV1
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N > 218: 3.5×10−10s ±2%
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C. Average timing coefficients for E@H

As a reasonable “guess” for E@H timings, one could use the average timing coefficients. The following table
summarizes the individual and average timing coefficients, all times are in seconds, and the FFT timing coefficients
are for NFFT

samp ≤ 218 (“lo”) and NFFT
samp > 218 (“hi”) respectively:

Demod Resampling

Hardware τ
(0)
core,LD τ

(0)
bary,LD τ

(0)
Fbin τ

(0)
spin τ

(0)
FFT [lo,hi] τ

(0)
bary

T520-new 4.5×10−8 4.8×10−7 5.4×10−8 5.0×10−8 [1.6×10−10, 3.7×10−10] 3.3×10−7

atlasdev1-new 4.7×10−8 4.9×10−7 5.4×10−8 5.2×10−8 [1.4×10−10, 3.5×10−10] 3.3×10−7

Average 4.6×10−8 4.8×10−7 5.4×10−8 5.1×10−8 [1.5×10−10, 3.6×10−10] 3.3×10−7

[1] LSC Algorithm Library - LALSuite, FreeSoftware (GPL), URL https://wiki.ligo.org/DASWG/LALSuite.
[2] Octapps - an LSC Octave library, FreeSoftware (GPL), URL https://gitlab.aei.uni-hannover.de/octapps/octapps.

https://wiki.ligo.org/DASWG/LALSuite
https://gitlab.aei.uni-hannover.de/octapps/octapps
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