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We develop a generic (method-independent) timing model for the F-statistic computation. We
present and quantify method-specific timing and memory models for the Resampling-FFT method,
as well as the (older) Demod method. The timing models are found to agree well with the measured
CPU times with a standard deviation on the error of less than 10%.

I. THE F-STATISTIC TIMING MODEL

In the following we denote as T any times (per detector) referring to a single call to XLALComputeFstat (), which
computes the F-statistic over a vector of Npy;, frequency bins, 7 any times per detector per output JF-statistic
frequency bin Nppin, and 7% any “fundamental” timing coefficients that don’t scale with any of the algorithm
parameters (at least approximately), and which should only depend on the hardware and code optimization settings.

The general F-statistic timing model can be expressed in terms of two contributions:

1. the average core time 75" to compute a single F-statistic frequency bin for one detector, excluding the time
to compute any quantities that are stored in the buffer, and

2. the average time Tﬁ%“ffer per frequency bin per detector to (re-)compute all buffered quantities

We can write the effective average F-statistic time T}H per template per detector as
T;—H — T;ore + brl;_uffer , (1)

where the “buffer miss fraction” b € [0, 1] quantifies how many times the buffer needed to be recomputed per call to
XLALComputeFstat () per output frequency bin, i.e. b = 0 is 100% efficient buffering, i.e. the buffer never needed to
be re-computed, while b = 1 means the buffer needed to be re-computed for every call to XLALComputeFstat (). The
buffer contains sky-dependent quantities (antenna-pattern functions, SSB time delays, SSB-resampled time-series,

..) as well as quantities that depend on the binary-orbital parameters (such as binary-orbital time delays and
corresponding resampled time-series). Typically we can re-use the buffer for all spindowns for given sky-position and
binary-orbital parameters, and so in most cases we will have

b= ——, @)

Nijioy

in terms of the number of spindown templates of all orders computed per sky-position and binary-orbital parameters.
The timing collection within the F-statistic code measures and outputs these quantities as

tauF_eff = 79 = 70r¢ 4 prhuffer (3)

tauF_core = 777, (4)

tauF_buffer = 72uffer (5)

bufferMissFrac =b. (6)

A timing model consists of expressing the F-statistic times 75" and T}uﬂer in terms of algorithm parameters and

fundamental timing coefficients T_(O), which allows us to predict F-statistic compute times as a function of algorithm

parameters, assuming we have measured the fundamental timing coefficients for a given code and hardware.
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A. Resampling timing model

1. Notation

There are essentially four different vector lengths over which various operations are performed in the Resampling-
FFT F-statistic code:

Nrpin: The user-requested number of output frequency bins, with spacing df, for which the F-statistic is computed.

NBDET: The (maximum over detectors) number of samples in the input timeseries (in the detector frame.
Nss’alf‘rg: The (maximum over detectors) number of samples of the input timeseries, interpolated into the source-frame.
NERE: The length of the (zero-padded) timeseries on which the FFT is performed.

which are given by the following relations:
The sampling step dtpgr of the input timeseries in the detector frame (DET) is given in terms of the frequency
bandwidth A fi of the input SFTs, namely

1

and the number of detector-frame time-samples are therefore

Teon
NDEV =~ = Toon Afs 8
samp dtpET h f ft 5 ( )

where T, is the (maximum over IFOs) maximum coherent data span, which is determined by the actual SFTs used
and can therefore generally be less than the user-requested (e.g. via segment list) span. The duration Trpr of the
final timeseries to be FFT’ed is determined by the user-requested frequency resolution df, namely

TFFT = Wlth D = |—Tcoh df-| 5 (9)

D
df’
where D € NT ensures that we always have Tppr > Teon. A choice D > 1 is required when the user asked for a
coarse frequency resolution df > 1/T¢op in order to still use all the data (i.e. we always use zero-padding rather than
truncating the input timeseries) and therefore not lose SNR. In the regular case of a frequency resolution df < 1/Tcon
we have D = 1. The decimation factor D amounts to internally using a finer frequency resolution

a1
d, internal = S )
finternal o) —

(10)

and then returning only the user-requested frequency bins with resolution df, namely by returning only every D’th
frequency bin.

With the original detector-frame sampling step dipgr this would correspond to a number of time samples to be
FFT’ed:

T A fig
NFFT(0) _ ZFFT s ) 11
samp dtDET dfinternal ( )

However, in order to ensure the most efficient (and most consistent) FFT performance, we round the number of FFT
bins up to the next power of 2, namely

NFFT(0)

1 :
NslzfnTp = 2082 Noamp 1 (12)
which is achieved by decreasing the sampling step (i.e. increasing the frequency band) of the resampled timeseries in
the source frame (SRC), i.e.

T
dtSRC = % . (13)

samp



The (longest) coherent detector-frame time-series of span 7o interpolated into the source-frame will therefore have

NSSaI:\nCp samples, given as

T.

SRC _ “coh FFT

= =RN, , 14
samp lts C Samp ( )

where we defined the (internal) frequency resolution R < 1 in “natural” units 1/T¢on as

1
Afinternal = R ) 15
[finternal T (15)
namely
TCO
R = h - Tcoh dfintcrnal S 1. (16)
Trpr
From Eq. and Eq. (11]) we find a similar relation to Eq. (14 for ngngw namely
DET _ FFT(0
Nsamp - RNsamp( ) . (17)

B. Required SFT frequency band A fg

When the caller requests a physical SRC-frame frequency band Af to be analyzed, we need to expand this to
A fioaqa when loading the data from SFTs: this wider band contains an extra “frequency drift” sideband A fgrife to
account for Doppler shifts and spindowns (computed from XLALCWSignalCoveringBand () [I]), and an additional 16
extra SFT bins (8 on either sideEI) added to use similar noise bins as Demod near the SE'T edges, i.e.

16
Afload = Af + Afdrift + Ti 3 (]-8)
sft
p Ts an r T52 an
Afdrift ~2.12 x 10_4 (fmax + |f|max 12) + |f|max ; +.. ) ) (19)

where Typan denotes the total duration of data included in this calculation. The handling of this can differ between
semi-coherent search codes, for example for the GCT code, Tipan denotes the total span of data over all semi-coherent
segments, whereas for the Weave code, this could be computed (and data loaded) on a per-segment basis, such that
for Weave Typan = Teon. An additional “transition band” is added internally in order to allow for the roll-off from the
Hamming-windowed sinc-interpolation used in Barycentric resampling, which further increases this to

Afsft = Afload (1 + (20)

2 Dterms + 1) ’
where Dterms is the (user-specified) number of sinc-kernel terms to use (on either side, therefore the window-size is
2Dterms + 1) in the barycentric resampling interpolation.

Note that these expressions (especially A fanis) are only approximations of what is computed in the F-stat
codes, and due to the power-of-two rounding of Eq. , this can in some cases lead to relatively large devia-
tions from the actual measured runtimes. For the most accurate and reliable prediction use the octapps function
predictFstatTimeAndMemory () [2].

The “physical” number of maximal output frequency bins is

Af

df ’
while calls to XLALComputeFstat () can request to compute fewer output frequency bins Ngnin < Npis, provided
they fall into the requested frequency band Af. Note that for semi-coherent codes such as the GCT code, A f will

not be just the user-requested search frequency band A fy, but will typically include additional sideband bins, for
example in the case of the GCT code we’ll have a wider band of

Af=Afo+ % (Tepun df + T2 df) | (22)

where the extra sideband is referred to as extraBinsFstat in the GCT code.

Npbin = (21)

1 called extraBinsMethod in the code



1. Timing model contributions

We can break the time to compute the Resampling F-statistic into the following contributions: the core compute
time T£°' has the following contributions 7£°*® = Trpin + Tspin + TrrT, Which scale differently with search parameters,
namely

1. Apply spindown-correction and frequency shift to source-frame timeseries, which scales with Nssali”ncp, and therefore
Topin = Normg Tapin = R Niamap Tagin - (23)
2. Apply the FFT, which operates on the zero-padded timeseries of length Niﬂ%, therefore
TerT = 5NSF:;nTp Ing(NsFaEnTp) TIE‘%)T ) (24)

which was defined in such a way that we can directly the FFT timing coefficient TS;)T to the benchmark

“speed” definition of FFTW in http://www.fftw.org/speed/l This is defined in terms of “mega-flops” as

mflops = 5 NENE logy (NERE) /(Teer 10°), and so FFTW’s “flops” are simply
1
FFTflops = ——. (25)
)
FFT

The FFT timing coefficient TIS(QT is found to be relatively constant for FFTs of length NSFafnl;, > 218 = 262144,
while it is noticeably smaller but also more variable for shorter FFTs (in agreement with FFTW’s bench-

mark results for single-precision complex FFTs on 64bit hardware shown here: http://www.fftw.org/speed/
CoreDuo-3.0GHz-icc64/)). In practice we therefore use two FFT timing coefficients, TIS%)T(N < 2'8) and
TSI?T(N > 218),

3. various operations on the Nppi, output bins, such as copying the bins, normalizing them, computing F from

F,, Fy and summing them over detectors Fop, = > F, (fb (here considering time per detector), which can be

summarized as a time contribution per output frequency bin Té%)in, internally composed of these parts

Ebin = 7—Copy + 7;10rm + 7;umFabX + 7%‘ab2F = NFbin T}(?%)in . (26)

We therefore obtain the core resampling time per detector per output frequency bin Ngpi, as

core FFT
pore = TE o) Noamp [0 510 (vEPT) 0T (27)
NFbin Fbin NFbin spin samp/ 'FFT

We also need to compute all the buffered quantities: antenna-patterns and source-frame time-delays, barycenter and
interpolate the input detector-frame time-series into the source frame. This contribution contains some terms that
scale with the number of input SFTs, and others that scale with the number of input samples of the SFTs (in case of
gaps), as well as Nfa%l% and NSEEE. However, we postulate the following approximate scaling relation for the dominant
contribution (barycentering) as

buffer SRC _(0) _ FFT _(0)
T]: ~ %ary ~ Nsamp 7—bary - RNsamp 7—bary ’ (28)
and so
buffer FFT
Tbuffer — T]: =R Nsamp 7_(0) (29)
F = - b :
Nrbin Nrbin 7Y

The complete Resampling timing model for the effective average time per template per detector of Eq. can therefore
be expressed as

NEET
o = O o [R (i + b7 ) + 5loga(NERE) 7] - (30)
NFbm


http://www.fftw.org/speed/
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C. Demod Timing Model

The timing model for the Demod implementation of the F-statistic is much simpler. The core Demod F-statistic

time 75" per detector is simply proportional to the number of SF'Ts Ny from the single detector, i.e.

0
7_-(73:01“C = stt TC(OBQ,LD s (31)
where Tc(gr)e Lp is the fundamental timing coefficient expressing core Demod time per SF'T.

In the Demod case, the time T}_’“ﬁer to compute all the buffered quantities (sky-dependent antenna-patterns and
sky- and binary-orbital dependent timings) for one detector is simply proportional to the number of SFTs from that
detector, and we can obtain

buffer __ sft ~(0)
TF - N 7-buffer,LD’ (32)
Fbin

in terms of a fundamental timing coefficient Té?l)ffer Lp» Which denotes the time to compute all the buffered quantities
for a single SFT. We can therefore write the full Demod timing model TJ‘E_—H for the time per template per detector as

e 0 0
T]:ff = Nt 7—13(()12&3,LD + Npb; Tl:()uifer,LD ) (33)

in terms of the number of SFTs N coherently analyzed from one detector.

II. MEMORY MODEL

In a similar way to the timing model we can enumerate the amount of memory required to perform the calculation
of the F-statistic.

A. Resampling memory model

e Objects stored for each detector and each segment of a semi-coherent search:

— the original SF'Ts turned into a detector-frame COMPLEX8 timeseries:

mem [COMPLEX8TimeSeries-DET] = NPET » mem [c8] .

samp
— two timeseries interpolated and barycentered into the source frame, multiplied by a(t) or b(t), respectively:

mem [COMPLEX8TimeSeries-SRC-[albl] = 2 NSRC o mem [c8] .

samp

— the FFTW plan: we'’re assuming it should be roughly NEFT COMPLEX8 numbers(?)

samp
mem [FFT-plan] ~ NEFT x mem [C8] .

samp

e Objects stored only once for all segments, using a shared “workspace”:

— Two COMPLEXS8 vectors for temporary storage of SRC-frame timeseries:

mem [TStmp[1]2]-SRC] = 2NSRC » mem [C8] |

samp
— One REALS8 timeseries holding time-differences between SRC and DET frames (only used for barycentering:

mem [SRCtimes-DET] = NSRC » mem [R8] .

samp
— the input and output vectors for the FFT (currently not using in-place transform):

mem [TS-FFT + FabX-Raw] = 2 NSFT 5 mem [C8] |

samp



— temporary storage of Ffb and Fj, p:
mem [Fab] = 4 Nppin X mem [C8] .

where mem [C8] = mem [R8] = 8 bytes and mem [R4] = 4 bytes.
We can therefore express the different memory blocks as

mem [ResampDataPerDetPerSeg| = [R NSF;;TP(O) + (1+2R) N;&Tp} x 8bytes, (34)
mem [ResampWorkspace] = [(2 + 3R) Niﬂg + 4Npbin| X 8bytes (35)
(36)

and the total (multi-segment, multi-detector) “internal” memory usage of the Resampling F-statistic calculation is
therefore

mem [Resamp] = Nyeg Nget X mem [ResampDataPerDetPerSeg] + mem [ResampWorkspace] . (37)

Note that this accounting does not including the “external” memory required to store the returned F-statistic
results from each call to XLALComputeFstat (), namely

mem [F-stats return| = Nppi, X mem [R4] ,
mem [per—IFO {]:X}] = Naet Nrbin X mem [R4] ,
mem [per—segment per-IFQ {fX’[}] = Nseg Ndet Nrbin X mem [R4] |
depending on whether the user requested just return of F-statistic, or per-detector FX, or also per-segment per-

detector FX+*. This memory is handled by the calling code and has to be accounted for according to its usage of this
memory (ie whether it is stored, or added to a toplist immediately, etc).

B. Demod Memory Model

The Demod code needs essentially no internal workspace other than the memory to hold the input SFTs, i.e.
mem [DemodDataPerSFT| = (A fioad Tss) X 8 bytes, (38)
and so the total (multi-segment, multi-detector) Demod memory “internal” usage is
all

mem [Demod] = NZj; x mem [DemodDataPerSFT] , (39)

where ]\fsafltl is the total number of all SFTs over all segments and detectors, i.e. NS“flt1 = Ndet Nseg Nett, if Nggs is the
average number of SF'Ts per detector per segment.



IIT. TESTING THE TIMING MODEL

A. Timing on a Lenovo Thinkpad T520

CPU: Intel(R) Core(TM) i7-2620M CPU, 2.70GHz,
L2 cache: 4MB
Extensions: sse sse2 ssse3 sse4_1 sse4_2 avx
Kernel: Linux 3.16.0-4-amd64
Compiler: Debian clang version 3.5.0-10 (tags/RELEASE_350/final) (based on LLVM 3.5.0)
The timing measurements use lalapps_ComputeFstatBenchmark:
$ lalapps_ComputeFstatBenchmark --FstatMethod="ResampBest" --numSegments=1 --numTrials=1000
for Resampling, and --FstatMethod="DemodBest" for Demod. The model comparison was done using the octapps
function predictFstatTimeAndMemory ().

1. Demod timing: Thinkpad T520
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2. Resampling timing: Thinkpad T520
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B. Timing on ATLASDEV1

CPU: Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz
L2 cache: 12MB

Extensions: sse sse2 ssse3 sse4_1 sse4_2 avx
Kernel: Linux 3.16.0-4-amd64

Compiler: gcc (Debian 4.9.2-10) 4.9.2

1. Demod timing: ATLASDEV1
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2.  Resampling timing: ATLASDEV1
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C. Average timing coefficients for EQH

As a reasonable “guess” for EQH timings, one could use the average timing coefficients. The following table
summarizes the individual and average timing coefficients, all times are in seconds, and the FFT timing coefficients
are for NEFT < 218 (“]0”) and NEFT > 218 (“hi”) respectively:

samp — samp
Demod ‘ Resampling
0) © @ 0) 0 : 0
Hardware 7'c(ore,LD Tbazy,LD TFb)in | Ts(pin | 7'éF)T [Lo,hi] | Tlgal)ry

T520-new |[4.5x107%|4.8x1077|/5.4x1078(5.0x10~%|[1.6x1071°,3.7x10710]|3.3x 107"
atlasdevl-new ||4.7x1078{4.9x 1077 ||5.4x10~8|5.2x10~8|[1.4x 1010, 3.5x 107 19]{3.3x 107
Average  [|4.6x1078]4.8x1077|[5.4x10~8|5.1x10~8|[1.5x 10710, 3.6 x10~10]3.3x 107

[1] LSC Algorithm Library - LALSuite, FreeSoftware (GPL), URL https://wiki.ligo.org/DASWG/LALSuite.
[2] Octapps - an LSC Octave library, FreeSoftware (GPL), URL https://gitlab.aei.uni-hannover.de/octapps/octapps.
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