

Detection of gravitational waves with a laser interferometer

Koji Arai (新井宏二) – LIGO Laboratory / Caltech

GW mini-school: Beijing Normal Universuty 2016/9/15~18

Self-introduction

Senior Scientist @Caltech

Interferometer Sensing and Control

• **Ph.D** (U of Tokyo,1995-1999)

- TAMA300 double suspension
- Interferometer length sensing
- 3m prototype interferomter

TAMA300 interferometer (NAOJ 1999-2009)

Commissioning and science runs

LIGO (Caltech 2009-)

• Output optics chain, eLIGO/aLIGO commissioning

Detector Topics

Introduction

- Gravitational wave detection with laser interferometers
- Laser interferometry
- Noises in laser interferometer detectors
- Linear control system

Interferometer GW detection

GW detection

GW Sources

GW Detectors

GW: Generation, Propagation, and Detection

1/R

Generation: Change of quadrupole moment Post-newtonian, NR

Propagation: Wave equation of the spacetime metric

Detection: Quadrupolar "displacement" of the masses

Gravitational wave

Quadrupole deformation of the spacetime

GW Detection

Measure strain between free masses

- Free fall = no external force
- Local measurement show no effect of GW

GW Detection

Measure strain between free masses

$$\begin{aligned} \mathbf{Metric}: \ g_{\mu\nu} &= \eta_{\mu\nu} + h_{\mu\nu} \\ \eta_{\mu\nu} &= \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ g_{\mu\nu} &= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_+ & h_\times & 0 \\ 0 & h_\times & -h_+ & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \mathbf{Distance}: \ ds^2 &= g_{\mu\nu} dx^{\mu} dx^{\nu} \\ ds^2 &= -(c \ dt)^2 + (1 + h_+) dx^2 + dy^2 + dz^2 \end{aligned}$$

GW Detection

Measure strain between free masses

Changes in optical distance between the masses

$$\int ds = \int_{M1 \to M2} \sqrt{1 + h_+} dx \simeq \int_{M1 \to M2} (1 + h_+/2) dx$$
$$= (1 + h_+/2)L$$

Quadrupole nature of GWs

Differential motion => Michelson interferometer

Amplitude of GWs

- The effect of GW is very small
- h ~ 10⁻²¹ => distance of 1m changes 10⁻²¹m
- Corresponds to: change by ~1 angstrom (or 100pm) for distance between the sun and the earth

Antenna pattern

- Fixed on the ground, can not be directed
 Door directivity -> More like an antenna
- Poor directivity => More like an antenna
- Antenna pattern (at low frequencies)

Interferometer GW Network

LIGO Observatories Hanford / Livingston 4km

Still shorter than the optimum length => Use optical cavity to increase life time of the photons in the arm

c.f. Virgo (FRA/ITA) 3km, KAGRA (JPN) 3km, GEO (GER/GBR) 600m

Localization capability:

Localization of GW150914 & GW151226

Localization capability:

LIGO-Virgo only

Fairhurst 2011

Red crosses denote regions where the network has blind spots 10

Localization capability:

LIGO-Virgo plus LIGO-India

Fairhurst 2011

From LIGO-G1201135-v4

World Wide GW detector network

cf. Radio Telescope Interferometer ~ VLBI

Technologies of Interferometer GW detectors

Simplified interferometer GW detector

Differential motion => Michelson interferometer

Actual GW detector (still simplified)

- World's biggest UHV vacuum system, straighter than earth's curvature
- Large vacuum chambers to accommodate main optics and suspensions

Test Masses

Requires the state of the art in substrates, polishing, coating

- Half-nm flatness over 300mm diameter
- o.2 ppm absorption at 1064nm
- Coating specs for 1064 and 532 nm
- Mechanical requirements: bulk and coating thermal noise, high resonant frequency

Seismic Isolation system

Quadruple monolithic suspension

- Quadruple pendulum suspensions for the test masses
- Monolithic final stage using fused silica fibers to suspend 40 kg test mass

Components of the interferometer

- 3 elements of a GW detector
 - Mechanics
 - Optics
 - Electronics

Components of the interferometer

3

Optics

Modulation Crystal Photodetector High power stable laser Modulation/Demod. Quantum Optics

RF modulation Analog high speed ctrl Analog front end Real time digital cont User interface Data acquisition Data archive

Computing

Low optical loss mirror Low optical loss coating Mirror presicise polishing Long baseline optics optical recycling

> Low mech. loss substrate Low mech. loss coating High rigidity optics supports

Interferometer control

Actuators Low noise accelerometers Active vibration isolation

Electronics

Mechanics

Size of interferometer GW detectors

Mirror

- GW Detection = Length measurement
- The longer arms, the bigger the effect
 - GW works as strain => dx = h_{GW} x L_{arm}
 - Until cancellation of the signal happens in the arms
 - Optimum arm length

Michelson interferometer

Frequency response of the Michelson to GWs

Fabry-Perot optical resonator

Storing light in an optical cavity

- Input vs circulating: constructive
 Prompt reflection vs leakage: destructive
 => The circulating field grows up
- N times more power
 Equivalent to have N times longer arm

Finesse $\mathcal{F} = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$

Folding Number

 $N = 2\mathcal{F}/\pi$

Fabry-Perot optical resonator

=> Above the roll-off, increasing F does not improve the response

GW telescope?

A continuous signal stream from an interferometer

GWs and noises: in principle, indistinguishable
 => Anything we detect is GW

Reduce noises!

- Obs. distance is inv-proportional to noise level
- x10 better => x10 farther => x1000 more galaxies

Sensitivity and noise

Sensitivity (=noise level) of Advanced LIGO
Design

Sensitivity and noise

Sensitivity (=noise level) of Advanced LIGO
Current sensitivity

Sensitivity and noise

Sensitivity (=noise level) of Advanced LIGO
Noise budget

Summary

- GWs ~ ripples of the spacetime
- GW effect is very small
 ~ the effect is so small (h<10⁻²¹)
- Not yet directly detected Sufficiently sensitive detectors allow us to detect
- Michelson-type interferometers are used
- GW detection is a **precise** length (=displacement) measurement!

Summary

Basically, the larger, the better. LIGO has two largest interferometers in the world, and multiple detector will have very important role in GW astronomy

- IFO consists of many components
 Optics / Mechanics / Electronics
 and their combinations (e.g. Opto-Electronics)
- Noises and signals are, in principle, indistinguishable.
 Noise reduction is essential