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lNtroauction

e Lock acquisition needs (multiple) handoffs between
different signals for same DoF in different states and
regimes

* |n general, we often have multiple signals for single
pohysical quantity

« Common arm length
 DRMI lengths (1F/3F)
e Optic angular position

* \Why not blend these in some way to reduce uncertainty?
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|_ock Acquisition Strategies

e “Guided Lock”: Estimate mirror velocity from
observed fringe, apply an impulse to counteract
that momentum

e "LIGO1" multi-step: update sensing matrix at
iINntermediate unstable states, based on calculations
and simulations of the interferometer response

* Virgo "Variable Finesse™: acquire in decoupled
state, slowly transition to final sensing and
operating point



|_ock Acquisition Strategies

* aLlIGO: Decoupled green light control + CARM

offset reduction. Handofts triggered at certain
CARM offsets.

e |zumi et al “Self Locking”: “Automatic” blending
behavior of ALS and PDH due to cavity build up.



A New Approacnh

Try to minimize a-priori characterization:

* Continuously demodulate each available signal to
determine slopes and monitor noise levels

* Weigh each signal by relative incoherent noise

* Take small offset steps towards desired operating
point, recalculate input matrix coetticients

 “Combined Error Signal by Automatic Regression”



A New Approacnh

e Single 40m arm cavity as testbed, can iterate
quickly, three signals usable for testing (ALS, PDH,
DC Transmission)

* First tested on “realistic” E2E time domain
simulation to see it the approach has any merit

* Jest on actual hardware with same weighting code
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3 signal blending at 40m
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| essons Learneao

Benefits:

* [ess a priori knowledge needed than previous
strategies

* Blending, rather then discrete handoffs, reduces noise

Issues:

e Slow, nO memory

* No frequency dependent blending

 Can become unstable around sensing singularities
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aLIGO Prospects

* This can provide a "push-button” approach to
transitioning between two signals at a given
operating point.

 DRMI signals don't have frequency dependent
mismatch, so this approach could automate the 1F/
3F handoffs even when the signal chains change

e |f the ETM replacement improves the ALS
performance enough, there could be a
straightforward ramp to PDH CARM control
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Prospects

This may be a problem suitable for machine learning
techniques

e Attempted to train a very simplified system via
“‘deep Q learning”

* "Reinforcement learning”: reward choices of input
matrices with lower error signal RMS

e SO far, appears to have trouble with presence of
noise, which leads to a nondeterministic rewarad
function.
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