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A coherent sideband search algorithm for identifying continuous, phase modulated gravitational waves from
LIGO data has been further developed. Phase modulation occurs due to a Doppler shift of the gravitational
wave frequencies, which are produced by rotationally asymmetric neutron stars, when the stars are moving
in binary systems. The studied algorithm searches over the frequency of the star’s rotation, the period about
it’s binary companion, the phase between these, and the phase modulation index, which is dependent on the
star’s period and the separation between it and it’s companion. The method is successful in identifying correct
input parameters from simulated data; there are some limitations in finding modulation frequency, due to
characteristics of the discrete Fourier transform, which are yet to be solved.
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1 Introduction

A search algorithm for continuous gravitational waves (CW), particularly those produced by binary neutron star
systems, has been further developed from Deanna Emery’s work in 2015 and tested [1]. The signal this search
aims to find is phase modulated by a Doppler shift due to the orbit of the binary system while the it is steadily
rotating.

Although there are already many methods which have been designed to identify continuous gravitational
waves, they are still under development and, somewhat surprisingly, no continuous wave (CW) signals have yet
been found. The method behind the search algorithm described is a coherent search over the frequency sidebands
in a phase modulated wave. The aim of this paper is to describe the theory behind this search. The algorithm
is coherent, meaning it should be more robust against noise than other CW methods which use magnitude of
frequency information. This is an important factor that must be considered, along with search accuracy, and
computation time needed, when evaluating the success of the search.

The described search offers a new method of CW gravitational wave detection which would increase the
chance of binary neutron star identification if the method could be proved successful.

1.1 Neutron Stars

Neutron stars (NS) are the mass of 1.3 to 2.5 solar masses but are only a city-sized sphere of around 20 kilometres
across [6]. This incredibly high density means that NS have very large amounts of gravity associated with them.
Generally, NS are spinning, due to their formation and how they exist, therefore if they are spherically asymmetric
gravitational waves will be given of as they rotate. This is due to the quadrupole moment of mass distribution
changing. It is expected that NS will be asymmetric enough that LIGO will be able to observe them.

Astronomers have found fewer than 2,000 pulsars, but near a billion NS are expected to exist in our Milky
Way Galaxy [6]. Further, over 50% of stars are confirmed to be in binary or higher relationships, with the
expected number to be nearer 80% [7]. Therefore, if NS do emit gravitational waves at the expected amplitudes
LIGO should be able to detect them, and a lot of them.

2 The Search Algorithm

The phase modulation of the expected signal causes sidebands in frequency space. this is due to the frequency
drifting from the central frequency when it is Doppler shifted different amounts from the stars circular orbit.
For example, if the orbit was in the plane of the earth, the frequency measured by the earth would be only the
same as the emitted frequency when the star is travelling exactly perpendicular to the earth, when it is moving
towards or away from the earth it would be measured as a larger or smaller frequency. Mathematically, this gives
discrete sidebands at values separated by the modulation frequency about the central carrier frequency . These
sidebands and their phase are utilised in the coherent search technique which has been developed.
The expected phase modulated gravitational wave is of the form

d(t) _ ei(wotJchos(Qt)). (1)

It is dependant on carrier frequency, w, modulation frequency, €2, and modulation index, I'. Additionally, there
are phase factors between w and §2 which have not been included here. This is a standard phase modulated wave
form which is physically equivalent to frequency modulation, however, the I' factor should not be confused with
the modulation index for frequency modulation.

By rearrangement, using the Jacobi-Anger expansion and taking the Fourier transform of both sides of the
equation, the search algorithm’s key equation,

§(w —wo) = Z ~3 J(T) (D(w — nQ) + D(w + nf)) (2)

can be obtained [1]. J,(T") is the value of the nth Bessel function at I' and D(w) is the Fourier transform of the
data, d(t), at w. A full explanation of this derivation can be seen in Appendix A.

The search implemented calculates the right side of equation 2 by using MATLAB’s build in FFT function
to find D(w) and the built in Bessel terms function in MATLAB to find the J,, terms. It is expected that in
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the future J,, terms can be calculated once and stored to save computation time. The calculation is repeated
over varying values of w, €, and I' in a specified range. How fine the search steps over the specified range of the
search parameter is dependant on the parameter and discussed in Section 3.1.

Theoretically, once Equation 2 is completed for all values in the search, a non-zero value should be only be
observed at w = wp. This is represented graphically as a delta function when the magnitude of the calculated
summation is plotted as a surface for each search value of w and 2. This is generally observed, as displayed by
the peak in figure 1. These plots would be recreated for each value of I' and the largest magnitude point taken
to be correct. Figure 1 additionally shows undesirable features which are the artefacts discussed in section 3.

Noise is neglected here but it’s addition has minimal impact to the theory behind the algorithm.

2.1 Expected Values of Search Parameters

The expected values of the search parameters were found by reviewing known neutron stars (NS) in binary
systems, NS-NS pairs were mainly studied [2] [3].

The carrier frequency of the gravitational waves (twice the frequency that the NS spins), w, are expected
to be in the range 0.72 to 500Hz with an estimated average of 70Hz. The LIGO detector only has it’s best
sensitivity in the range 50 to 1500Hz , therefore NS’s emitting gravitational waves with frequencies below 50Hz
will not be detected.

The range of modulation frequency, €2, is 1077 to 10~*Hz with an estimated average of 2.5 x 1075Hz. This
equates to an orbit time of around 11 hours.

The modulation index, I', can be derived by considering how the Doppler shift of the star changes during it’s
orbit with the companion to be
wR

C

T = (3)

R is the distance to the NS to the pair’s centre of mass and c is the speed of light. The range of I' has been
found to be from 100 to the maximum value of 100,000: however the average was estimated to be round 1000.

3 Results

In 2015 Deanna Emery created the basic search that returned the ‘perfect’ delta function-like peak that was
expected theoretically. This can be seen in Figure 1, however the search additionally returned unwanted peaks
that were thought to be due to the discrete nature of the search [1]. These signals have since been found to
be directly due to the summation method of the search: if an FFT bin which is expected to include a signal is
empty, the overall result is non-zero if there are any signals in other bins where the FFT sidebands are expected.
This effect should be greatly reduced in comparison to other non-coherent methods, however a direct comparison
has not yet been made. In certain cases, discussed below, this is non-negligible.

Unwanted lines of around 10-20% of the peak magnitude can be seen at constant values of wy and the nearby
sidebands: w = wy * nf) for small n, as displayed in figure 1. This is because if the search takes w to be one of
these values there will always have some power in the summation from the D(w) term lying on a peak.

There is additionally signals measured at constant gradients

dw 1

aQ  m
where m is an integer. These eventually form crosses [4]. This is due to the §(w — wy — nQ — m’) factor in the
Fourier transformed signal leading to some power being steadly counted in the summation [5]. More practically,
this can be thought of as a shift down in €2, decreasing the spacing between the template of the bins we sum over,
while an equal shift up in w, which shifts the entire coherent template higher. Overall, when this is repeated, one
sideband is always included in the sum and thus a linear undesired signal is seen which appears with a constant
gradient in &.
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3D Plot to identify Correct Values
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Figure 1: The search of a phase modulated signal with w = 20Hz, 2 = 6Hz, I' = 4, sample time = 10s and sample
frequency = 500Hz. Extra undesired signals can be seen as stripes at values of constant w and at constant §& integer
gradients due to the method of power summation used.

The ‘perfect’ peak was surprisingly found to completely disappear when input parameters which were irra-
tional numbers were used. In fact, this occurred whenever the €2 input was not centred on a bin: the precise data
points in the FFT frequency space which are spaced by %Hz. This was not noticed previously as the algorithm
was only tested with rounded values of input parameters. This significantly slowed down progress as it became
apparent the algorithm was not yet ready to be tested along side other CW algorithms or with more realistic
data.

3.1 Testing across Input Parameters

It is important to understand how well the search works with realistic input parameters especially as it has been
identified that non bin-centred parameters cause problems. To investigate this, the search was repeated while
stepping through 10,000 different input parameters over the width of one bin. The magnitude of the result of
the summation (equation 2), returned as a peak at the known parameter location, gives a measure of the success
of the search: the larger the peak the more it will contrast to any noise and artefacts.

A smooth decrease in the magnitude of the summation (the peak) is seen when the carrier frequency’s value
is moved away from the centre of a FFT frequency space bin. The search is being done at multiples in w of %
only. This is displayed in Figure 2, where the maximum (normalised) peak value decreases from 1, when w is
at a multiple of 0.01Hz which is the centre of a FFT frequency bin, to a minimum of 0.63 when w is exactly
between bins. This is a reasonable decrease as gives an average magnitude of the calculated summation of over
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0.8. Further, It is thought that the amount the magnitude decreases by can be reduced if interpolation or if a
finer search over w is used in the future.

] Search of Expected Peak Magnitude over an Entire Bin Width of in Carrier Frequency
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Figure 2: The magnitude of the peak returned by the search for fixed values of Q@ = 0.3Hz and w = 700 (blue) and
700.01Hz (red), normalised to one, for 10,000 different non bin-centred input values of w between 700 and 700.01Hz when
Q = 0.3Hz . It can be seen that when the input w is equal to the search value, thus bin-centred, 100% of the signal is
extracted: at 700 and 700.01Hz. Otherwise some signal is lost and a non-zero value is counted by the neighbouring bin.

When the same search is completed by stepping over €2, the result is drastically different as seen in Figure 3.
The search is being done at €2 multiples of % only. Here, the search only returns the expected normalised peak
very close to the bin-centred value. The result of the search (magnitude of peak) is over 0.5 only 1% of the time
and it can be seen to average below 0.05. This is not viable for a search as so much of the power is generally
lost, only 1% of events would be seen.

Small peaks which can be seen in Figure 3 around 0.33Hz are related to harmonics of the search values,
meaning higher proportions of power is found in the FFT bins at the values of the search and thus the summation
magnitude is larger.
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1Search of Expected Peak Magnitude over an Entire Bin Width of in Modulation Frequency (ORIGINAL METHOD)
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Figure 3: The magnitude of the peak returned by the search for fixed values of w = 700Hz and Q = 0.3 (blue) and 0.31Hz
(red), normalised to one, for 10,000 different non bin-centred input values of 2 between 0.3 and 0.31Hz when w = 700Hz .
It can be seen that when € of the input signal is equal to the search value, thus bin-centred, 100% of the signal is extracted:
at 0.3 and 0.31Hz. Otherwise the majority of the signal is lost.

The search stepping over the €2 input was then repeated by searching for values of {2 with a density increased
by a factor of 1000. Computationally, the FFT frequency bins chosen to be in the summation were then not
exact, be found by rounding multiples of the, now more exact, €2 search values. The magnitude of the largest peak
in a small sample of w and 2 searches around the correct parameters was then plotted in Figure 4. This shows a
large improvement to Figure 3, with an average magnitude of 0.5, however a 1000 fold increase in computational
time required to compute the search. Further investigations should be undertaken to find the optimum spacing.
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Search of Maximum Peak Magnitude over an Entire Bin Width of in Modulation Frequency (ORIGINAL METHOD)
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Figure 4: The magnitude of the highest peak returned by the search for fixed values of wand €2, normalised to one, for
10,000 different non bin-centred input values of €2 between 0.3 and 0.31Hz when w = 700Hz . The difference between this
graph and that in figure 3 is that the search is now done over a factor of 1000 more values of 2, therefore the average
magnitude of the signal is 0.5: half the power on average is lost. Note that the scale is larger than in figure 3 due to a
smaller T' being used to reduce computational time, thus each FFT bin is a factor of 10 wider.

3.2 The Effects of the Discrete Fourier Transform

The problems found when the input parameters were not bin centred are caused because the computational
method used differ from the expected idealised theory. Computationally, the discrete Fourier transform (DFT)
is used, this gives a different result to the one that was expected when the continuous Fourier transform was
used. The continuous Fourier transform of a phase-modulated wave would give the result

oe]

D(w) = > (=i)"Jn(T)d(w — wo — nf),

n=—0o0

as displayed in Equation 7 in Appendix A. This is what the search method is based on. However, the DFT is
actually computed, giving the more complex result

N-1 i(m(”_k) tios(ﬂj))
D(w) = Z e ‘ o !
i=0

as shown in Equation 12 in Appendix B. The expected delta functions making up the sidebands in the ideal
continuous case become Dirichlet Kernels. As this cannot be simplified in the same way that was expected in
Appendix A, the result of the search is not consistent across all input parameters as was shown in Section 3.1
and is thus not as successful as was initially hoped.
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4 Conclusion

A coherent search algorithm has been developed that is successful in identifying correct input parameters from
simulated data. It can identify any carrier frequency, w, and there are some limitations in finding modulation
frequency, €2, due to characteristics of the Discrete Fourier transform. It has been suggested that these can be
considerably improved by increasing the number of searches performed over €2 as shown in Section 3.1, though
this comes at a significantly greater computational cost and would have to be investigated further.

The searches are convolution based, where the convolution is performed between the data in frequency space,
which has only been Fourier transformed once, and its expected modulated form. The search is expected to be
comparable in terms of robustness to noise and computational speed to other CW algorithms when searching
over some parameters, however this is yet to be tested. The results should be scaled so this is possible.

It has been shown that the distance necessary between searches over € is over 1000 times more closely spaced
more than for w. However, the expected range of € is a lot smaller than for w, therefore both searches could
have a similar number of data points eventually. This needs to be carefully considered with respect to the
computational time necessary to complete the entire search. In the future these tests should be repeated with
I', though from previous results it is understood that the density of searches needed is significantly reduced in
comparison to that for w and Q [1][5].
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A Derivation of Search Algorithm

The main concepts behind this algorithm were created in
2015 by Deanna Emery [1], below is the full derivation with
additional notes.

The phase modulated gravitational wave, as is expected to
be produced by a neutron star with a binary companion, is

of the form
d(t) _ ei(wgt+l“cos(ﬂt)). (5)

It is dependant on carrier frequency, w, modulation fre-
quency, €2, and modulation index, I". Additionally, there
are phase factors which have not been included here for
simplicity but could be included in the future with minimal
adjustments to the algorithm.

After factorization of the carrier (e*°!) and modulation
(eTeos(2)) terms and a rearrangement,

d(t) .eftios(Qt) _ eiwot

can be obtained. The Fourier transform of both sides of the
equation is then taken:

FT{d(t).e""Tos(¥)} = FT{ewot}.
Using the Convolution principle,
FT{A.B} = FT{A} % FT{B},
the equation can be re-written as
FT{d(t)} sk FT{e~"Tcos()} — FT{¢iwot},

Then, using the Jacobi-Anger expansion,

o0
eil"cos(Qt) _ Z ’Lan(F) eith7

n=—0o0

the equation becomes

D(w) % FT{ > (=i)"Jn(I') "} = FT{e™'},  (6)

n=—0u

where D(w) is the normalised Fourier transform of the data,
d(t), at w and J,(I") is the value of the nth Bessel function
at T

The Bessel functions play a strong role is determining
the signal’s side-bands in the frequency domain. It can be
seen in Figure 5 that the largest magnitude Bessel term
occurs when n is just less I'; causing the sidebands of the
signal’s FFT to be largest at n ~ I'. This can be physi-
cally interpreted as the neutron star spending the longest
amount of time travelling directly towards or away from the
earth, thus emitting the GW’s with the largest (or small-
est) Doppler shifts which are analogous to frequencies at
the outermost sidebands.

The expected signal is

0

D (=) T (D)8 (w — wy — n). (7)

n=—0uo

D(w) =

However, this is true in the ideal continuous domain where
all values of w exist. Otherwise, it can be seen that D(w)

will always be equal to zero when the values of wy and nf2
are not multiples of a bin (w): which will always be the
case experimentally as they will be irrational values. This
is further discussed in Appendix B.
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Figure 5: Figure displaying how the values of the Bessel
terms depend on the index, n, where the amplitude com-
puted is J,(I') and gamma is held constant at T' = 50.

As the Fourier transform of €™ is §(w — nQ) , the
convolution in Equation 6 picks out only these values of
D(w):

D1 (=) Jn(D)(D(w — nQ)) = 6(w — wo)

n=—0u

This assumes that the Fourier transform computed is con-
tinuous. This is not actually the case as a discrete Fourier
transform has to be used because the input data is sam-
pled to make a series of discrete time domain information.
Additionally, only theoretically can an infinitely long time
domain exist, this is not comparable to the finite lengths
of a real data set. This assumption is expected to be the
cause of extra phase terms which are so far unaccounted
for and cause problems when searching over the modula-
tion frequency. The actual expected output is discussed in
Appendix B.

Assuming the continuous Fourier transform, by rear-
rangement of Equation 5,

Jo(I') D (w)+

ot

(8)
is obtained. This used in the search, where the left hand side
of this equation is repeatedly computed for different values
of w, Q, and I'. When the three parameters are correct,
the value of the computed summation should be 1; as all
the power from each frequency bin (side-band), previously
normalised, is included. If this is not the case the value
should approach 0. Therefore the correct parameters can
be identified.

e "% J, () (D(w—nQ)+D(w+nQ)) = §(w—wp)
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There is an additional phase term in the signal, (—:)",
which rotates the sidebands rapidly through the complex
plane. Accounting for this and the sign due to the Bessel
term is the reason the search is coherent. If any of the
trial parameters, w, 2 or phase, are incorrect, the phases
in the sum (Equation 8) will not add constructively causing
very little signal to be recorded. Therefore, identifying the
correct parameters is clear. This is an advantage to my
other CW methods which use the magnitude of the FFT
with no phase terms, however is additionally cause of the
issues discussed in Appendix B.

B The Discrete Fourier Transform

The expected phase modulated gravitational wave has the

form
d(t) _ ei(wot-‘rl“cos(ﬂt)). (9)

However, the data is sampled, not taken continuously, lead-
ing to only discrete values of time, ¢;. These can be rela-
belled using the time domain index, j, so that

t; = jAt =j—.
i=1J J N
To keep notation consistent, wy will also be relabelled with
K.
21K

wo = 27Tf0 = T

It should be noted that as wy can take any value, x as not
expected to be an integer. Equation 9 can then be written
as

d(t) _ ei(%T"j+Fcos(QTTj))_ (10)

The discrete Fourier transform (DFT) is computed when
taking the Fast Fourier transform (FFT) of data in the
search algorithm. Explicitly it is

N—-1
D(w) = ), d(t)e 2N, (11)
j=0

where k is the index of the current bin the DFT is being
computed in, analogous to k however always an integer:

_ 2k

w=2rf T

If a simple oscillatory wave was the imputed data, for
instance d(t) = e™°!  then the DFT (Equation 11) would
be a Dirichlet kernel as seen in Figures 6a and 7. When wy
is centred on a frequency bin, all bins apart from wgy have a
zero value and an overall delta function is seen. However, if
wp is not centred on a frequency bin, which is expected due
to real life irrational inputs, the Dirichlet kernel is shifted
so that the frequency bins measure non-zero values, this is
undesirable and known as leakage [8]. This effect is illus-
trated using the magnitude of the Dirichlet kernel in Figure
6: where Figure 6a is the ideal bin centred result, and Fig-
ure 6b displays the leakage seen when wy is off centred. The
magnitude of the peak returned by the search is reduced if
leakage occurs, reducing the searches robustness to noise.
As seen in figure 7, there is additionally phase terms in the

(a) When wy is bin-centred, it is sampled as a delta
function. This is because the centre of each bin aligns
with a zero of the Dirichlet kernel.

2 1 1 2 3

(b) When wy is not bin-centred, leakage occurs. This
is because the centre of each bin aligns with a non-
zero value of the Dirichlet kernel. Therefore the FFT
returned is misleading and power is lost in the search.

Figure 6: Sampling the magnitude of the Dirichlet kernel
(in blue) at the centre of each bin (in red) with the wp either
bin-centred (a), or not (b). Images from [5].

kernel which significantly complicate the algorithm which is
so reliant on phase information because it is coherent.

The phase modulated discrete data set, Equation 10,
can be inserted into Equation 11 to find that the DFT of
the expected phase modulated signal would be

N-1
D(w) = Z ei(%jwcos oz j)) o i2mik/N
3=0

This can be simplified to

N—-1 . o
D(w) _ Z ei(%(f-c—lc)eil"cos(TTj))7 (12)
j=0

which is plotted in Figure 8. This is a problem as the j term
cannot be easily separated as in Equation 6 , so a simplified
sum cannot be made.
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DFT of Simple Oscillatory exp(iwt) signal: Carrier Frequency = 50Hz, over a period of 10 s.
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Figure 7: Figure displaying the DFT of a e®o? signal in
the complex plane. It should be noted how rapidly the phase
of the signal changes about the midpoint (wg = 50Hz).
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DFT of Phase Modulated Signal in Complex Plane: Carrier Frequency = 50, Modulation Frequency = 3, Gamma = 10 over a period of 1000 s.
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Figure 8: Figure displaying the expected complex DFT of a phase modulated signal, computed using Equation 12, with
wo = b0Hz, Q2 = 3Hz and T' = 10.



