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Abstract

Thermal noise is one of the multiple areas in the LIGO noise budget that affects its
overall sensitivity. One feature of a cryogenic LIGO is to reduce this noise by working
at low temperatures. Investigations into this method at this stage were performed
using short optical cavities made of silicon held at 123 K inside a cryostat. A 1550 nm
laser beam has been locked into resonance to these cavities, using the PDH technique
for frequency stabilization. At this temperature, the thermal expansion coefficient is at
a zero-crossing point, and thus slight temperature fluctuations around that point stop
translating into length fluctuations. A temperature control system has been designed,
to monitor the mirror temperatures of the optical cavities setup and thus quantify
deviations from resonance.

1 Introduction

LIGO (Laser Interferometer Gravitational-wave Observatory) is a large-scale observatory
that was designed to detect gravitational waves, a prediction going back to Albert Einstein’s
1916 theory of general relativity. As the name indicates, it is based on the principle of
laser interferometry: it is a Michelson interferometer. The effect of gravitational waves from
currently known astrophysical sources (such as binary black hole mergers) is very small,
manifesting itself as a minute strain in the laser beam length, with expected peak values in
the range of 10−21 (Fig. 1.1). With its four-kilometer-long arms (Fig. 1.2), the interferometer
undergoes a peak length change of 4 · 103 · 10−21 = 4 · 10−18 m

Figure 1.1 : The gravitational-wave event GW150914 observed by the LIGO Hanford.
Times are shown relative to September 14, 2015 at 09:50:45 UTC [1]
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Figure 1.2 : A simplified layout of LIGO. [1]

As part of this enhanced interferometer, test masses are used to store laser power (acting
as effective Fabry-Perot cavities). Each of these four test masses is a 40-kg cylinder made
of fused silica. This material is chosen in consistency with the IR laser (low absorption at
the operational λ = 1064nm ) along with specific mirror coatings, amongst other mechanical
and optical constraints (transmittance/reflectance, elastic and structural coefficients) [2].

Setting up these high-precision components, just like with other parts of LIGO, is justified by
the extreme sensitivities involved in the experiment. The latter are quantitatively estimated
by a plot of all noise sources as a function of frequency (Fig. 1.3). The different curves
in the plot all refer to different areas that generate distinct noises. The prominent noise
areas associated with the previously mentioned test masses are quantum shot noise (purple
curve) and mirror coating Brownian noise terms (red curve). As with other noise sources in
general, engineering ways to reduce these terms (i.e. lower the curves in this plot) brings the
strain spectral density (the quantity in 1/

√
Hz)down, and consequently allows for a higher

sensitivity to low strain values in a given bandwidth.
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Figure 1.3: The noise budget in LIGO

The first term is related to quantum fluctuations. On a first level, it can be understood from
the quantization of incoming light into photons, whose arrival on test masses is described
a Poisson time process. This takes the form of quantum shot noise. More fundamentally
though, it is related to quantum vacuum fluctuations entering the readout port of the interfer-
ometer. These are described by the Heisenberg uncertainty principle, between the amplitude
and phase variables. Thus even in vacuum can there be fluctuations in the amplitude and
phase of electromagnetic fields. Current LIGO technology such as quantum squeezing allows
the reduction of one term (such as amplitude), and by virtue of the Heisenberg inequal-
ity ”squeezing” that term and increasing the other. This yields then phase noise, which is
mitigated by an inverse dependency on the input laser power Pin This can be justified by
appealing to the phasor picture of the carrier beam: as a phasor A ∝ A0(t)eiϕ(t), a longer
vector with a given small dϕ gives a small relative fluctuations term dA

A

The second term, Brownian mirror coating noise, manifests as Brownian fluctuations in the
coating material. These can be related with the help of the Fluctuation-Dissipation Theorem
to temperature T and a dissipation contribution R(φ) :

Sx(f) = 2kBTR(φ)

Sx represents the position noise in frequency space and R(φ) is a function of φ (the loss
angle, a dimensionless quantity expressing the lossiness of the material), and of some me-
chanical constants of the material (Y the Young modulus and σ the Poisson ratio) and spatial
characteristics of the incoming beam (w the half-width of a Gaussian beam for example) [4].

Reducing the first term would then appear to be facilitated with higher input laser power
Pin. But increasing the latter indiscriminately causes problems on its own: namely thermal
distortions in the test masses material. These can take the form of thermal lensing and
spatial alterations in the distribution of the index of refraction along the material. A more
judicious approach would be to work on reducing the thermal noise term. Given a choice of
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material (currently fused silica) at a selected temperature, one is left with mechanical and
optical properties of that environment. This indeed is the justification behind the proposed
enhancement to the current Advanced LIGO: Cryogenic LIGO (also called LIGO Voyager).
The trade-off of implementing mirror coatings and material at a cryogenic temperature would
be an appreciable scaling-down of the thermal noise term.

The main candidate for a cryogenic LIGO design is crystalline silicon, at the particular
operational temperature of 123 K. This value is in fact a temperature at which the coefficient
of thermal expansion (CTE) goes to zero. The CTE actually changes sign in the vicinity of
that zero-crossing point (Fig. 1.4); this alludes to the possibility of establishing a control
system in that region. With limited thermo-elastic behavior at this point, increasing Pin can
then yield reduced deformation of the mirror material. Cryogenic silicon also performs better
mechanically compared to fused silica at the usual 300 K, as the latter’s mechanical loss peaks
as one goes to lower and lower temperatures [5] [6] [7]. To achieve these better properties with
cryogenic silicon, it becomes necessary to work with a higher wavelength than the standard
1064 nm. λ = 1550 nm is the main alternative, as silicon is less absorptive at higher
wavelengths; that specific wavelength is also a standard telecommunications wavelength,
covered extensively by technical knowledge bases.

Figure 1.4: Plot of CTE vs. temperature. There are in fact two zero-crossing points to the
CTE: the other one is at 18K. [8]
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2 Experimental setup

In order to better investigate the noise behavior of desired mirror coatings and material (in
this project’s case, crystalline silicon), it proves useful to work on a specific experimental
setup: a frequency-stabilized laser locked to a small Fabry-Perot cavity [9]. Once the system
is tested at room temperature, it can be further tested at 123 K to verify the merits of
cryogenic silicon concerning thermal noise limitation.

The main components that are configured to attain such a setup are the Gaussian 1550
nm laser beam and the optical cavity to which the laser will be locked.

2.1 Gaussian Beams

The standard lasers used for this type of experiments are Gaussian beams, named so as
their intensity profile at a given cross-section follows a Gaussian spread:

I(x, y, z) ∝ e
− 2(x2+y2)

w(z)2

where x and y are taken in the cross-section plane, z designates the beam path length at
which the cross-section is taken, and w(z) is the characteristic beam width at the specified
z.

Propagating a solution to the wave equation ∇2ψ + k2ψ2 = 0 [10], one finds that the beam
has two important variables: the characteristic width w(z) and the radius of curvature of
the wavefront R(z). Both of these vary across the beam path in a particular way:

w(z) = w0

√
1 +

(
λz

πw2
0

)2

and R(z) = z

(
1 +

(
πw2

0

λz

)2
)

The expression w(z) describes a hyperbola that converges, then is minimal at z = 0 with
w(0) := w0, the waist of the laser beam. This helps define a characteristic path length, the
Rayleigh range zR defined as w(zR) =

√
2w0 and hence the range after which the cross-section

doubles in area.

The expression R(z) describes an odd function for the radius of curvature which is infinite
at the waist location (z = 0↔ w = w0); an infinite ROC being equivalent to a flat wavefront.
It decreases gradually until it reaches a minimum at z = zR (strongest wavefront curvature
at that range), and then increases again towards infinity as z →∞

For a Gaussian beam, the main experimental parameters are the waist w0 and the waist
location z0. In fact, these parameters are only characteristics of the fundamental mode of
the laser beam, as there is an entire family of solutions to the propagation equation. These
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are called Hermite-Gaussian modes, or higher order modes, denoted Tmn (Fig. 2.1.1) where
m and n are mode indices. A simple Gaussian profile (the T00 mode) is in general a good
approximation for most laser beams, so the bulk of describing laser operation afterwards
reduces to the fundamental parameters of the simple T00 mode.

Figure 2.1.1: Twelve Hermite-Gaussian low-order modes (m,n ≤ 3)

Obtaining the fundamental mode parameters is a necessary step towards setting up an
optical setup for the cavity-locking. A knife-edge and a photodetector were used to perform
the fundamental mode measurements, through the following protocol:

• Place the platform at a distance z away from the laser collimator;

• Obstruct the laser beam cross-section by progressively moving the knife-edge in. Record
the transmitted voltage V (d) on the photodetector as a function of the knife distance d.

• As the photovoltage is proportional to the incident power:

V (d) ∝ Power ∝
∫ +∞

y=−∞

∫ +∞

x=d

e
− 2(x2+y2)

w(z)2 dxdy ∝
(

1− erf

(√
2

d

w(z)

))
taking the form of a decreasing sigmoid characterized by a slope parameter

√
2

w(z)
. Each set

of (d, V (d)), after being fit to such a sigmoid (of general fit form c0 + c1 erf
(
c2(d − c3)

)
),

then yields the w(z) corresponding to that distance z away from the laser collimator.

• The (z, w(z)) data points are then fit into w(z) = w0

√
1 +

(
λ(z−z0)

πw2
0

)2

The experimental parameters obtained with this method are represented in this plot:
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Fig. 2.1.2: Plot of beam width (w(z) in m) vs. laser beam path (z in m), for the two different
laser collimation orientations (slight astigmatism)

The two collimations yielded close waist values: w0,x = 430µm and w0,y = 470µm, at waist
locations w0,x = −0.46m and w0,y = −0.33m.

2.2 Optical cavities

The obtained fundamental mode parameters are essential to the next step: arranging the
optical system in order to obtain laser resonance in an optical cavity. This step is called
mode-matching, as it involves fitting a fundamental mode (and possibly the other higher-
order modes) to the specifications of an optical cavity.

An optical cavity can be described as two mirrors of pre-specified radii of curvature, spaced
apart by L. This arrangement determines a resonance condition, such that:

ωN = N · c
2L

This can be understood as fitting N (integer) multiples of an incident beam’s wavelength
λ = c

ω
into the round-trip length 2L. In frequency space, the spacing c

2L
is known as the

free spectral range (FSR).

Another constraint that the cavity introduces concerns the wavefront of the incoming laser:
the input mode of the laser has to match the cavity mode. The cavities used in the project
were made of two mirrors with one-meter radii of curvature and L = 4”. With these sym-
metric cavities, the waist (and hence the flat wavefront) is exactly L/2 away from the mirrors
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(in the middle of the cavity). Then:

R(L/2) = 1 m→ R(L/2) = (L/2)

(
1 +

(
πw2

0

λL/2

)2
)

= 1 m

→ (4”/2)

(
1 +

(
πw2

0

(1550 nm) 4”/2

)2)
= 1 m

→ w0 = 329 µm is the target waist for the cavity

Given this target waist, the initial characteristic initial waist, and a total beam path length
estimate, it becomes necessary to setup a series of lenses to bring the beam width to the
right side (without lenses, the beam would just diverge as per w(z)). This happens as a lens
of focal length f transforms an incoming beam with waist w located s behind the lens, into
a beam with waist w′ located t in front of the lens (Fig. 2.2.1) according to [11]:

w′ =
fw√

(f − s)2 + π2w4

λ2

1

t+ π2(w′)4

λ2(t−f)

=
1

f
− 1

s

Fig. 2.2.1: Example of a lens computation on JAMMT applet, using w = 200 µm and
s = 0.282 m. The result is t = 0.447 m and w′ = 346 µm
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The experimental setup for the project only required three lenses; a possible solution (pos-
sible lens positions and focal lengths) shown below (Fig. 2.2.2):

Fig. 2.2.2: Approximate three-lens solution given an initial 470 µm and target 330 µm
waists.

After setting up and aligning the lenses to the target cavity, cavity resonances become
accessible to observe (after setting up a CCD camera in transmission behind the cavity). To
scan through frequency space to perceive the multiple Tmn, the laser temperature is dithered
through by tuning the current driver. As there is no frequency stabilization at this point of
the setup, the T00 can be seen but flickers as it is not yet stabilized.

2.3 Pound-Drever-Hall (PDH) frequency stabilization

In order to prepare stable cavities for temperature-related measurements, it is necessary to
first implement a laser frequency stabilization technique. Such a technique would require
receiving a variable error signal, in signed proportion to the deviation from resonance. The
Pound-Drever-Hall technique satisfies these conditions, and is thus commonly used for lock-
ing lasers to cavities (i.e. stabilizing their frequencies via resonance). The basic method
behind the PDH technique relies on generating sidebands by phase modulation in the beam
going towards the cavity using a modulation frequency Ω. As these are frequency sidebands
ω±Ω (away from resonance at the laser frequency ), they get reflected along with part of the
carrier beam. This reflected signal is where the error signal mentioned above comes from.

Starting with an incident beam eiωt, it becomes phase-modulated with depth β and modu-
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lation frequency Ω:

ei(ωt+β sin Ωt) = eiωt
+∞∑

n=−∞

Jn(β)einΩ (using Jacobi-Anger expansion)

ei(ωt+β sin Ωt) = eiωt

(
J0(β) +

+∞∑
n=0

J2n+1(β)(ei(2n+1)Ω − e−i(2n+1)Ω) +
+∞∑
n=1

J2n(β)(ei(2n)Ω + e−i(2n)Ω)

)

using the fact that J−n(β) = (−1)nJn(β) for nth-order Bessel functions of the first kind Jn.
For a frequency component mΩ, the associated field amplitude is proportional to Jm(β) and
thus the power becomes proportional to Jm(β)2.

For usual modulation depths satisfying β < 1, orders higher than ±1 can be discarded (the
power in high-order sidebands is practically small), and thus:

ei(ωt+β sin Ωt) ≈ eiωt
(
J0(β) + J1(β)eiΩt − J1(β)e−iΩt

)
= J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t

The spectrum then mainly consists of a peak carrier frequency peak with power ∝ J0(β)2

at ω, and two sidebands with power ∝ J1(β)2 at ω ± Ω. Given a cavity with a complex

reflection coefficient F (ω) =
Eref (ω)

Einc(ω)
, this takes the slightly different form:

Eref = E0J0(β)eiωtF (ω) + E0J1(β)ei(ω+Ω)tF (ω + Ω)− E0J1(β)ei(ω−Ω)tF (ω − Ω)

given Einc = E0e
iωt

Powers, not complex field amplitudes, are observed during the experiment in reflection and
in transmission. Thus the PDH error signal is based on the expression for Pref = E∗refEref ,
which in simplified terms yields:

Pref = (constant power terms in ω and Ω) + ε(t)

In the usual case with a relatively low modulation frequency, the Pref expression takes the
form:

Pref ≈ (constant term) + P0
d|F |2

dω
Ωβ cos Ωt+ (terms in 2Ω)

To obtain the signal in Ωt that samples the phase modulation, it is necessary to use a mixer
of the output with a local oscillator at Ω, and using a low-pass filter to yield a near-DC
signal.

page 10



LIGO-T1600285-v1

The error signal is then just:

ε(t) = P0
d|F |2

dω
Ωβ ≈ 2

√
PcPs

d|F |2

dω
Ω

as
√
PcPs =

√
J0(β)2P0 · J1(β)2P0 ≈ P0 · (β/2) using a Taylor approximation of J0(β)J1(β)

for low β

Depending on the modulation frequency Ω, after demodulation and low-pass filtering, ε(t)
can take two different forms, both of them sharing the property of anti-symmetry around
resonance values in frequency space:

Fig. 2.3.1: Plots of the error signal (normalized to be dimensionless) for both low ( Ω
c/2L

=

10−3) and high ( Ω
c/2L

= 4 · 10−2) modulation frequencies. Pc and Ps designate carrier and

sideband powers respectively [12]

The important feature to these error signals is the (anti-)symmetry around resonance points;
this allows to setup a suitable feedback control system and thus stabilize the frequency. The
experimentally obtained signal had the characteristic symmetry (Fig. 2.3.2):
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Fig. 2.3.2: Screenshot of the error signal obtained experimentally.

The setup used to establish this feedback control system attached to the laser path and
cavity is illustrated below:

Fig. 2.3.3: Photo of the experimental setup
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Fig. 2.3.4: Sketch of the components in the experimental setup from Fig. 2.3.3.

Description of some of the components in Fig. 2.3.4:

• Half wave-plates and quarter wave-plates: these plates serve to ensure correct
incident polarization settings for components such as Faraday isolator (which is used to
avoid back-reflection hitting the laser source) and polarizing beam-splitter (to pick off a
reflected beam towards a photodetector in the perpendicular direction to the beam path)

• Electro-optic modulator: crucial element in the PDH technique. It introduces phase
modulation in the incident beam, at a tunable Ω frequency.

• Photodetectors: they intercept incident laser beams as photovoltages.

• CCD camera: it intercepts the transmitted beam from behind the cavity

• Servo (with proportional-integral controller): Given the output error signal, it feeds
back into the laser driver. (not in the figure)

2.4 Temperature modulation:

As mentioned in the beginning of Section 2, once the laser is locked to the cavity, it will be
useful to test its response to thermal disturbances at room temperature and then desirably
at 123 K, around the zero-crossing point for the CTE.

The method that will be used to cause these disturbances is called temperature mod-
ulation. It involves injecting a time-varying (preferably sinusoidal, at some frequency fm)
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amount of heat into the cavity, and observing the response of the cavity. An extra thermal
”push” introduces thermo-elastic disturbances on its own, due to slight length imbalances
around the resonance condition. This effect is marked at lower temperatures (ultimately
near the root of the CTE), where the extra thermal injection sharply contrasts with the
near-absence of intrinsic thermo-elastic jittering.

To cause such a temperature modulation, a secondary laser was introduced to the system.
This laser is a modified laser pointer, with a time-varying input voltage (in contrast to the
usual DC voltage from a battery). At this rudimentary level, the input voltage was chosen
within the limits of the laser (given the nominal 3V battery marking), and thus had the
form: V (t) = V0 + V1 sin(2πfmt) with a V0 = 2.2 V, and V1 = 0.7 V. Having this functional
form with a bias voltage translates into a transmitted bias in the heat input: the net amount
of heat deposited onto the cavity mirror is positive, and is expected to fluctuate around that
bias at fm. The expected result from this heating technique should be a spectral response at
that specific fm incorporated into the behavior of the cavity while responding to the PDH
feedback loop and the extra heating.

Fig. 2.4.1: Photo of the secondary laser, connected to a function generator

To detect the response of this temperature modulation (first at room temperature), two
detection methods were devised:

• Detecting the modulation frequency as a peak in the feedback signal to the laser: this
was inconclusive as the laser noise background is too high for a feeble peak from the heating
laser to be resolved.

• A more indirect method: A beat note from the main laser and an additional laser from
a reference cavity in the laboratory was obtained. Once that beat note was obtained, its
frequency noise spectrum was extracted from the feedback signal to a function generator
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that was phase-locked to the beat signal. The spectral readout of the thermal variations of
this beat note were linked to the used modulation frequency fm, as the spectral peak is high
enough to pierce through the ambient noise ceiling (Fig. 2.4.2). This has been observed for
varying values of fm.

Fig. 2.4.2: Spectral readout of the temperature modulation peak using fm = 10 Hz.

3 Conclusions and future steps

The first part of the project involved setting up a cavity and locking a laser to it using the
Pound-Drever-Hall technique. This was obtained successfully, with T00 modes persisting on
a time scale of hours, in contrast to the few seconds in the absence of frequency stabilization.
The second part of the project involved the original investigation of the tentative temperature
modulation system with the help of an auxiliary laser beam, driven sinusoidally. This has
been tested at room temperature, and the response of the cavity observed for fm values in
the range of 1− 10 Hz.

Given that, an objective in the near future would be to try this modulation scheme at the
target temperature region, near the CTE zero-crossing. At that point, work will have to be
done in determining a temperature control system based on the zero-crossing property of
the α(T ) curve, in order not to stray far away in T space. But before that, a recommended
fix to the system would be obtaining a better-performing auxiliary laser; the current one has
severe power limitations, and came with an ad hoc wavelength setting (as do all optical range
commercial laser pointers). Obtaining a high-intensity auxiliary laser would also provide a
stronger spectral response in the cavity.
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