Measuring Kerrness in Binary Black Hole Simulation Ringdowns

Nicholas Meyer

Mentors: Maria Okounkova, Mark Scheel

Acknowledgments

- Mentors: Maria Okounkova, Mark Scheel
- Daniel Hemberger and Leo Stein
- Access to the zwicky computer, located at the California Institute of Technology, was provided by the Center for Advanced Computing Research (CACR).
- The GW150914 simulation volume data was provided by California State University, Fullerton. Access to the orca computer, located at California State University, Fullerton, was provided.

Acknowledgments

- Caltech Student Faculty Programs (SFP)
- LIGO SURF program
- LIGO Laboratory
- National Science Foundation (NSF)

Kerr

Kerr is the spacetime of a single black hole which is

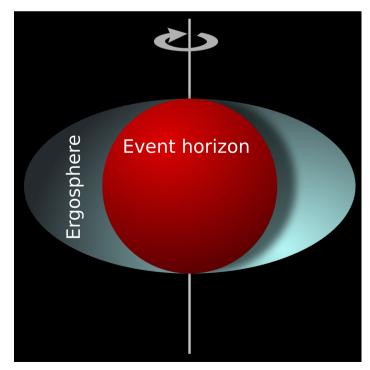
Axially symmetric

Uncharged

Asymptotically flat

Spinning

https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Ergosphere.svg/2000px-Ergosphere.svg.png



"Kerrness"

- Local scalar representing closeness to Kerr
 - **Local quantity**: At a given (4D) point in spacetime, we may compute the similarity to Kerr

- These quantities are invariant of choice of coordinates
 - Important for implementing in a numerical code

Why measure Kerrness?

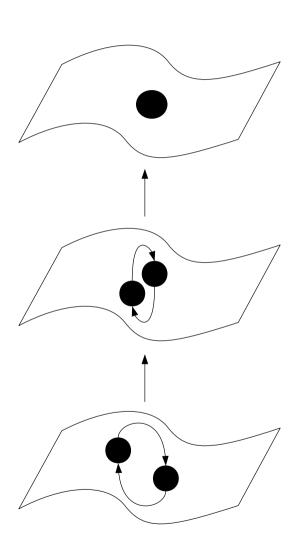
- Analyses of binary black hole mergers assume a Kerr remnant (or a perturbation) [4, 5]
- LIGO data analyses may assume that the resulting spacetime is Kerr (or a perturbation) [4, 5]
- Measures of Kerrness applied to binary black hole merger simulations may help to quantify when it is valid to make these assumptions

SpEC

 The simulations were run using the Spectral Einstein Code (SpEC)

Spectral methods: compute coefficients of basis functions

- Codebase in C++ (with Perl for parsing input files)
- Simulations consist of slices (three dimensional spacelike hypersurfaces) evolved in time
- **3** + **1** formalism



Speciality Index [1]

$$S = \frac{27J^2}{I^3}, \quad I = \tilde{C}_{abcd}\tilde{C}^{abcd}, \quad J = \tilde{C}_{abcd}\tilde{C}^{cd}{}_{mn}\tilde{C}^{mnab} \tag{1}$$

$$\tilde{C}_{abcd} = C_{abcd} + (i/2)\epsilon_{abmn}C^{mn}{}_{cd} \tag{2}$$

- Computed from contractions of the self-dual Weyl Tensor
- Complex quantity
- $Re[S] \rightarrow 1$, $Im[S] \rightarrow 0$
- Necessary but not sufficient condition

This quantity is 1 for any algebraically special spacetime
Kerr ⊂ Algebraically special [1]

García-Parrado 2015 [2]

$$\mathcal{L} \equiv F_1 + F_2 + F_3 + F_4 + F_5 + F_6 \tag{1}$$

- F₁ F₆ are expressions involving contractions and covariant derivatives
- **Directly** measures similarity to Kerr
- Real, non-negative quantity which vanishes for Kerr spacetime
 - Each term independently vanishes
 - It is possible to consider each term independently of the others during debugging and analysis

García-Parrado 2015

$$\mathcal{L} \equiv \frac{(\mathfrak{r}(A) + \mathfrak{r}(B))^2 + (\mathfrak{j}(A)_i + \mathfrak{j}(B)_i)(\mathfrak{j}(A)^i + \mathfrak{j}(B)^i) + (\mathfrak{t}(A)_{ij} + \mathfrak{t}(B)_{ij})(\mathfrak{t}(A)^{ij} + \mathfrak{t}(B)^{ij})}{\sigma^4} + \frac{\mathfrak{a}_{ij}\mathfrak{a}^{ij} + \mathfrak{b}_{ij}\mathfrak{b}^{ij}}{\sigma^4} + \frac{((1 - 3\lambda^2)\beta + \lambda(3 - \lambda^2)\alpha)^2}{\sigma^2} + \frac{(\mathfrak{B}_{ij}\mathfrak{B}^{ij})^3}{\sigma^4} + \frac{(\mathfrak{C}_{ij}\mathfrak{C}^{ij})^3}{\sigma^7} + \frac{\Omega}{\sigma^2},$$
(1)

$$\mathbf{r}(A) \equiv A_{\nu\mu}n^{\nu}n^{\mu} = \mathcal{E}(Q)_{\mu\nu}D^{\mu}AD^{\nu}A,$$

$$\mathbf{j}(A)_{\mu} \equiv A_{\nu\rho}n^{\nu}h^{\rho}_{\ \mu} = -\varepsilon_{\mu\kappa\pi}\mathcal{B}(Q)_{\lambda}{}^{\pi}D^{\lambda}AD^{\kappa}A - \mathcal{E}(Q)_{\mu\lambda}\mathcal{A}(A)D^{\lambda}A,$$

$$\mathbf{f}(A)_{\mu\nu} \equiv A_{\kappa\pi}h^{\kappa}_{\ \mu}h^{\pi}_{\ \nu} =$$

$$D^{\kappa}A(-2D_{(\nu}A\mathcal{E}(Q)_{\mu)\kappa} + h_{\mu\nu}\mathcal{E}(Q)_{\kappa\pi}D^{\pi}A + 2\mathcal{A}(A)\mathcal{B}(Q)_{(\mu}{}^{\pi}\varepsilon_{\nu)\kappa\pi}) +$$

$$+\mathcal{E}(Q)_{\mu\nu}(D_{\kappa}AD^{\kappa}A + (\mathcal{A}(A))^{2}).$$

$$\mathbf{g}_{\mu\nu} \equiv -B_{\mu}{}^{\lambda}B_{\nu\lambda} + E_{\mu}{}^{\lambda}E_{\nu\lambda} - \frac{1}{3}Ah_{\mu\nu} - E_{\mu\nu}\alpha - B_{\mu\nu}\beta = 0,$$

$$A \equiv \frac{1}{8}C^{\mu\nu\lambda\rho}C_{\mu\nu\lambda\rho},$$

$$B \equiv \frac{1}{8}C^{\mu\nu\lambda\rho}C_{\mu\nu\lambda\rho},$$

$$D \equiv \frac{1}{16}C_{\mu\nu\lambda\rho}C_{\pi\mu\nu\lambda\rho},$$

$$D \equiv \frac{1}{16}C_{\mu\nu\lambda\rho}C_{\pi\mu\nu\lambda\rho}C_{\pi\mu\nu\lambda\rho},$$

$$\begin{split} E &\equiv \frac{1}{16} C \mu \nu \lambda \rho C \sigma \pi \mu \nu C * \lambda \rho \sigma \pi. \\ T &\equiv \frac{\beta}{\alpha} = \frac{BD - AE}{AD + BE} \;, \\ \lambda &\equiv \frac{K(KT + 1)}{K^2 - 3KT - 2} \;, \\ K &= \frac{2R^{\parallel}\Theta^{\parallel} - 2R^{\perp}{}^{\mu}\Theta^{\perp}_{\mu}}{R^{\parallel2} - \Theta^{\parallel2} - R^{\perp}_{\mu}R^{\perp\mu} + \Theta^{\perp}_{\mu}\Theta^{\perp\mu}} \;, \\ \sigma &= \frac{1}{4} (-2 + K^2 - 3KT)^2 \times \\ \left(\frac{R^{\parallel2} - \Theta^{\parallel2} - R^{\perp}_{\mu}R^{\perp\mu} + \Theta^{\perp}_{\mu}\Theta^{\perp\mu}}{K^2 (1 + KT)^2 - (K^2 - 3KT - 2)^2} - \frac{8\alpha}{(K^2 - 3KT - 2)^2 - 3K^2 (1 + KT)^2} \right) \\ \alpha &= -\frac{AD + BE}{A^2 + B^2} \;, \\ \beta &= \frac{AE - BD}{A^2 + B^2} \;. \end{split}$$

García-Parrado 2015 [2]

$$\mathcal{L} \equiv F_1 + F_2 + F_3 + F_4 + F_5 + F_6 \tag{1}$$

Can be computed on an individual slice

The computations involving the pulled-back tensors do not involve time derivatives

Can be computed using **3D quantities** implemented in SpEC

García-Parrado 2015 (continued)

$$\mathcal{L} \equiv \frac{F_1 + F_2 + F_3}{F_4 + F_5} + F_6 \tag{1}$$

 The first three terms have been implemented and evaluated on single and binary black hole simulations

Fourth and fifth terms: Equivalent terms from the 2016 paper [3] have been implemented

Simulations

- New code was written for the García-Parrado 2015 quantity
- Single black hole simulations
 - Kerr black hole with mass 1, spin vector (0., 0., 0.4)
 - Sanity check that the quantities behave
 - Allows checking the **convergence** of quantities with respect to resolution
- Binary black hole ringdown
 - The quantities were computed on the ringdown phase of a simulation of the GW150914 event at a single resolution (obtained from California State University, Fullerton)

Evaluation of Kerrness Quantities

Analysis of Convergence

 "Error" measured by L2 norm of deviation from theoretical values (Re[S] = 1, Im[S] = 0)

$$\sqrt{\sum_{i}^{N} (x_i - x)^2/N}$$

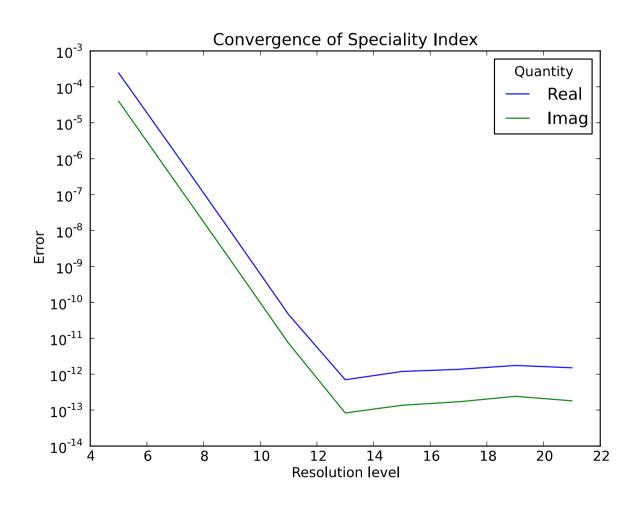
"Resolution" refers to simulation angular resolution

Spherical harmonics: Y_{lm}

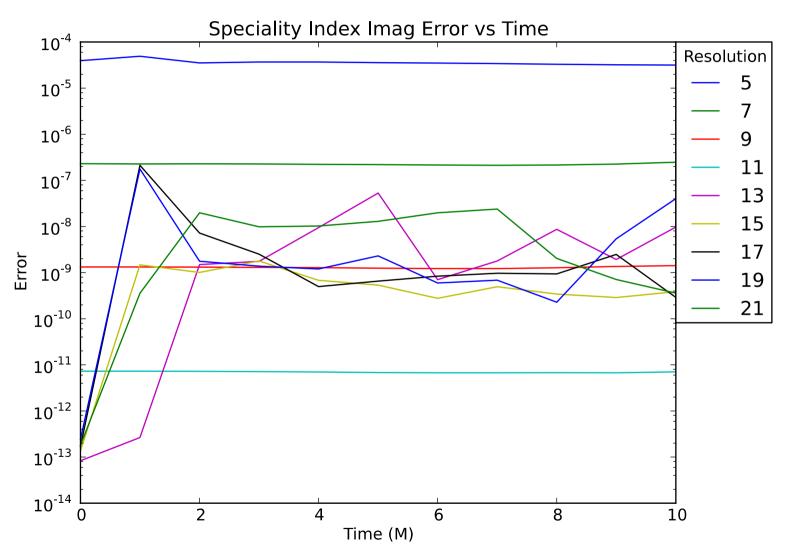
Analysis of Convergence

- The error was computed for points on a spherical shell located 12M from the origin.
- Other spheres (other than the innermost) exhibit similar convergence patterns.

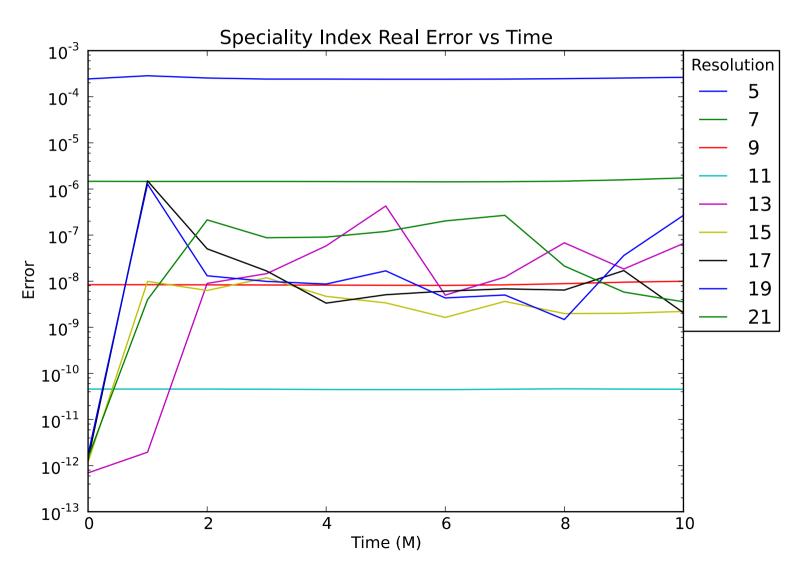
Speciality Index: Single Black Hole



Speciality Index: Single Black Hole



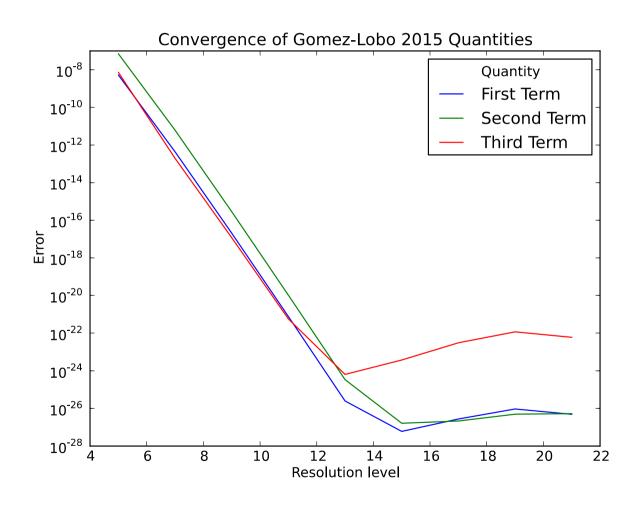
Speciality Index: Single Black Hole



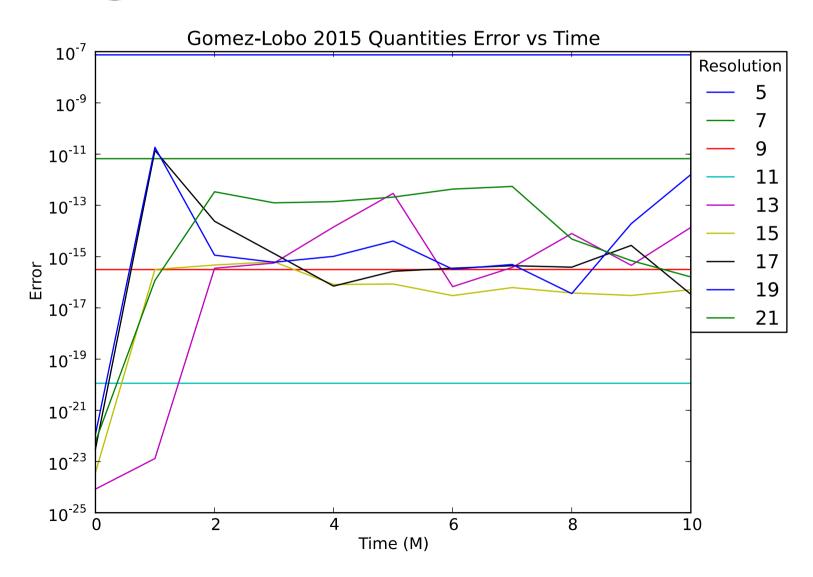
Speciality Index: Binary Black Hole

- Qualitatively, Re[S] → 1 and Im[S] → 0 as the ringdown progresses
- Computations of the quantities at time resolutions to generate plots are ongoing

García-Parrado 2015: Single Black Hole



García-Parrado 2015: Single Black Hole



García-Parrado 2015: Binary Black Hole

- Qualitatively, $F_{1-3}[S] \rightarrow 0$ as the ringdown progresses
- Computations of the quantities at time resolutions to generate plots are ongoing

Further Work

Short term:

Finish implementation of remaining terms and compare with corresponding terms from the 2016 paper [3]

Long term:

Apply Kerrness measures to quantify similarity to Kerr during ringdowns

References

- [1] J. Baker and M. Campanelli. Making use of geometrical invariants in black hole collisions. *Physical Review D*, 62(12):127501, December 2000.
- [2] A. García-Parrado Gómez-Lobo. Local non-negative initial data scalar characterization of the Kerr solution. *Physical Review D*, 92(12):124053, December 2015.
- [3] A. García-Parrado Gómez-Lobo. Vacuum type d initial data. ArXiv e-prints, February 2016.
- [4] B. P. Abbott et al. Properties of the binary black hole merger GW150914. 2016.
- [5] B. P. Abbott et al. Tests of general relativity with GW150914. 2016.