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ABSTRACT

In 2015, the first direct detection of gravitational waves (GWs) was realized with the advanced Laser
Interferometer Gravitational Wave Observatory (aLIGO). With the detection emerged the ability to
test General Relativity (GR) in large velocity, highly dynamical and strong-field gravity regimes. If
GWs were to reveal deviations from GR, the perturbations would be extremely small; characterizing
and reducing uncertainties in aLIGO data would allow as much physical information to be recovered
in the GW signal as possible. The intent of this project is twofold: to describe the calibration methods
and uncertainties used for aLIGO and to also estimate the impact of calibration errors on precision
tests of GR. We first describe the current calibration methods for aLIGO and the most important
calibration error sources. Then we test the impact of three di↵erent calibration models in recovering
GW parameters through Bayesian parameter estimation with and without intentional calibration
errors. Finally we generate GW signals with a non-GR perturbation in the merger-ringdown regime
to determine the precision with which such perturbations can be detected using said calibration error
models.

I. SECOND PROGRESS REPORT QUESTIONS

In the past month I have developed a toy model of my
data analysis in an ipython notebook (hosted on https:
//github.com/mmcintosh27/LIGO) with the goal of il-
lustrating in proof-of-concept that a decrease in parame-
ter uncertainty occurs with an increase in the number of
GW events stacked together. First, I accessed the wave
template from GW151226 and generated a family of sim-
ilar templates modified only in the amplitude and phase
of their ringdown (see Figure 1). I then added colored
noise to the modified templates to create faux data. I
used a matched filtering function to recover SNRs of each
generated template with the faux data. Next, I plotted
the returned SNR versus the generated templates’ ampli-
tude and phase to visualize their posterior distributions
(see Figure 2). Unfortunately, the distributions do not
appear to be Gaussian, and the subsequent least-squares
Gaussian fitting function I wrote returns unacceptably
large chi-squared values. Without a fit, I am unable to
measure the width of the posterior distributions and sub-
sequently cannot compare the width of a single observa-
tional posterior with stacked observational posteriors.
Potential solutions include general debugging of the

code, and modifications on the colored noise generating
function or matched filtering function. The generation
of the templates may also be responsible for the non-
Gaussian results.
In addition to the toy problem, I have also begun to

implement my data analysis using LALInference. First,
I selected noisy LIGO strain data without injections or

other signals and then added ⇠ 50 BBH signal injec-
tions (with masses ranging from 5�45M� and spins from
0� .99) using LALInference pipe (see Figure 3). These
were created with 4, 8, and 16 second resolutions (see
Figure 4) and using a constant calibration error model
with no intentional calibration errors added. Next, I plan
to repeat this step for a spline calibration error model.
Then I will intentionally add calibration errors and rerun
the analysis to observe the e↵ect the selected calibration
models have on data with intentional calibration errors.
Last month, my goals included finishing my literature

review, selecting my calibration focus, understanding the
calibration uncertainty to a greater extent, learning how
to modify current calibration models, developing meth-
ods to propagate calibration uncertainty for astrophysi-
cal and precision-GR parameters, quantitatively evaluat-
ing systematic and statistical errors on these parameters,
and estimating the contributions from the calibration
uncertainties in impacting these errors. I have accom-
plished my literature review, calibration focus, increasing
my understanding of calibration uncertainty, developing
a method to propagate the uncertainty, and have begun
to evaluate the systematic and statistical errors on the
parameters. For the last month of this project, my goals
include estimating the contributions from the calibration
uncertainties in impacting these errors under the afore-
mentioned calibration models.
The rest of this document is a continuation on my final

paper.

II. INTRODUCTION

https://github.com/mmcintosh27/LIGO
https://github.com/mmcintosh27/LIGO
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Fig. 1.— I generated 100 templates with di↵erent constant-
frequency amplitude scales and phase shifts.

Fig. 2.— The SNR returned by the matched filtering function
versus the selected template’s amplitude. The true amplitude, 3.35,
is marked by the red dashed line, and the maximum SNR is marked
by a red circle. Note the non-Gaussianity of the plot.

Fig. 3.— The masses (top) and spins (bottom) used to
generate the injection signals for the first simulation with
LALInference pipe.

Fig. 4.— The e↵ective size (defined in section VII) for �eff .
Note that the 8 second basis has the smallest e↵ective size. Fu-
ture simulations for this project may be limited to this more well
behaved basis.

In 1915, Einstein published his General Theory of Rel-
ativity (GR). This theory and his following papers pre-
dicted the existence of gravitational waves (GWs), or
oscillations in the gravitational field caused by the accel-
eration of massive bodies. In 1993, a Nobel Prize went
to Hulse and Taylor [8] who discovered a pulsar system
losing energy at the same rate as predicted by GW emis-
sion and thus implying the existence of GWs. Then in
2015, a direct detection of a GW occured. GW150914,
identified as a result of a binary black hole merger, was
observed with the Advanced Laser Interferometer Grav-
itational Wave Observatory (aLIGO) detector network
[2]. With this detection, the field of direct GW observa-
tions emerged.
GWs allow us to observe strong-field dynamics of

space-time and astrophysical phenomena inaccessible by
electromagnetic radiation. With the direct detection of
GWs, experiments to test GR in large velocity, highly
dynamical, and strong-field gravity regimes can be con-
ducted. Because GWs cause extremely small pertur-
bations in spacetime (on the order of 10�20m [2]) the
aLIGO sensors and signal analyses need to be precise.
Characterizing and reducing uncertainties in aLIGO data
allows us to reclaim as much physical information from
the GW signal as possible.
The goals of this work are to (1) describe both the

calibration methods used for aLIGO and their uncer-
tainties and (2) estimate the e↵ects of this calibration
uncertainty on precision tests of GR. The layout of this
paper is as follows. First, we specify our focus on cal-
ibration errors (CEs) in Section III. Next, we summa-
rize how aLIGO detects GW and how these CEs impact
the instrument in IV. In V, we describe the di↵erential
arm length (DARM) closed feedback loop transfer func-
tion, which contains the GW wave signals and CEs for
aLIGO. Then in VI, we outline astrophysical and cali-
bration parameter estimation using the parameter esti-
mation pipeline LALInference [18]. We relate previous
research on the impact of CEs on this parameter esti-
mation method in VII. In VIII and IX, we describe the
software signal injections used to mimic GR and non-GR
conforming GW signals and their use in TIGER [5], a data
analysis pipeline for testing the strong-field dynamics of
GR with GW signals. Finally, we recover the parame-
ters used to generate the software signal injections with
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no model, a constant CE model, a spline interpolation
CE model, and a frequency dependent CE model. We
present the e↵ectiveness of the CE models in recovering
a particular GW ringdown parameter and discuss the im-
pact the models would have on recovering astrophysical
parameters and other precision GR test parameters in
Sections X and XI.

III. CALIBRATION ERRORS

Two sources of uncertainty in any instrument are
statistical and systematic uncertainty. Statistical
uncertainty— a zero-mean Gaussian distribution mea-
surement variation— is unavoidable, but it can be re-
duced by taking additional observations. Systematic un-
certainty is relatively avoidable and cannot be reduced by
additional measurements (unless GR is used to calibrate
the data). Conversely, systematic uncertainty stems from
an incorrect characterization of a detector and causes
calibration errors. For aLIGO, careful calibration has to
be maintained to accurately associate the frequency re-
sponse of the detector with the motion of aLIGO’s optics
and consequently reduce systematic error. These system-
atic/calibration errors are the focus of this project.
For aLIGO, calibration errors (CEs) are errors that

pertain to the conversion of instrumental readout to GW
strain data and are contained in a di↵erential arm length
(DARM) control loop. CEs can a↵ect detection rates
and parameter estimations; here we are concerned with
parameter estimation. Current CEs for aLIGO are es-
timated as an overall constant in wave amplitude and
phase or as varying such that the errors can be fit with
splines, but a new, functional frequency dependent es-
timation method also is discussed here. Previous works
that have studied calibration error analysis for aLIGO
include [15, 19].
This work uses a Bayesian approach to quantify po-

tential CE e↵ects on signal injections which mimic both
GR and non-GR conforming GWs. It is possible that the
CEs will blur our ability to distinguish between the two;
we also investigate if our frequency dependent method
of characterizing CEs will allow us to distinguish the
GR and non-GR conforming signal injections. Though
the few individual GW signals detected so far have had
no statistically significant disagreement with GR and
their statistical error exceeds their systematic error, the
aLIGO detectors are not yet at their design sensitivities,
louder GW sources may yet be detected, and the poten-
tial to combine or “stack” GW observations as in [16] to
increase sensitivity all encourage this work [4].

IV. HOW LIGO DETECTS GWS

aLIGO is a complex and cutting edge instrument;
it consists of a modified Michelson interferometer with
Fabry-Perot arms, power-recycling mirrors, and resonant
sideband extraction which all allow it to measure minus-
cule phase propagation di↵erences via the Pound-Drever-
Hall technique [7, 10, 12]. However, we follow [19] in this
analysis and reduce the entire instrument to a sensor
with a single degree of freedom: di↵erential arm length
(DARM) perturbations. When a GW passes through
aLIGO, the space in one direction stretches while the
space in the other direction contracts; this arm length
change/perturbation interrupts the constructive interfer-
ence of laser light maintained in the arm cavities and

Fig. 5.— This diagram of aLIGO is from [15]. The arm cavi-
ties are contained between the reflective test masses. These test
masses are suspended from a quadruple pendulum system and are
adjusted spatially by an actuating system displayed in the upper
right corner. These adjustments allow resonance to be maintained
in the arm cavities. When resonance is disrupted by a passing
GW stretching one arm cavity and shrinking the other, some light
escapes to the GW Readout Port at the bottom of the figure.
some light escapes the arms to a photodetector (see Fig-
ure 5). This escaped light generates the signal we analyze
to recover the GW parameters.

TABLE 1
Parameters used to characterize a GW detection.

mi Masses
q Mass ratio

Mc Chirp Mass
si Spins
�eff E↵ective inspiral spin parameter

DL/Mpc Luminosity Distance
tc Coalescence time
�i Phase of coalescence
↵, � Sky location
cos ◆ Orbital orientation
 Polarization angle

Figure 6 illustrates a waveform that aLIGO might de-
tect. From the amplitude and phase of this waveform, we
can extract astrophysical parameters such as those listed
in Table 1.
In this work, we focus on a single-parameter analysis

in the merger-ringdown regime to test GR using multiple
events, rather than characterizing a particular GW event.
Subsequently, we marginalize over the parameters listed
in Table 1.

V. DARM FEEDBACK CONTROL LOOP

The external di↵erential arm length change, �L
ext

, is
related to the GW amplitude, called the “strain:”

h(f ; t) =
�L

ext

hLi (1)

where hLi ⇡ 4000m is the arm cavity length gain of
aLIGO. aLIGO’s photodetector does not directly mea-
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Fig. 6.— A figure illustrating an inspiral-merger-ringdown (IMR)
of a compact binary system from [2]. According to GR, two ob-
jects in orbit will slowly spiral inwards due to a loss of energy and
angular momentum via GWs. The frequency and amplitude of the
emitted GWs increases as the orbital distance between the objects
shrink. When the objects finally merge they can radiate GWs as
a superposition of quasinormal ringdown modes. One mode will
eventually dominate with a exponentially damped, constant fre-
quency wave [4]. We observe this as a lower frequency inspiral
phase, a post-merger peak at some fixed frequency, and then a
higher frequency ringdown. In this work we investigate the dif-
ferences due to non-GR conformity as described in a parameter
pertaining to the ringdown of the GW.

sure �L
ext

but rather the current generated from the
amount of light that has escaped from the arm cavities,
d
err

(the DARM error signal), in arbitrary units. �L
ext

must be reconstructed from d
err

(f).
d
err

(f) is measured continuously in a closed feedback
loop. The purpose of this feedback loop (see the re-
duced block schematic in Figure 7) is to recenter the
mirrors used in aLIGO after the arms have been per-
turbed by a GW or noise so that the constructive inter-
ference/resonance of the laser is maintained. This allows
the instrument to measure the next arm length di↵eren-
tial as quickly as possible.
We can reconstruct h(f ; t) from the DARM control

loop (see Figure 7):

hLih(f ; t)��L
ctrl

= �L
res

(2)

h(f ; t) =
1

hLi
✓

1

C(f ; t)
D(f)d

err

+A(f ; t)d
ctrl

◆

(3)

h(f ; t) =
1

hLi
✓
1 +G(f ; t)

C(f ; t)
d
err

◆
(4)

h(f ; t) =
1

hLiRe

(f ; t)d
err

(5)

where R
e

(f ; t) =
1 +A(f ; t)D(f)C(f ; t)

C(f ; t)
(6)

=
1 +G(f ; t)

C(f ; t)
(7)

Fig. 7.— A block diagram of the DARM feedback control servo
from [15]. This schematic shows that aLIGO’s output is dependent
on the performance of the feedback loop. Each component of the
feedback loop is described by a transfer function and the uncer-
tainty on the overall loop transfer function yields the CEs on the
GW strain detection. The transfer functions of all of the compo-
nents in the feedback loop are necessary to reconstruct the GW
signal. The subsystems are described more thoroughly in [15, 19].

Here, C(f ; t) is the transfer function of the arm cav-
ity or the sensing function, D(f) is a digital filter, and
A(f ; t) is the actuation function that corrects mirror
position. d

ctrl

is the signal sent to the actuators de-
scribing how to move the test masses to recover reso-
nance, �L

ctrl

is the length perturbation the actuation
function applies to the test masses, and �L

res

is any
residual length change the actuation function happens to
not correct. We take the various transfer functions into
G(f ; t) = C(f ; t)D(f)A(f ; t), the DARM open loop gain.
We further rearrange this equation into a response func-
tion, R

e

(f ; t), which lets us estimate uncertainty more
easily. D(f) is known precisely, so the uncertainty in our
GW strain, �

h

(f ; t), is dominated by the uncertainty in
R

e

(f ; t): �
R

(f ; t). Equation 7 is derived and its com-
ponents described more thoroughly in [19, 15]. More
complex calibration loop treatments are given in [1, 13].
In equation 5, R

e

(f ; t) gives the theoretical or ex-
act response function, but the measured length func-
tion R

m

(f ; t) includes CEs from the sensing C(f ; t) and
actuation A(f ; t) functions as well as the slow, time-
dependent drift in these functions. Because detectors
are noisy, drift with time, and can glitch, R

e

(f ; t) and
R

m

(f ; t) can di↵er. This leads to systematic errors in
GW strain reconstruction.
The frequency dependent and time dependent param-

eters of R(f ; t) are what impact the response function
uncertainty, �

R

(f ; t). We examine these parameters for
C(f ; t) and A(f ; t).

V.I. Sensing Function, C(f ; t)

The sensing function (see Figure 8) “senses” GW
strain. It represents the interferometer optical plant and
is approximated by a coupled-cavity single pole function
[9]:
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Fig. 8.— Figure from [15]. The sensing function model is shown
in magnitude (top) and phase (bottom). The frequency depen-
dence of C(f ; t) is determined by fcc up until 1 kHz; afterwards,
analog-to-digital conversion factors (in c(t)) dominate. The fea-
tures at higher frequencies are due to photodiode electronics and
processing filters [15].

C(f ; t) =

C

(t)C
R

(f)

1 + if/f
CC

(t)
e�2⇡if⌧C (8)


c

(t) : optical gain

fcc(t) : coupled cavity pole

C
R

(f) : “sensing residual” after cavity

pole is divided out

⌧
C

: sensing function time delay

The optical gain 
c

(t) depends on the laser power in
the optical arm cavities and has a time dependent scalar
gain factor. Equation 7 indicates R

e

(f ; t) ⇡ 1/C(f ; t)
when |G(f ; t)| << 1. Changes in the optical gain pro-
duce the largest systematic errors at frequencies above
the unity gain frequency (40 Hz and 56 Hz for H1 and
L1, respectively [15]). The coupled cavity pole frequency
f
cc

(t) depends on the reflectivities of the interferometer
optics and has a time dependency due to cavity length
and alignment changes [14].This changes the shape of the
sensing function at frequencies close to the nominal cou-
pled cavity pole frequencies. At high frequencies, 

c

(t)
and fcc(t) contribute systematic errors in the magnitude
of �L

ext

[17].

V.II. Actuation Function A(f ; t)

The actuation function (see Figure 9) describes the
physical actuators that spatially adjust the test masses
hung in quadrature (see Figure 5). The test mass stage
are labeled as follows: Top, Upper Intermediate, Penulti-
mate, and Test. All except for the top stage are actuated
upon and so contribute a term to the actuation function.
The Upper-Intermediate and Penultimate masses have

Fig. 9.— Figure from [15]. The actuation function A(f ; t) shown
in magnitude (top) and phase (bottom), includes the actuation
functions for each pendulum stage. As frequency increases, the
dominating pendulum stage progresses to the lower pendulum
stages. Digital notch filters are apparent at select frequencies with
the purpose of avoiding mechanical instabilities [15].

Optical Sensor and Electromagnetic (OSEM) actuators
while the test mass, the mass that the laser light hits,
has a ElectroStatic Drive (ESD) actuator. The ESD al-
lows for finer spatial adjustments but can build up charge
from residual gas via ion vacuum pumps in aLIGO. Con-
sequently, its strength changes with time.

A(f ; t) = [
T

(t)A
T

(f) + 
P

(t)A
P

(f) + 
P

(t)A
U

(f)] e�2⇡if⌧A

(9)


T

(t) : ESD actuation strength


P

(t) : OSEM actuation strength

A
T

(f) : Test mass actuation function

A
P

(f) : Penultimate mass actuation function

A
U

(f) : Upper-Intermediate mass actuation function

⌧
A

: computational time delay in

digital-to-analog conversion

Equation 7 indicates R
e

(f ; t) ⇡ A(f ; t)D(f) when
|G(f ; t)| >> 1. A

T

(f) is the dominant term in A(f ; t)
for frequencies greater than 20 Hz; the largest systematic
errors contained in A(f ; t) (±15%) are due to variations
in the actuation strength of the ESD from 20 � 50 Hz
and are contained in A

T

(f) [17].

V.III. Full Parametrization of the Response Function
and Real-Time Calibration Measures

With our parameters from C(f ; t) and A(f ; t), we can
rewrite our actuation function beginning with equation
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7 and dropping the time delays as:

R
e

(f ; t) =
1 +A(f ; t)D(f)C(f ; t)

C(f ; t)
(10)

R
e

(f ; t) =
1

C(f ; t)
+D(f)A(f ; t) (11)

R
e

(f ; t) =

✓
1 + if/f

CC

(t)


C

(t)C
R

(f)

◆
+

D(f) (
T

(t)A
T

(f) + 
P

(t)A
P

(f)
P

(t)A
U

(f)) (12)

The time dependent parameters
(

T

(t),
P

(t),
C

(t),f
CC

(t)) are monitored for varia-
tion using intentional injections at four frequencies
(called calibration lines) into the DARM spectrum
throughout an observation run (see Table 2). The
calibration lines reveal any short-term gain fluctuations
in optical plant or actuation strengths.

TABLE 2
Calibration line table recreated from [17]. Lines 1-3 are
used to estimate T and P and line 4 for C and fc for

the LIGO Hanford (H1) and LIGO Livingston (L1)
detectors.

# Signal Freq. (Hz) Line Purpose
H1. L1

1 xT 35.9 35.3 ESD actuation strength
2 �Lpcal 36.7 34.7 DARM actuation
3 xctrl 37.3 33.7 Penultimate & Upper-

Intermediate actuation strengths
4 �Lpcal 331.9 331.3 Optical gain and coupled cavity

pole frequency

The frequency dependent parameters in our response
function (A

U

(f), A
P

(f), A
T

(f), C
R

(f)) are measured
between observation runs using swept sine calibration; a
sine wave displacement signal is applied to a test mass
while the interferometer is locked. Then, the frequency
is slowly swept over the GW detection band and the er-
ror signal is measured as a function of the displacement.
This yields the closed loop transfer function equation.
During observation runs, the frequency dependent pa-
rameters are measured a few times per run using wide-
band psueudo-random signals with amplitudes below the
noise level. The disturbances created from this are small
and distributed over the whole gravitational wave band.
While having the advantage of not impacting any GW
signal observations, below noise-level calibration signals
have the disadvantage of needing a longer integration
time to extract. This results in obtaining only a few
frequency calibration signals per observation run. It is
assumed that the frequency dependence of the control
loop will not vary in between these calibration signal ex-
tractions [13].
Because this does not always hold true, the interpreted

GW strain will be di↵erent from the true GW strain in
both phase and amplitude. As discussed in Section IV,
this a↵ects not only the precision measurement of astro-
physical parameters like masses, sky location, distance,
and etc, but also the precision measurement of universal
parameters like those that describe variations from GR.
To decrease the di↵erence between the measured length
function and the exact length function, we seek to better
characterize aLIGO’s CEs through Bayesian parameter

estimation.

VI. BAYESIAN PARAMETER ESTIMATION WITH
LALINFERENCE

Using the parameter estimation pipeline
LALInference [18], we compare a parametrized
GW waveform model to the detected strain signal.
Figure 6 shows the model used for GW150914. This
matched filtering technique using template banks,
further described in [6], is an accurate and time sensitive
method to identify potential GWs from compact binary
coalescence (CBC).
Using LALInference’s results, we can construct prob-

ability density functions (PDFs) for each of the parame-
ters in the GW detection. To be explicit, we begin with
Bayes’ theorem; the probability that a parameter, ✓, is
the correct value given some data, x, is equal to the prob-
ability of getting the data given the parameter times the
probability that the parameter is the correct value, and
divided by the evidence of the data:

P (✓|x) = P (x|✓)⇥ P (✓)

P (x)
(13)

Here, P (✓|x) is the posterior probability, P (x|✓) is the
likelihood, P (✓) the prior, and P (x) the evidence.
We can then express the probability that the strain

data x(f) came from an astrophysical system with pa-
rameter ✓ with the log-likelihood, lnP (x|✓):

lnP (x|✓) = �1/2

Z 1

0

|h(f, ✓)� x(f)|2
S
nn

(f)
(14)

where x(f) is the strain data from the detector, h(f, ✓)
is the GR prediction for the strain with parameter ✓,
and S

nn

(f) is the power spectral density of the detector’s
strain noise.
We can update this probability as more data becomes

available. We can “stack” GW observations like so:

P (✓|x, y) = P (x, y|✓)⇥ P (✓)

P (x, y)

=
P (y|✓, x)⇥ P (✓|x)

P (x, y)
Substitute in Eqn. 13

=
P (y|✓)⇥ P (x|✓)⇥ P (✓)

P (x)P (y)
(15)

Assuming GWs are uncorrelated the

probability of y does not depend on x

where P (✓|x, y) is the posterior probability that ✓ is the
correct value given that x, our data or a GW detection,
and y, new data or another GW detection, exist. The
normalization constants of these models are typically ig-
nored in favor of simply comparing two competing mod-
els by taking the ratio (called the odds ratio) of posterior
probabilities to the evidence/potential GW signal:

O
i,j

=
P (H

i

|x)
P (H

j

|x)Bij

(16)

where H
i

is some hypothesis and is compared to another
hypothesis, H

j

. The Bayes factor or evidence ratio, B
ij

,
is the ratio of likelihoods between the models. It is often
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used as a statistic to describe confidence in the correct-
ness of a model or to rank competing hypotheses given
the observed data. From equation 15 we see that as we
amass new GW detections we update the probability by
multiplying the posterior probability distributions for ✓
for each event together. For an arbitrary number of de-
tections, the probability of the parameter is then given
by:

P (✓|x
i

) /
"
Y

i

P (x
i

|✓)
#
⇥ P (✓) (17)

Stacking GW strain signals in this way can constrain
parameter estimation better than a single detection can.
However, Bayesian inference tends to be computationally
expensive, due to a large number of parameters (15 for
the most simple compact binary merger models, exclud-
ing instrumental and calibration parameters, see Table
1), complex multi-modal likelihood functions, and the
computationally costly process of generating the model
waveforms [18]. As a result, stochastic sampling tech-
niques, like Markov Chain Monte Carlo (MCMC), Nested
Sampling, and MultiNest/BAMBI, have been explored
and developed for Bayesian inference for GW data and
have been packaged into LALInference to speed up the
process. This work specifically uses the Nested Sampling
routine LALInference nest.

VII. IMPACT OF CALIBRATION ERROR MODELS ON
BAYESIAN PARAMETER ESTIMATION

CEs will introduce bias in the posterior distributions
of the measured parameters. In this section we discuss
the impact that a constant, spline-fitted, or a frequency
dependent CE model have on our parameter estimations.
The constant CE model is the most basic model. It al-
lows for two additional parameters that specify a con-
stant shift in amplitude and phase. Spline interpolation
is the current CE Model for aLIGO and the number of
nodes used can be varied. The frequency dependent CE
model in development for aLIGO is more realistic and
predicted to increase precision of parameter estimation.
To compare CE models, we use an e↵ect size statistic

to measure any shift in the mean of a parameter from
its true injection value and weight it by the standard
deviation:

�
✓

⌘ ✓̂
true

� ✓̂
approx

�
✓,approx

(18)

Figure 4 shows the e↵ective size for various
LALInference pipe injections with no calibration mod-
els yet implemented. This information will be useful in
comparison to other CE models as it is updated.

VIII. SOFTWARE INJECTIONS

Though up to 100’s of observations per year are ex-
pected by the time LIGO operates at design sensitivity
[3], only three GW detections have been published as
of the time of this paper. For now, we use simulated,
injected signals instead of real GW signals.
GW waveform models are based on an analytical

inspiral-merger-ringdown (IMR) model (see Figure 6)
and usually calibrated against waveforms from direct nu-
merical integration of the Einstein equations [4]. We use
signal injections generated based on the IMR model from

Fig. 10.— Figure from [15]. Di↵erences in model and measured
R(f ; t) result in correction factors, 1 + �R(f ; t)/R(f ; t), shown in
magnitude (upper) and phase (lower). The dashed lines show the
systematic errors, known from model parameters, and the solid
lines the total statistical uncertainty [15]. This R(f ; t) incorporates
the frequency dependent calibration model discussed in VII.

LALInference pipe, part of the LaLApps Suite [11]. The
method was as follows: select a section of aLIGO data
free of signals, undue noise, or other injections, and then
add ⇠ 50 GW injections from systems with total masses
of 10 � 50M� and spins 0 � 0.99. A second set of these
injections was constructed to share a common non-GR
parameter. This will allow us to estimate how many in-
jections/detections are required to constrain a non-GR
parameter if one exists in future studies.

IX. TIGER PIPELINE

TIGER (Test Infrastructure for GEneral Relativity)
is a data analysis pipeline for model-independent test-
ing the strong-field dynamics of general relativity with
GW signals [5]. It relies on Bayesian model selection
to combine information from multiple observations. It
then compares the stacked data evidence between two
hypotheses: a GW waveform model consistent with GR,
H

GR

, and a model with parametrized deformations of the
GW waveform model,H

modGR

, as given by additional pa-
rameters. TIGER uses an odds ratio to compare these
models:

OmodGR

GR

⌘ P (H
modGR

|d, I)
P (H

GR

|d, I) (19)

where d is the data and I is our prior.
This method is considered model independent because

any/all of the additional parameters are allowed to vary
from zero (where they agree with GR) such that many
di↵erent waveforms could be well fit. Each possible wave-
form is considered a sub-hypothesis and the Bayes factors
for all of the sub-hypotheses can be merged into a sin-
gle odds ratio with which to compare the GR consistent
model.
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Detector noise can sometimes mimic GR violations. To
allay this, the odds ratio should be compared with a noisy
background distribution; injecting many simulated GW
signals with di↵erent astrophysical parameters into data
surrounding the GW signal of interest can accomplish
this [5]. The odds ratio can then be calculated for many
GR consistent injections/noisy background sets. Then,
a distribution of the odds ratio for GR consistent GWs
can be calculated with an accompanying p-value. From
this a threshold can be set for non-GR conforming GW
model odds ratios to overcome.
In this work, we focus on a single-parameter analysis

in the merger-ringdown regime with a noisy background
distribution. We fix all other parameters to be consistent
with GR.

X. RESULTS

In this section, we plan to discuss model selection, pa-
rameter recovery, and error propagation results. We will
then compare the calibration error models and present
measurements of their e↵ectiveness in parameter recov-
ery.

XI. CONCLUSION
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