

Noise hunting in Advanced LIGO

By: Michael Antia¹

Mentors: Jess McIver², TJ Massinger², Alan Weinstein²

> LIGO SURF 2016 1 University of Central Florida 2 California Institute of Technology

Improving LIGO's sensitivity

- Characterizing sources of noise allows for improvements in:
 - » SENSITIVITY
 - » STABILITY
 - » DETECTION RATE

Examples of noise sources

Fundamental

- » Shot noise (dominates high frequencies)
- » Suspension thermal noise
- » Test mass thermal noise
- » Seismic Noise (dominates lower frequencies)

Environmental

- » Wind
- » Ground Motion
- » Magnetic field variations
- » Acoustic disturbances

Wind as a source of noise

- Hanford: high winds are frequent
- Can cause optics to drift and result in 'lock loss'
 - » Instrument is locked when light is resonating in all cavities
- Can cause light to scatter
- If scattered light were to recombine with main beam, its phase will be shifted

LIGO Alignment sensing and control (ASC) channels

- Look at CARM and DARM for both SOFT and HARD modes and both pitch and yaw angular motion
- Look at transmitted power at photodiodes at end stations for both X and Y arms
- Any angular displacement will be problematic at higher laser power – photon pressure vs actuators' restoring force

Identifying useful lock stretches

- Summary pages were used to identify lock stretches that coincided with periods of both high and low wind
- High wind > 20 mph

LIGO

- Low wind < 5 mph
- All the cavities need to be resonant

ASD for ASC channels

- Time series is converted to frequency domain
- Useful to look at how power is distributed in different frequency bins
- Excursions are indicative of excess control applied to optics

• Three frequency bands stood out: 0-1 Hz, 4-20 Hz, 20-40 Hz (last one only for transmitted power at end stations)

ASD for ASC control loops 0-1 Hz

<u>https://dcc.ligo.org/DocDB/0126/T1600159/001/0_1</u>
 <u>Hz_ASD.gif</u>

ASD for ASC control loops 4-20 Hz

<u>https://dcc.ligo.org/DocDB/0126/T1600159/001/4_20</u>
 <u>Hz_ASD.gif</u>

ASD for ASC control loops 20-40 Hz

https://dcc.ligo.org/DocDB/0126/T1600159/001/20_4
0_Hz_ASD.gif

Glitches in ASC control loops

- Spectrogram using Gwpy
- Glitch for CSOFT_P

- Spectrograms using OmegaScan
- Glitch for Y_TR_B_YAW

H1:ASC-Y_TR_B_YAW_OUT_DQ at 1128450451.000 with Q of 45.3

Glitch due to scattered light

• 5 Hz for Y_TR_B_YAW with a Q of 45.3

• 5 Hz for Y_TR_B_YAW with a Q of 19.6

H1:ASC-Y_TR_B_YAW_OUT_DQ at 1128450451.000 with Q of 45.3

LIGO

Coupling through acoustic noise vs ground motion

Time [hours] from 2015-10-09 00:00:00 UTC (1128384017.0)

LIGO

Are glitches prevalent during extended periods of low wind?

- 12 lock stretches were observed
- Those that showed glitches coincided with periods of elevated ground motion:
 - » 0.03 0.1 Hz (Earthquake Band)
 - » 1 3 Hz (Train Band)
 - » 3 10 Hz
- No elevated noise was observed in acoustic PEM channels

LIGO Effect of seismic motion on PRCL, SRCL and SRC2

- Lock stretches in O1 with elevated ground motion were identified
- ASD indicate elevated noise levels for lower frequencies
- Glitches occur with a central frequency around 10 Hz
- Pitch vs yaw for alignment degree of freedom (SRC2) that controls SR2 show an increase in drift of optic

LIGO Effect of Seismic Motion on PRCL, SRCL and SRC2

- https://dcc.ligo.org/DocDB/0126/T1600159/001/pitch_ yaw_11_06_2015_v2.mp4
- Excess control applied to SR2 occurs at 01:50 (UTC)
- Glitch is seen at around 10 Hz
- ASD are averaged over 15 minute periods

10 Hz Glitch

L1:LSC-SRCL_OUT_DQ at 1131358690.000 with Q of 45.3

LIGO

Summary and conclusion

- Wind and ground motion cause elevated noise levels and glitching with a central frequency of 5 Hz and 10 Hz
- This will be more problematic at a higher laser power
- Understanding increase in noise levels is important in order to find ways to mitigate them
- Help focus on tuning ASC control loops in order to better mitigate noise during high wind periods

Future Work

- Further look into 10 Hz glitches and if they occur for other stretches with elevated ground motion
- Conduct full OmegaScans for a time when the 10 Hz glitch is present
- Use OmegaScan to look for time differences in glitches in order to resolve how a disturbance caused by wind is propagating through the interferometer
- Look at acoustic spectrograms and look at acoustic injection studies to see if 5 Hz glitching appears

Acknowledgements

I would like to thank Jess McIver, TJ Massinger, Alan Weinstein for their encouragement and support.

I would also like to thank Josh Smith for feedback on my work.

Student Faculty Program California Institute of Technology The National Science Foundation.

References

[1] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. *arXiv:1602.03844* (2016)

[2] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. *Phys. Rev. Lett. 116. 061102* (2016)

[3] LIGO Scientific Collaboration. Advanced Ligo. *arXiv:1411.4547* (2014)

LIGO

[4] D.M. Macleod et al. Reducing the effect of seismic noise in LIGO searches by targeted veto generation. *arXiv: 1108.0312v3* (2013)

[5] J. Mclver. *The impact of terrestrial noise on the detectability and reconstruction of gravitational wave signals from core-collapse supernovae* (Doctoral dissertation). Retrieved from Scholar Works @ UMass Amherst. Paper 539. (2015)

[6] R. Abbott et al. Seismic Isolation for Advanced LIGO. *Class. Quant. Grav.,* Vol 19, No 7, 1591 (2002)

References

[7] Summary pages: <u>https://ldas-jobs.ligo-wa.caltech.edu/~detchar/summary/</u> <u>https://ldas-jobs.ligo-la.caltech.edu/~detchar/summary/</u>

[8] Images for slide 6 obatined from: B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. *Phys. Rev. Lett.* 116. 061102 (2016)

[9] GWpy codes and documentation created by Duncan Macleod

LIGO

APPENDIX: ASC CHANELS

H1:ASC-CHARD P OUT DQ H1:ASC-CHARD_Y_OUT_DQ H1:ASC-DHARD P OUT DQ H1:ASC-DHARD Y OUT DQ H1:ASC-CSOFT P OUT DQ H1:ASC-CSOFT_Y_OUT_DQ H1:ASC-DSOFT P OUT DQ H1:ASC-DSOFT Y OUT DQ H1:ASC-X TR A PIT OUT DQ H1:ASC-X_TR_A_YAW_OUT_DQ H1:ASC-X TR B PIT OUT DQ H1:ASC-X TR B YAW OUT DQ H1:ASC-Y TR A PIT OUT DQ H1:ASC-Y_TR_A_YAW_OUT_DQ H1:ASC-Y_TR_B_PIT_OUT_DQ H1:ASC-Y TR B YAW OUT DQ