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Gravitational Waves: From Detection to Follow-Up
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Figure 2. Rough timeline of compact binary merger electromagnetic emissions in relation to the timescale of the Advanced LIGO/Virgo analysis described in
this paper. The time axis measures seconds after the merger.

e NSBH / BNS sources main candidate for joint observations between GW and
EM facilities

e GW detection could inform how we observe with EM and vice-versa

e Early coincidence and informed follow up of EM+GW candidates already in
play (talk by M. Cho)

e Discovery opens up rich field of astrophysics associated with joint GW + EM
emission and modeling (GRBs, kilonovae, SNe, etc...)
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Figure 2. Rough timeline of compact binary merger electromagnetic emissions in relation to the timescale of the Advanced LIGO/Virgo analysis described in

this paper. The time axis measures seconds after the merger.

Comparison of Template Autocorrelation to Observed SNR

1.41 Msol -- 1.31 Msol Injection at 1.50 Mpc
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= e | ow latency searches produce candidate event
. S times in O(min)
e Large template banks to search a wide

space of parameters (mass/spins)

: N ] o Bl . L L * Great for detection, not so great for
= gl | : parameter estimation: No modeled facility for
sky localization, distance estimation is poor
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Figure 2. Rough timeline of compact binary merger electromagnetic emissions in relation to the timescale of the Advanced LIGO/Virgo analysis described in
this paper. The time axis measures seconds after the merger.

e Some very fast schemes to produce posterior
distributions on the sky — astronomers point
telescopes

e Fold in a few more parameters, may not

account for other masses or spin
configurations

— e Are we dealing with a “EM-bright” source? Is it
LVC+ 2016 inclined towards us? Redshift?
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Figure 2. Rough timeline of compact binary merger electromagnetic emissions in relation to the timescale of the Advanced LIGO/Virgo analysis described in

this paper. The time axis measures seconds after the merger.

e G\W sky position posteriors are wide, need a highly coordinated effort for best
observing strategy — fast and confirmed localization can boost detection
confidence in NSBH or BNS GW candidate and better populate light curves

e Full parameter estimation in O(days): but we may have already lost the
optical afterglow (GRB) ... also will have technical challenges with half hour

long BNS in 2018

e Need to do basic parameter estimation (masses/distance/inclination) in
O(min) to better facilitate optical follow up



System Parameterization

Break from the “serial chain™ paradigm:
obtain posteriors over the intrinsic
parameters by fixing a grid to them —
sample the extrinsic parameters by Monte
Carlo (but non-Markovian) integration
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Rapid PE: Ingredients

e At fixed intrinsic parameters, the likelihood has a novel formulation which only
requires one waveform generation (h), and one set of precomputed inner
products over a spherical harmonic mode decomposition (I,m) of the
measured (p) and optimal (p) signal to noise ratio — reconstruct the
likelihood at arbitrary extrinsic parameters with a few multiplications and adds
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INntrinsic

Parameter

Placement (Fisher-matrix)

e |ow latency searches provide intrinsic parameter measurement (possibly
biased or incomplete!) = we use this to guide a strategic placement of the
Intrinsic grid

0.28

027 H ..

physical points

unphysical points

Fit to parameter
ambiguity contours

Used as a surrogate
to the shape of the

0.26 | centered on
search reported
0.25 b= Parameters

likelihood surface in
the intrinsic
parameters

0.24 |
Likelihood is sampled at the red
0.23 | points in the intrinsic mass space
022 | | | | |
0.001 0.002 0.003 0.004 0.005 0.006

M.(Mg) +1.235



i

Signal in O

Parameter Estimation Results: Synthetic BNS
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Parameter Estimation Results: Synthetic BNS
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Improving Placement / Using Search Information

e |nitial point selection motivated by Fisher matrix which has limited
applicability (inappropriate at low SNR, multimodality in the likelihood
function, no clear gridding procedure)

e Template banks of waveforms have ~3% mismatch — very densely
oversampled for detection in the intrinsic basis

_ (h1|h2)
v/ (h1|h1) (halhs)

~ 0.97

012

e Solution: Use point estimate of mass information from the search and check
the search template bank for “relevant templates”
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Improving Placement / Using Search Information

Overlap with template bank for (1.32, 1.28)
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Improving Placement / Using Search Information

Overlap with template bank for (1.32, 1.28)
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Improving Placement / Using Search Information

Use t
refl

...but parameter estimation needs
even more densely sampled templates...

ne template bank as a guide, then

Ne as We measure the posterior
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Region ldentification and Grid Construction

e The same points in M¢ / n (left) and Tto / T3
(right) space — Euclidean “closeness” and
overlap “closeness” much more local and
apparent here

o

e Use these to define cells upon which to
adapt — Cell can be arbitrarily refined, or not
evaluated at all depending on initial overlap
or evaluated Lreq at the point
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GW150914

mass / spin estimates
and source orientation 4 Ce8e8e80%0%0
in less than an hour [® @ 55505
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Scaling to Design Sensitivity Advanced LIGO

We can use any waveform in
full design sensitivity
advanced LIGO... right now
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— Waveform-limited scaling
e®e rapid PE (T1)
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Waveforms “in band” for up
to 30 minutes!
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The Upshot

e Minimal parameter estimation (expanding into aligned spin) in under an hour

e Gearing up to be running in near real time response to LIGO-Virgo triggers
in 2nd Observation Run

e Extensible and ready for observations throughout the lifetime of advanced
interferometric instruments (up through 2018+)

e Extensions to precessing spin and use of NR waveforms has been done
(arxiv: 1606.01262)

e Bring on the NSBH and BNS!


https://arxiv.org/abs/1606.01262
https://arxiv.org/abs/1606.01262
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—xplorer for Transient Astrophysics (ETA)

e EM Followup of Gravitational Wave Detections
(launch ~2023)

NeutronStars  Dlameters: 27 km

e \Wide-Field Imager (WFI) search for X-ray Masses: 1.5 suns _Separation: 18 km
afterglows (and possibly prompt emission!)

¢ IR Telescope search for kilonovae IR emission

Black Hole Forms
Mass: 2.9 suns
Horizon Dlameter: 9km

e Gamma-ray Transient Monitor (GTM)

e Early Universe Studies with High Redshift GRBs
(outtoz ~10to 12)

e |RT followup of GTM/ WFI detection

e X-ray Transient Sky Several per year NS-NS and/or NS-BH
Increase range, confidence of LIGO detections
Precise localization of source (redshift)
Energetics of source
Relative speed of graviton and photon (10-17)

e Tidal Disruption Events

e SN Shock Breakouts




—xtrapolating the Shape of the Likelihood
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