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1

Optomechanics for Gravitational
Wave Detection - from resonant
bars to next generation laser
interferometers

1.1 Introduction

This paper is written at the time of the first direct detection of gravitational waves,
one century after the gravitational wave spectrum was first predicted and fifty years
after physicists first began to design and construct instruments for this purpose. The
discovery was made by the Advanced LIGO detectors which themselves are master-
pieces of optomechanical physics and engineering. The detectors are a culmination
of half a century of innovation, during which the principles and the technologies of
ultrasensitive mechanical measurements were developed, in particular through the de-
velopment of optomechanics, pioneered by physicists developing earlier generations of
gravitational wave detectors.

In 2015 the Advanced LIGO detectors had achieved a factor of 3—4 improvement in
amplitude sensitivity. This small step took us across a threshold, from inability to de-
tect astronomical signals, to a regime in which strong signals have become detectable.
The next steps in sensitivity will offer enormous scientific rewards.

This paper reviews the 40 year history that led to the first detection of gravita-
tional waves, and goes on to outline techniques which will allow the detectors to be
substantially improved. Following a review of the gravitational wave spectrum and
the early attempts at detection, it emphasises the theme of optomechanics, and the
underlying physics of parametric transducers, which was creates a connection between
early resonant bar detectors and modern interferometers and techniques for enhancing
their sensitivity.

Developments are presented in an historical context, while themes and connections
between earlier and later work are emphasised. We begin by reviewing the gravitational
wave spectrum.

1.2 The Gravitational Wave Spectrum

Nature provides us with two fundamental spectrums of zero rest mass wave-like exci-
tations which travel through empty space at the speed of light. The spectrum of elec-
tromagnetic waves was predicted by James Clerk Maxwell in 1865 (Maxwell, 1865),
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150 years before this Les Houches summer school. It was more than 2 decades before
Heinrich Hertz (Hertz, 1887) succeeded in generating and detecting Maxwell’s waves.
At the turn of the 20th century Marconi and others created radios, but it took another
century of innovation to fully harness Maxwell’s spectrum, from the lowest frequen-
cies, such as the Schumann resonances of the Earth’s ionosphere, for which the photons
have energy ~ 10732 J to the highest energy gamma rays, for which the photon energy
approaches 1 Joule.

Fifty years after Maxwell published his electromagnetic field equations, Einstein
published the field equations of General Relativity. As shown by Einstein in 1916
and 1918 (Einstein, 1916; Einstein, 1918) the equations predicted gravitational waves
which are ripples in spacetime described by the Reimann tensor. Einstein considered
the waves to be of academic interest only, because their effects appeared to be too small
to measure. Others even suggested that the waves were mathematical artifacts. It was
not until 1957 that the theoretical case was made for gravitational waves having firm
physical reality, with ability to transport energy and do work. This was demonstrated
in a thought experiment by Richard Feynman at a conference in Chapel Hill (Rickles
and DeWitt, 2011), that marked the beginning of the modern resurgence of General
Relativity.

Even though gravitational waves have firm physical reality, their detection is a
daunting challenge because the interaction of gravitational waves with matter is very
weak. In this section we will use simple arguments to estimate the amplitude and
frequency of gravitational waves. Wave amplitude is measured in dimensionless units
that characterise the spatial strain amplitude, that represent the fluctuating spacing
AL between inertial test masses spaced distance L apart: h = AL/ L.

In their most compact form, Einstein’s equations can be written as G = (87G/c*)T,
where G is the Einstein curvature tensor which describes the curvature of spacetime
and T is the stress energy tensor that describes the mass-energy distribution. The
coupling constant 87G/c* has a magnitude ~ 10743, Time varying stress-energy cre-
ates waves of curvature which can be measured as a strain h. Without deriving the
wave equation (which can be found in numerous sources) it is obvious that the cur-
vature fluctuations in general must have small amplitude because of the smallness of
the coupling constant.

In 1916 Schwarzschild published a solution for Einsteins field equations in the
limit of spherical symmetry. His solution describes the spacetime of black holes for
which there is a central singularity and an event horizon, of radius now known as the
Schwartzchild radius, given by ry = 2GM/c?. At this time there was no evidence for
the physical reality of black holes.

The spacetime curvature for a gravitating source of mass M can be estimated from
the ratio of ry/r. For the Earth ri/r < 1078 where r is the radius of the Earth. At
the surface of the Sun, ry/r ~ 1076 . These small factors show that general relativistic
effects including the generation of gravitational waves are extremely weak in the solar
system.

Einstein showed that the gravitational wave luminosity of a source depends ap-
proximately on the square of the third time derivative of the quadrupole moment of
the source. The simplest source is a pair of masses orbiting each other. For equal
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masses M orbiting each other at distance L apart and with orbital frequency w, the
gravitational wave luminosity Lq is given (neglecting constants ~ 1) by

Lg ~ %MzL‘*w@. (1.1)
C

The same formula can be expressed in terms appropriate for a binary pair of black
holes. In this case it resolves to

e v 5, T

6 2
Lo~ SO0, (12)

Here the gravitational wave luminosity depends only on the scale r of the system
relative to the Schwarzschild radius, and the velocity of the two masses compared to
the speed of light.

Equation 1.2 is remarkably different from equation 1.1. The coupling factor has
been inverted, so that the gravitational wave power emitted is now scaled by the
enormous factor ¢ /G, which has magnitude ~ 1033. Since two black holes will merge
with velocity v ~ ¢ at a spacing 2r ~ 2r;, it follows that black hole coalescence can
create enormous gravitational wave luminosity ~ 10°3 Watts, 10?3 times the solar
luminosity. This power output is independent of the system mass. Because the event
duration is directly proportional to mass, the total energy output increases with mass.
Numerical calculations (Pretorius, 2005) show that the above estimates are roughly
correct.

A binary black hole coalescence creates the most powerful energy outbursts since
the big bang. Typically (depending on the black hole spins and mass ratio) it emits
about 5% of the system rest mass in gravitational waves. For this reason such systems
have always ranked high amongst the targets of gravitational wave astronomy, but
lack of knowledge about formation processes for such systems meant that there was
always large uncertainty about the event rate for such coalescences. The first detection
represented a gravitational explosion of 3 solar masses of energy, the most powerful
transient astronomical event ever observed.

It is easy to use intuitive arguments to estimate the amplitude and frequency of
gravitational waves from black hole binary coalescence. To estimate amplitude we
use the fact that the spatial perturbations will be maximal at distance ~ rg from
the source at the moment of final merger. At this point, where the curvature is so
strong that light paths can be deflected by almost 27 radians, and simultaneously are
modulated by the dynamical motion of the black holes, the strain amplitude h reaches
a maximal value ~ 1. The escaping waves reduce in amplitude inversely with distance
such that the wave intensity (proportional to amplitude squared) follows the usual
inverse square law. Thus for coalescence of equal mass black holes the peak amplitude
of the waves at the Earth is roughly given by rs/R where r¢ again represents the black
hole Schwarzschild radius and R is the distance between the source and the Earth.

For the coalescence of supermassive black holes of mass 10 M,y,, at cosmological
distances (say 10?% meters or 10 billion light years), the amplitude at Earth would be
about 107!, For 30 solar mass black holes, at 10%® meters distance, the amplitude
would be 1072°. These numbers are upper limits, because the naive estimate ignores
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the relativistic corrections to the source dynamics, and ignores the gravitational red
shift of the escaping gravitational waves.

Since the Schwarzschild radius depends linearly on mass, it follows that the grav-
itational wave frequency for binary black hole coalescence depends inversely on the
system mass. The peak frequency of the gravitational waves is determined roughly by
the orbital period of the last stable orbit (3rs). For 109 M.y, black holes this radius
~ 10'3 meters corresponds to a frequency ~ 107> Hz or one cycle per day. For stellar
mass black holes, say 30 Mgun, s ~ 10° meters and the peak frequency is a few hundred
Hz.

Today we have broad understanding of the expected gravitational wave spectrum.
It is summarised in Fig. 1.1. Detectable sources are predicted from 10~'® Hz to ~ 10*
Hz, as well as speculative sources at even higher frequency. There are four frequency
bands in which there are significant detection efforts. In the cosmological frequency
band below 10~ '6Hz, frozen relic gravitational waves from the big bang should create
a polarisation signature in the cosmic microwave background. Claims of detection
in this band in 2014 have been shown as likely to be due to foreground dust (Ade
et al., 2015), but future multi-frequency observations may be able to separate dust
from the gravitational waves, thereby enabling the testing of theories of inflation. In
the nanohertz frequency band, gravitational waves created by supermassive black hole
binaries (prior to merger) are potential sources. These could be detected as correlated
perturbations in the arrival times of pulses from millisecond pulsars. Detection could
allow the growth history of supermassive black holes to be measured.
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Fig. 1.1 An outline of the expected spectrum of gravitational waves and detection tech-
niques. The spectrum spans 20 decades, from frozen relic waves at 107'% Hz to the audio
frequency band.
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At millihertz frequencies, gravitational waves from objects falling into intermediate
mass black holes, and binary stars systems in the Milky Way are likely to be detectable
by future multimillion-km space based laser interferometers.

This paper focuses on the optomechanics for gravitational wave detection in the
audio frequency band. This is the best developed frequency band, offering a rich variety
of sources. See reference (Blair et al., 2012) for a detailed discussion of the range
of potential sources. The Advanced LIGO and Advanced Virgo gravitational wave
detectors were specifically designed to target the coalescence of binary neutron stars
because these are a known population with a moderately well predicted event rate.

Since binary black holes had never been observed until the recent detection, the
event rate for binary black hole coalescence could only be estimated through astro-
physical modelling. They are likely to have originated from very massive Population
III stars in the early universe. There are two ways they could have been created.
They could have been born from a high mass Population III binary pair, that evolved
rapidly to become black holes. The initial orbital separation of the binary black hole
system determines the lifetime to coalescence. If the separation is too large, the time
to coalescence can greatly exceed the age of the universe. Observations of coalescence
events select for systems born with suitable initial separations.

A more likely source of binary black holes that can be observed merging today,
consist of binaries created inside globular clusters. Modelling shows that isolated black
holes born from Population III stars in the early universe are likely to sink towards the
cores of globular clusters and also into the high density cusps in the centre of galaxies.
Here black hole binaries are likely to be formed by capture events,interactions with
other stars are likely to extract sufficient energy from the binary that a significant
number will be detectable as coalescences observable today.

It was predicted (et.al., 2010; Press and Teukolsdy, 1977) that such binaries are
likely to be detectable at an even greater rate than neutron star coalescences. This
prediction has been confirmed by the detection of a 30 solar mass binary black hole
by Advanced LIGO. Because waveforms are very sensitive to the black hole spins and
masses, (which depend on the formation mechanism), as more events are observed it
will be possible to determine how the systems were formed, and in this way we will be
able to derive information on the ancestors of the stars we see today in the modern
universe.

1.3 Gravitational Wave Detection

Because gravitational waves are waves of gravitational tidal force, they apply a dif-
ferential acceleration to a mass quadrupole (such as a long bar or a pair of separated
test masses). Assuming a wave amplitude h = AL/L, we can treat L as the effective
spacing of the test masses or the length of the resonant bar. Thus the detection of
gravitational waves becomes the task of measuring very small differential motions. In
a solid bar a transient differential force can be detected as an acoustic excitation of
the fundamental resonant mode. If freely suspended test masses are used, detection
requires measurement of differential accelerations of the free masses.

Joseph Weber first considered the design of gravitational wave detectors in a
book (Weber, 1961) and a paper published in 1960 (Weber, 1960). He considered



6 Optomechanics for Gravitational Wave Detection - from resonant bars to next generation laser interferometers

the gravitational wave energy absorbed by a resonant mass quadrupole such as a res-
onant bar. Recognising the significance of acoustic losses in increasing the effects of
thermal noise, he proposed using large resonant masses in the form of disks or cylin-
ders with very high acoustic quality factor. Transient bursts of gravitational waves
with millisecond duration (as might be produced by the non-spherical birth of a black
hole in a supernova or the final transient from a binary black hole coalescence) could
cause excitation of modes with large quadrupole moment such as the fundamental
longitudinal mode of a bar. He went on to construct two resonant bar detectors, one
of which is shown in Fig. 1.2.

Fig. 1.2 Joseph Weber working on one of his aluminium bars.

Despite the smallness of the gravitational wave strain expected from likely sources,
Weber undertook extended observations with a pair of resonant bars, using coincidence
detection to distinguish between local noise sources (expected to be uncorrelated) and
signals of cosmic origin, which would be correlated in both detectors.

In 1969, again in 1970, and in subsequent papers (Weber, 1970; Weber et al., 1973),
Weber published results claiming coincident excitation of his widely spaced pair of
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detectors (one was located at the University of Maryland, the other was at Argonne
National Laboratory). These observations were claimed to be the first detection of
gravitational waves. The wave amplitude of individual bursts was estimated to be
h ~ 1071, If valid, they would have represented a huge flux of gravitational waves
corresponding to thousands of solar masses being turned into gravitational waves every
year in the Milky Way, with each burst representing ~ 1 solar mass of gravitational
energy being radiated isotropically.

Weber’s claim had enormous repercussions which are still being felt today. As-
tronomers considered that the enormous flux and event rate implied by Weber’s results
to be impossible to reconcile with current astronomical knowledge. Many physicists
were intrigued, and within a few years approximately 10 laboratories had built or
were building Weber-type detectors. By 1972 results began to come in, which failed
to confirm Weber’s observations. There was anger and disillusionment amongst the
physicists attracted to the field, but a small subset of the new groups were intent on
building substantially improved detectors.

Weber’s detectors used massive piezo-electric ceramics (commonly known as PZT)
to read-out the vibrations of his resonant masses. Sensitivity was limited by elec-
tronics noise, and mechanical thermal noise partly due to PZT acoustic losses. By
the Fluctuation-Dissipation Theorem, both acoustic and electrical dissipation directly
translate to readout noise. Weber’s bars represented one of the first examples in macro-
scopic experimental physics, where back action noise was manifested.

Back action noise was prominent because piezoelectrics are reciprocal devices. A
displacement Az creates a voltage AV and a voltage AV creates the same displacement
Ax. Linear amplifiers such as operational amplifiers are always characterized by a
pair of noise sources, normally described as current noise and voltage noise. Amplifier
current noise leads to voltage fluctuations acting on the PZT, which create a noise force
which acts directly back onto the mechanical system. This back action noise acting
on the PZT applies forces to the mechanical resonator, which modifies its dynamical
state. Because these fluctuations accumulate over time, their effects increase as the
integration time is increased (corresponding to reduced measurement bandwidth). This
behavior is opposite to that of voltage noise, which is simply additive, and reduces as
the measurement bandwidth is reduced. The opposite bandwidth dependence of series
noise and back action noise leads to a classical measurement limit similar to the now
well known standard quantum limit. There is a minimum detectable energy that occurs
at an optimum integration time. Increasing or decreasing the integration time (or its
inverse, the measurement bandwidth) degrades performance.

In the early 1970’s the standard quantum limit was unknown, but the noise analysis
of resonant bars demonstrated a similar measurement limit in the classical regime. The
standard quantum limit sets an energy detection limit set by the photon energy A f, for
signal frequency f. The classical limit is kg1, where T}, is the effective measurement
noise temperature. In Weber’s case the noise temperature was ~ 30K, or about 103Af.
Optimum sensitivity occurred for a bandwidth of about 1Hz. Today back action noise
is most familiar in optomechanics as radiation pressure noise.

Weber type bars at room temperature could only achieve a strain amplitude sen-
sitivity ~ 107'®. Cryogenic resonant bars that we will discuss below, exceeded the
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sensitivity of Weber’s bars by many orders of magnitude, and one of them, NIOBE,
implemented the first high performance optomechanical type readout with microwaves.
Laser interferometers went on to make enormous strides in optimizing optomechan-
ical readouts. With these techniques detectors today have exceeded Weber’s strain
sensitivity by 6-7 orders of magnitude, corresponding to an astonishing 14 orders of
magnitude improvement in gravitational wave flux sensitivity.

1.4 Cryogenic Bars and the First Parametric Transducers

Soon after Weber’s first claims William Fairbank and Bill Hamilton proposed the
use of cryogenic techniques to create resonant mass detectors of far greater sensi-
tivity. Cryogenics would reduce thermal noise and allow the use of superconducting
vibration transducers that in principle should allow extremely high sensitivity. Fair-
bank and Hamilton led groups at Stanford and Louisiana State University, with the
initial goal of creating 5 tonne magnetically levitated resonant bars cooled to 3mK
temperature. Hamilton proposed development of a radio frequency superconducting
parametric transducer, while Fairbank proposed using a superconducting quantum in-
terference device (SQUID) based transducer. The program was outlined in a paper
published in 1974 (Boughn et al., 1974).

In the above paper two superconducting transducer concepts were presented. One
is the parametric transducer in which an acoustic signal modulates a resonant circuit,
while the second involves direct modulation of supercurrents by a superconducting
ground plane. The two concepts are illustrated in Fig. 1.3.

(a) Parametric (b) Direct
Pum;
Oscillator
Persistent
Current 1
SQUID
’ © Output
C a
Modulated Q
Output

Fig. 1.3 Two concepts for high sensitivity transducers for gravitational wave detectors. The
left side shows a parametric transducer in which motion modulates an LC circuit. The right
side shows a superconducting circuit read out by a Superconducting Quantum Interference
Device (SQUID) amplifier.

At Stanford Ho Jung Paik began development of a SQUID based transducer sys-
tem based on superconducting flux conservation (Paik, 1976). Because magnetic flux
LI (where L is inductance and I is current) is conserved in a superconducting cir-
cuit, and because the inductance of a flat pancake coil depends linearly on spacing
to a superconducting ground plane, supercurrent is linearly modulated by proximity
of a superconducting test mass in the form of a resonant diaphragm. Paik was the
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Fig. 1.4 The Paik transducer design. Motion of the diaphragm causes a difference current to
flow through inductance L3 which is coupled to the SQUID.If the daphragm mode is tuned

to the bar frequency this configuration embodies two mode impedance matching discussed
later.

first to observe low acoustic losses ~ 10~7 in annealed niobium at low temperatures,
which was used both for the test masses and the inductive circuit. Like PZT, this
inductive transducer was reciprocal, its forward transductance equal to its reverse
transductance. However it obtained high sensitivity by using the extremely low noise
of SQUID amplifiers and the low mechanical acoustic loss of the transducer. Figure
1.4 shows a schematic diagram of Paik’s transducer.

At Louisiana State University Blair and Hamilton developed the first supercon-
ducting parametric transducer (Blair, Bermat and Hamilton, 1975). Like the Stanford
transducer, the device made use of a superconducting pancake coil, but in this case it
was used as part of a radio frequency LC-circuit, for which the frequency was modu-
lated by the proximity of the surface of a superconducting test mass. The pancake coil
was a thin film niobium-on-sapphire structure designed to achieve high radio frequency
quality factor at 15 - 30MHz. This was the first gravitational wave transducer to make
use of the non-reciprocal properties achievable through parametric upconversion. The
acoustic signal frequency at ~ 1kHz was up-converted to the radio frequency. The
signal appears as a pair of signal sidebands, which must be demodulated to recover
the acoustic signal. Due to the upconversion process the device is intrinsically non-
reciprocal. As discussed in section 1.7, the forward to reverse transductance ratio is
generally proportional to the frequency upconversion ratio.
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Fig. 1.5 Implementation of a magnetically levitated parametric transducer.Normal orienta-
tion was with the spindle axis horizontal. Coils at one end allowed the sensing surface to be
located very close to a 12mm diameter niobium pancake coil etched on a sapphire substrate.

Figure 1.5 shows the design of this first parametric transducer. The device used
a magnetically levitated niobium and sapphire spindle, with a sensing surface very
close to the niobium-on-sapphire LC resonator. Magnetic levitation via a high super-
current in a single loop of wire provided low acoustic loss. While this device achieved
a sensitivity ~ 1071"m/rtHz (Blair, 1979; Blair and Hamilton, 1979) detailed theo-
retical understanding of such devices was essential to their optimisation. This would
only occur with development of microwave parametric devices described in the next
section.

These first high performance superconducting transducers also exposed technical
problems, which for the parametric transducer included the radio frequency power
dependence of the superconducting LC circuit quality factor, and the need for an
ultralow phase noise oscillator with which to excite the transducer.

Fairbank and Hamilton’s proposal to build cryogenic gravitational wave detectors
had ambitious goals. They aimed a) to reduce the temperature by a factor of 10° (300K
to 3mK) so as to suppress the thermal noise energy, b) to increase the quality factor of
the resonant bar by orders of magnitude to suppress the rate of thermal fluctuation, ¢)
to use superconducting magnetic levitation to achieve exceptional vibration isolation,
and d) to use superconducting transducers to achieve practically noise-free vibration
measurements.They estimated that the signal to noise ratio could be increased by a
factor of 106.

The above ambitious goals were realised to a large extent. While both technical
and fundamental issues prevented the full benefits from being realised, the transducers
provided a wealth of new physics and techniques that have had enormous impact
on experimental physics ever since. Below we summarise the key issues and their
outcomes.

Cryogenics and acoustic noise: The feasibility of cryogenic cooling of huge bars to
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4K was quickly demonstrated, and groups in Italy led by Pizella and later Cerdonio
successfully cooled 2300kg Al bars below 100mK.

Figure 1.6 shows a 2.3 tonne Al antenna,AURIGA, inside a cryostat which success-
fully cooled the bar to below 100mK using a dilution refrigerator. NIOBE achieved a
quality factor greater than 10® at 5K.

However the benefits of cooling below ~ 2K were never fully realised due to dif-
ficulties in cryogenic vibration isolation. Boiling liquid helium and gas flow in pipes
is a significant acoustic noise source. Some detectors used cooling below the liquid
helium superfluid transition at 2K to elliminate the noise of boiling helium. Others
created much more elaborate vibration isolation systems that operated within the
cryogenic environment. The best systems eliminated cryogenic noise by using very low
pressure helium exchange gas as a thermal conductor with negligible acoustic transmis-
sion. However below 100mK the helium vapour pressure is too low to provide thermal
conduction - gas effectively ceases to exist at this temperature. Thus at 100mK me-
chanical thermal links are required to extract heat and accomplish cooling. Such links
also transmit vibrations.

Low acoustic loss systems: It was difficult to construct SQUID based transducer
systems without acoustic losses associated with composite structures, so that very
high quality factors were not observed except in the detector NIOBE (discussed in
more detail below) which used niobium as the detector material, used low acoustic
loss bonding, and contained minimal material with high acoustic losses.

Magnetic levitation: Magnetic levitation was only used successfully on small scale
niobium prototypes (up to 67kg) because no methods were found for attaching high
critical field superconducting material to a bar to enable magnetic levitation without
unacceptable acoustic loss. Extensive studies in Western Australia demonstrated that
the largest possible diameter for magnetic levitation of a niobium bar is about 200mm,
limited by the critical magnetic field at which flux penetrates the superconductor.

Amplifier limits: SQUID amplifiers were expected to achieve quantum limited per-
formance (see discussion below) but in practice noise performance was degraded when
the SQUID was coupled to an external circuit.

Standard quantum limit: A major fundamental limitation that was completely over-
looked in 1972 was that the proposed strain sensitivity brought detectors into the quan-
tum regime. It came as a shock to the community that measurement of vibrations in
highly macroscopic objects such as tonne-scale bars should be governed by quantum
mechanics. In 1978 Braginsky et. al. (Braginsky, Vorontsov and Khalili, 1978) demon-
strated the existence of the standard quantum limit, which followed much earlier work
by Heffner (Heffner, 1962) on the quantum limit to linear amplifiers, later applied
by Giffard (Giffard, 1976), to mechanical measurements with transducers. This recog-
nition of the quantum nature of macroscopic measurements marked the beginning
of the development of macroscopic quantum mechanics. In the next section we will
discuss the first use non-contacting measurements with microwave re-entrant cavity
parametric transducers.
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Fig. 1.6 a) The AURIGA aluminium bar that was cooled below 100mK and used a SQUID
passive transducer, and b) the NIOBE detector, made from niobium, with a microwave para-

metric transducer.
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Fig. 1.7 A typical re-entrant cavity transducer (cross section) located near to the face of a
cylindrical sensing surface, with a central post about 5mm long and 1mm diameter.

1.5 Non-contacting Superconducting Microwave Parametric
Transducer

At Louisiana in 1974 Blair and Hamilton had demonstrated a Q-factor of 6 x 107 in a
6kg niobium bar. This led to the idea of building a large scale niobium detector which
would combine low acoustic loss with the advantages of superconductivity. In 1975 a
project began to develop a very high Q-factor niobium gravitational wave detector in
Australia. Following a suggestion by Braginsky, and with much better understanding
of the issues associated with parametric transducers, experiments began at UWA to
explore the possibilities of using superconducting microwave parametric transducers
based on re-entrant cavities, operating around 10GHz.

A re-entrant cavity is geometrically simple, rigid and robust, and if suspended
about 50um from a superconducting surface could achieve a high Q-factor ~ 10° —
105 with a very strong tuning coefficient ~ 300MHz per micron due to capacitive
modulation of the gap between the post (which is the main source of inductance)
and the sensing surface. Figure 1.7 shows the cross section of a typical cylindrically
symmetrical transducer configuration.

The re-entrant cavity made it possible to create a non-contacting transducer requir-
ing no mechanical connection to the bar, thus helping to minimise the acoustic loss.
Two sub-scale prototypes using a fully magnetically levitated bar combined with a sim-
ilarly levitated transducer demonstrated the potential of this technology. However for
a 1.5 tonne detector the transducer required a second mechanical impedance matching
stage, and the diameter was too large for magnetic levitation. A non-contacting trans-
ducer system was still able to be implemented in slightly different form as discussed
below.

Figure 1.8 shows two examples of a magnetically levitated re-entrant cavity trans-
ducer. Both cavity structures include choke sections in the form of a large ring groove
which creates a large impedance mismatch for radially guided microwaves, so as to
reduce radiation losses. A superconducting coil outside the choke section (in one case)
creates a weak repulsive force between the transducer and the levitated bar. When lev-
itated, with appropriate longitudinal magnetic springs, the transducer freely oscillates
across resonance. A time trace of the demodulated signal output is shown in Fig. 1.9.
It shows sharp transitions as the re-entrant cavity crosses resonance while oscillating
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Fig. 1.8 Two different magnetically levitated re-entrant cavity parametric transducers.Left:
a re-entrant cavity with narrow choke section. Right: Transducer with wider choke, super-
conducting repulsion coil also used for SQUID secondary sensing, and a superconducting
frequency stabilisation cavity used to suppress phase noise.

Fig. 1.9 Superconducting microwave parametric transducer response as it sweeps through
the cavity resonance. The signal is derived from a double balanced mixer with the local
oscillator phase adjusted to recover the phase shift across resonance. The sharp transitions
represent the phase shift across resonance. This error signal was used to lock the cavity near
the centre of resonance via forces applied through the voice coil. The bottom trace shows the
sinusoidal motion of the transducer measured by the SQUID readout shown in Fig. 1.11.

at a frequency ~ 10Hz with an amplitude of a few nm. A superconducting voice coil
provided control forces to lock the transducer at the centre of resonance.

Figure 1.10 shows the levitation cradle for such a transducer, with a 50mm diameter
niobium bar in its own levitation cradle. Levitation was achieved by pumping several
hundred amps of persistent current into copper clad NbTi coils soldered to a stainless
steel housing. The copper and the stainless steel provide resistive insulation for a
zig-zag current loops that supports the levitated masses.

The system illustrated above was excited by a low noise klystron microwave source.
It achieved a noise temperature ~ 1072K, three orders of magnitude better than a
room temperature bar, but it also exposed limitations that would need to be solved
for a large scale resonant bar.
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Fig. 1.10 Magnetic levitation cradles for a small Nb bar and a transducer. The bar diameter
is 50mm. The transducer, supported by a NbTi alloy superconducting shield, is illustrated
in Fig. 1.8. Bar and transducer were independently levitated. Radio frequency sense coils

monitored the levitation height.
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Fig. 1.11 Schematic diagram of the magnetically levitated gravitational wave detector de-
scribed in the text above (Blair and Mann, 1981). The transducer required precision active
control of the gap spacing since the position bandwidth of the re-entrant cavity was very small
(~ 107" m) and low frequency motion at a few Hz was ~ 10~ m. A radio frequency sensor
and a SQUID sensor provided hierarchical sensitivity for the gap spacing, for the purpose of
control and calibration.
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1.6 Coupling Coefficients, Thermal Noise and Effective
Temperature

In the analysis of resonant bar antennas, the concept of the electromechanical en-
ergy coupling coefficient 8 was introduced to characterise the transducer. While in
both types of transducer an acoustic signal in the resonant bar is converted into an
electrical signal, the process is somewhat different for a direct transducer where the
electromagnetic energy has the same frequency as the acoustic signal, and the para-
metric transducer, where the energy is transformed to modulation sidebands.

In a direct transducer with a capacitive sensor with capacitance C, it is straight-
forward to show that [ is given by the ratio of the electrostatic energy divided by the
mechanical energy of the mechanical resonator if its vibration amplitude x was equal
to the capacitance gap. That is:

1072
_lev
Mw2z?’

b1 (1.3)
where w, is the resonant frequency of the bar antenna.

For the parametric transducer (Fig. 1.3) we obtain a similar expression, except that
the coupling coefficient is increased by the frequency rati o between the mechanical

freugency of the bar and the pumping frequency wy,.

12
= ﬁﬂ. (1.4)
wa Mw2a?

This result implies that a large frequency ratio is advantageous. However, because
a high resonant frequency generally requires a much smaller capacitor, the advantage
occurs as long as the magnitude of the frequency ratio (~ 107 for the transducers
discussed here) exceeds the capacitance ratio (typically 10%). Another factor in favour
of the parametric transducer is that AC electric field breakdown threshold (which sets
the maximum usable voltage across the capacitor) is usually substantially higher than
DC breakdown. There are other important advantages of using parametric transducers
as discussed further below.

It is important to understand why acoustic losses, or their inverse, the acoustic
quality factor are so important in making low noise measurements of mechanical reso-
nant devices. This is best explained in the context of a phase space description of the
state of the oscillator. We are interested in the measurement of the fundamental mode
of a resonant bar because as discussed above, it has the highest quadrupole moment
and couples most strongly to gravitational waves. However the discussion is relevant
measurements of any mechanical modes. We start with a simple but incomplete classi-
cal description of a resonant bar readout, shown in Fig. 1.12. The state of the resonant
bar can be expressed in terms of amplitude and phase coordinates, but a much more
elegant description uses phase space quadrature coordinates.

Figure 1.12 shows a bar coupled to a transducer with coupling coefficient 8. After
amplification, the transducer output is demodulated to zero frequency, using a refer-
ence oscillator at the bar frequency w,. This process gives rise to two quadrature values
X, and Xs. A vector from the origin has magnitude equal to the resonator amplitude,
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Fig. 1.12 A classical resonant mass coupled to a transducer, with an amplifier of gain G
and demodulated to zero frequency to record the two quadratures Asin¢ and Acos¢. It is
assumed that the transducer output signal is at the bar antenna frequency w,.

and phase angle corresponding to the phase difference between the reference oscillator
and the acoustic mode.

This picture, shown in Fig.1.13, allows us to understand the role of acoustic losses
in measurements of mechanical resonators. First suppose the Q-factor was infinite.
Then the bar would be a perfect harmonic oscillator with constant amplitude and
phase. In this case the phase space coordinate of the bar is a stationary point with
fixed phase and amplitude.

In reality every mode is coupled to the thermal reservoir: the enormous set of
acoustic modes that define the heat capacity of a material, and which contribute
fluctuating forces that lead to mechanical thermal noise or Brownian motion. This
coupling, which depends inversely on the Q-factor, causes the amplitude and phase
of mechanical modes to fluctuate while maintaining a mean energy of kg7'. In phase
space, the state of the mode is no longer a fixed point. It undertakes a random walk. If
the Q-factor is very high the velocity of the state vector random walk in phase space
is very low. There is a clear and simple correlation: high Q = weak coupling to the
thermal reservoir = slow motion in phase space.

Now suppose you want to measure an external force which acts on the resonator
to change its state vector. If you make a measurement in a short period of time 7,
compared with the mechanical relaxation time 7., the changes in the state vector
will be small, so the thermal noise contribution will be minimised. However, if the
measurement time 7y, is long compared with 7,, the noise energy will be comparable
to kgT. In general if the measurement takes place in a short time 7, < 7,, the noise
energy change will be reduced by the factor 7, /7,. The phase space coordinates are
illustrated in Fig.1.13. The vector (P1, P2) represents the state change between two
successive measurements. The magnitude of this vector will be reduced the higher the
resonator Q-factor.

Referring to Fig. 1.12, let us ask about the role of the coupling factor 5. The
coupling factor scales the amount of mechanical resonator energy that appears in the
transducer. It reduces the total phase space change. Because there is always addi-
tive noise (as we will discuss later), reduction in 8 causes the measurement time to
be increased and the thermal noise contribution to increase. Thus small § = longer
measurement time = reduced sensitivity.

Thus the sensitivity of many mechanical measurements depends on the factor
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X2

X1

Fig. 1.13 Phase space coordinates and state vectors for successive measurements. The state
vector for a high @ resonator undertakes a random walk due to thermal noise, but the length
of the difference vector between pairs of measurements (P1, P2) is reduced if the Q-factor is
high.

B. Today many experiments aim to eliminate thermal noise in mechanical resonator
measurements (Underwood et al., 2015; Aasi, 2015). These typically need factors of
BQ ~ 10'2.

The reduction of thermal noise in high Q resonators can be expressed by the concept
of noise temperature: the magnitude of the energy fluctuations expressed in degrees
Kelvin.

Weber’s detectors achieved a noise temperature of about one tenth of the ambient
temperature, ~ 30K through use of high Q-factor. The NIOBE detector, discussed
below, achieved a noise temperature ~ 2 x 10~% of the 5K operating temperature
(Blair et al., 1995).

1.7 Impedance Formalism for Transducers

Using a single parameter 8 to characterise mechanical resonators coupled to trans-
ducers, as we considered above, is a gross over-simplification. We did not consider the
additive noise from the amplifier, nor did we consider the fact that there is no such
thing as a perfect one way valve. The last concept is behind the uncertainty principle,
which appears in any careful analysis, whether classical or quantum.

From a classical standpoint all of the above is encapsulated in the impedance
formalism. The concept of impedance is used extensively in radio frequency electronics
and transmission lines (such as the 50§ input impedance of many radio frequency
devices). If impedances are matched at any junction, then there is maximal power
flow without reflection. If there is an impedance mismatch, then energy is reflected at
the interface.

However impedance is a much more general concept that can be applied to all forms
of wave energy. A dielectric mirror is a device designed to offer a high impedance
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mismatch for light, while an anti-reflection coating matches the impedance of free
space to the impedance (for light) of a lens or window. A human ear contains complex
structures to match the acoustic impedance of the sensing system to the acoustic
impedance of the air. We will see that impedance matching was extremely important
to the design of cryogenic gravitational wave bar detectors.

Transducers can be described in the following matrix formulation which links the
force I’ and velocity u at the transducer input to the voltage V' and current I at the
output. Linking these quantities is the 2 x 2 impedance matrix Z.

F le Zlg u
-z w9

The four terms of Z can be determined for every transducer. A full 2-port descrip-
tion of the measurement chain then needs only to have included the effective noise
properties of the amplifier to obtain a full theoretical description of system perfor-
mance. Figure 1.14 shows this schematically. The amplifier has gain G and two noise
terms, the voltage noise spectral density S. and the current noise spectral density
S;. The transducer has a mechanical input impedance Z;;. This term has units of
force per unit velocity, or kg.s~!, and characterises the compliance of the transducer
input. We will see that this term can be strongly tuned in parametric transducers,
whether they be on resonant bars, optomechanical microresonators or laser interfer-
ometer gravitational wave detectors. The force and velocity are associated with the
interaction between the bar and the transducer.

The second term in the 2-port matrix is the forward transductance Zs;, which has
units of volts per meter per second, Vm~!s~!. This term describes the magnitude of
the output voltage due to a mechanical input measured as a velocity.

The terms associated with the output are the output impedance Zss and the re-
verse transductance Zj3. The latter term has units of k:g.amp’l. In general 75 is
always finite. It determines how the output circuit, in particular the current noise, is
able to act back on the input such that a voltage fluctuation at the output creates a

Gravitational Bar antenna Transducer

waves =l wm TA R Z11 le

Demodulator
and
Recorder

75~ ¢3/G

T, W, Z Iy

Fig. 1.14 A schematic diagram showing the measurement chain for a resonant mass gravita-
tional wave detector. Gravitational waves with very high impedance as discussed in the text,
interact with an antenna of mass M, temperature Ta, relaxation time 7, and frequency wa.
The transducer is described by four impedance matrix components, with force and velocity
at the imput and voltage and current at the output. The transducer is amplified by a linear
amplifier with voltage noise S. and current noise S;. Both ends of the chain are classical,
where back action can be ignored, but in between back action plays an important role.
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force fluctuation at the input. This force acts back on the mechanical resonator and
behaves similarly to the fluctuating forces from thermal noise. It creates a noise term
that increases as the measurement integration time increases, and is responsible for a
classical uncertainty principle that limits the performance of any classical transduc-
tion system. The same physics is described in different language in optomechanical
systems (see section 1.11.1). The reverse transduction in optomechanics often arises
from quantum radiation pressure noise, or in the classical regime, the intensity noise
of the laser light.

The output impedance Zs5 of the transducer is a simple electrical quantity mea-
sured in ohms. The only requirement for this term is that it satisfies an electrical
impedance matching condition with the amplifier.

In parametric transducers, which are intrinsically resonant devices, there is large
flexibility in their pump frequency, from radio frequency to optical, their tuning, their
Q-factors and their linewidths. The transduction matrix contains Lorentzian terms
associated with their resonant circuits which can provide strong resonant amplifica-
tion or suppression of signal sidebands. We will see later that this flexibility allows
surprising properties such as electromagnetic or optical springs (the name depends on
the nature of the pump radiation), self cooling, and negative dispersion.

To explore the properties of parametric transducers it is often useful to use mixed
pictures, sometimes thinking about them from a quantum picture, and sometimes from
a classical circuit standpoint. In the next section we will review the quantum picture.

1.8 The Quantum Picture For Parametric Transducers

In section 1.3 we looked at the general structure of a parametric transducer, while
in section 1.7 we examined a general 2-port matrix formulation for transducers. Now
we will restrict our analysis to parametric transducers, noting their most important
characteristic: they scatter radiation from a pump oscillator into modulation side-
bands. Conventionally parametric transducers create a pair of modulation sidebands.
The pump oscillator at frequency wjy, is modulated by the mechanical resonator at
frequency w,. The modulation sidebands occur at frequency wy, + w,. However single
sideband devices can also exist. One example is the three mode opto-acoustic para-
metric amplifier (Zhao et al., 2009) which we will discuss in section 1.12.

If we consider parametric transducers from a quantum mechanical viewpoint we
must consider the mechanical resonator to be a system of phonons and the pump os-
cillator to provide a stream of photons. In this picture the transducer scatters photons
with phonons as illustrated in Fig. 1.15. In the quantum picture there are two sep-
arate processes taking place simultaneously. They can be described by simple vertex
diagrams as shown in Fig. 1.16.

Both Figs. 1.15 and 1.16 emphasise one key point. If energy is conserved in quantum
scattering, and if the pump oscillator is a source of photons entering the transducer,
then the signal phonon power flow direction is uniquely determined by the sideband
frequency. The upper sideband can only be created if a phonon from the mechanical
resonator add to the energy of the pump photons. Therefore acoustic energy must flow
out of the resonator to create an upper sideband. Similarly a lower sideband photon
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Transducer

Fig. 1.15 Diagram of a transducer as a device that scatters mechanical resonator phonons
wa with pump photons wy,, to create photons at the upper and lower sideband frequencies
W+

upper sideband

lower sideband

Fig. 1.16 The processes illustrated in Fig. 1.15 have been broken down into two separate
scattering processes, one which creates upper sidebands and the other which creates lower
sidebands. Notice that the power flow direction for the phonons has opposite directions.

can only be created if phonon energy w, is extracted from wy. This phonon energy
must flow back into the resonator.

The above ideas were proved classically by Manley and Rowe for lossless non-
linear electrical circuits in the 1950s (Manley and Rowe, 1956). Both the classical and
quantum approaches are direct results of energy conservation, but in the quantum
picture the conclusions are quite obvious as we saw above.

We have to add just one additional observation to come to a very important con-
clusion. We started by considering the parametric transducer as a high Q electrical
circuit pumped at its resonance. However the pump frequency does not need to match
the transducer electrical resonance. If the transducer cavity frequency (such as the
re-entrant cavities discussed earlier) is tuned so that its resonance matches the lower
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sideband frequency, then naturally the lower sideband will be preferred over the upper
sideband. This condition is called blue detuning because the pump oscillator frequency
is above the cavity frequency. From a classical standpoint, the lower sideband will have
an enhanced amplitude, but from a quantum standpoint excess phonons will flow into
the mechanical resonator, increasing its occupation number.

Equally if the cavity is tuned so that its resonance matches the upper sideband
frequency, (a red detuned pump oscillator) then more phonons will flow out of the
mechanical resonator. Its phonon occupation number will decrease.

These changes in occupation number are described as heating or cooling of the
mode. Mode cooling, also called self damping or cold damping, reduces the quality
factor of mechanical modes, but in a noiseless way, without addition of classical noise.
Hence the term cold damping. Mode heating starts by increasing the mechanical res-
onator Q-factor (but not in a way that increases thermal noise), but at higher pump
power levels can lead to instability when the phonon injection rate exceeds the loss rate
from the intrinsic quality factor of the mechanical resonator. This is called parametric
instability.

Cold damping can be very useful. High Q systems are very difficult to work with
because accidental excitations may go on ringing endlessly and can often exceed the
measurement system dynamic range. Apply cold damping and there is no change in
noise performance (because the thermal reservoir is still providing the same fluctuating
force) but the modes damp rapidly and the equilibrium signal amplitude is low.

In the above discussion we have ignored zero point motion. In 1962 Heffner (Hefner,
1962) showed that the uncertainty principle limits the noise temperature of a linear
amplifier to
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This means that a transducer will always experience an additive noise contribution
due to the amplifier which follows it, with a minimum possible added noise energy
which according to Heffner is ~ 1.4 times the photon energy. Given the quantum limit
to the noise energy, the amplifier must always have finite current noise. This acts back
on the transducer via the reverse transductance Z;5. Thus a perfect linear transducer
must always include back action noise which acts to disturb the mechanical resonator,
and series noise which creates an additive contribution. Even for a lossless, transducer
with zero classical noise, quantum noise and the thermal noise of the resonator itself
sets significant limits to measurement.

In section 1.6 we saw that the effective temperature due to thermal fluctuations
reduces as the ratio of the measurement time to antenna relaxation time 7y, /7,. The
measurement noise (expressed as noise temperature T;) is given by (Blair, 1980)

i oh
T, =7, ¢

— Tt = L.
Ta kBIDQ ( 7)

where T, is the temperature of the resonant bar antenna.
Remembering that 7, = Q/w,, we can now specify the Q-value Qq required to
reach the quantum limit given in Eq. 1.6. It follows that
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Similarly we can ask what temperature T is required to achieve the quantum limit
for a given Q-factor:

(1.8)
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Any mechanical measurement using a transducer and linear amplifier must sat-
isfy the above conditions to achieve quantum limited performance. For resonant bars,
detector noise contributions include acoustic noise generated within the cryostats,
non-ideal amplifiers and other noise sources. The best cryogenic resonant bar detec-
tors came within 3 orders of magnitude of the quantum limit. In laser interferometer
detectors where the physics of the measurement system is similar, detectors are within
an order of magnitude of quantum limited performance and small scale optomechanical
devices have achieved quantum limited performance at higher mechanical frequencies.

The above limits set by the Q-factor, temperature and quantum noise are valid
for resonant mass gravitational wave detectors, and any resonator-transducer system
where it is desired to detect external transient forces in which changes in the state of
the resonator are measured in a time 7, short compared to the mechanical relaxation
time 7,.

1.9 The impedance matrix for parametric transducers

By treating a parametric transducer as a quantum scattering device we have seen
that there are two separate scattering processes, one which extracts energy from a
mechanical resonator, and the other one that returns energy to the resonator. While
the two port model discussed above is valid, it is useful to extend the formalism by
treating the sidebands separately. This leads to a new impedance matrix in which we
separate all the impedances into upper and lower sideband components, corresponding
to the two diagrams in Fig. 1.16. The new impedance matrix, which identifies upper
and lower sideband components by +/— subscripts is given as follows

V,(w) Z__ Z,l 0 I_
Fl(w) = Zl_ Z11 Z1+ (51 (110)
Vi(w) 0 ZunZy ] |1y

Here F; and u; are the force and velocity at the transducer input while VL and 4
are the upper and lower sidebands voltage and current at the output.

In the impedance matrix, we see forward transductance components Z41, which
describe the signal transduction to each sideband. Similarly each sideband can indepen-
dently act back on the input via Z;.. Each sideband has a separate output impedance
Z__;4+4. However the input impedance does not separately access the sidebands, so
this is given by Z;;. Here we summarise an analysis of parametric transducers pre-
sented by Blair (Blair, 1980), based on this approach. The analysis was based on the
equivalent circuit shown in Fig.1.17.

The LC circuit in in Fig.1.17 assumes a parametric transducer with capacitive
sensing, driven by a pump oscillator with frequency w, close to the LC resonance
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Fig. 1.17 Equivalent circuit for a parametric transducer. i,(wp) represents the pump oscil-
lator.

frequency wy. Normally we are interested in low loss transducers for which R, is small.
Tuning of the pump frequency relative to the cavity frequency changes the magnitude
and phase of the impedance components, and has particularly strong effects in the
high electrical Q-factor limit, which is often described as the resolved sideband limit.
In particular the input impedance and the forward transductance are very strongly
tuned by the tuning of the pump frequency. Of particular interest is the extreme
tunability of the mechanical input impedance.

The mechanical input impedance is given by the sum of two complex terms, one
for each sideband, as given below.

3GV [m@(l —2jA4Q) w-Q(1+2jA Q)
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where Cy is the rms value of the capacitance of the transducer, V}, is the pumping volt-
age amplitude, @ is the quality factor of the transducer, w, is the resonant frequency
of the bar antenna and wy is the resonant frequency of the cavity. In this equation the
delta terms that describe the frequency detuning are given by
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Zyy = (1.11)

Equation 1.11 can be re-written in terms of absolute detuning of pumping mi-
crowave field with respect to the cavity resoance §, coupling coeffcient 3, and the
cavity damping rate -y defined as v = wp/Q. As we can see later, this rewrote formula
is directly map to the input mechanical impedance of laser interferometer detectors
Eq. 1.22, given by:
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where the second equality comes from the definition of coupling coefficient g in Eq. 1.4.

If the Q-factor rises high enough that the linewidth is small compared to the
mechanical modulation frequency, the input impedance experiences a strong peak when
the transducer is pumped at the sideband frequency.
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While this resolved sideband behaviour was discovered in the context of resonant
bar gravitational wave detectors described in the next section, it was not applied
in this context because the electrical Q-factors were not high enough. However the
same physics is relevant to laser interferometer gravitational wave detectors and to
optomechanical devices.

The real part of the input impedance is shown in Fig.1.18 as a function of the
detuning frequency dw, = wp, — wp. The real component is analogous to a resistive
load in a transmission line. However in the parametric transducer it can be varied
between large negative and positive values, and can be tuned to zero for small negative
detuning. The same curve for positive detuning, on a log-log scale is plotted in Fig.1.19.
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Fig. 1.18 The real part of Z;1 for two values of quality factor showing the impedance
changing between negative and positive values and near zero for zero detuning.

Remembering that an impedance ratio at an interface determines the transmitted
and reflected power, negative input impedance describes a system for which the re-
flected mechanical signal power is greater than the incident mechanical driving power.
Microwave parametric amplifiers created in the 1960’s exploited similar negative resis-
tance in varactor diodes to enable reflective amplification of microwaves. In the context
of transducers, negative impedance can lead to instability. However in the context of
laser interferometers, mirror acoustic mode amplification by three mode interactions
(a form of resolved sideband parametric transducer) have been shown to be useful as
a means of predicting parametric instability at higher power (Ju et al., 2014).

Large positive mechanical input impedance describes a situation where the me-
chanical input impedance can be tuned to match the mechanical output impedance
of a mechanical resonator, under which conditions the transmission of acoustic power
is optimised. In the case of the NIOBE gravitational wave detector, a parametric
transducer was matched to a secondary coupled mechanical resonator attached to the
resonant bar, as discussed in the next section. The third interesting case, zero input
impedance, describes the case where the transducer has minimal interaction with the
mechanical signal source. It draws no net energy from the mechanical resonator.
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Fig. 1.19 The real part of Z;1, shown with log scales. We see that high Q-factor suppresses
the detuned input impedance except for when the detuning matches the sideband frequency.
The sideband frequency used here was chosen to match the frequency of the NIOBE detector.

In 2015 Ma and Blair et al applied an analysis similar to the impedance analy-
sis above, to a laser interferometer gravitational wave detector (Ma et al., 2015a), to
answer the question: do laser interferometers absorb energy from gravitational wave
detectors? While the analysis was presented in a modern quantum framework, its
derivation was equivalent to the 1979 results discussed here. Laser interferometers to-
day operate with near zero detuning and hence near zero mechanical input impedance.
As the above analysis shows, the impedance can be raised by using detuning, such that
the energy absorbed from gravitational waves is maximised.

This important result replaces the resonant bar with spacetime itself. The impedance
mismatch of interest is that between spacetime and the suspended mirrors of a laser
interferometer. The laser interferometer is a parametric transducer, which has tunable
input impedance. If the input impedance is raised, more of the gravitational wave
signal will be absorbed by the interferometer. Intuitively one would expect that this
could increase the signal to noise ratio but this conjecture has not yet been proved.

The imaginary part of the input impedance is also very important. This is like a
reactance in a transmission line and for the transducer it represents electromagnetic
stiffness, which in opto-mechanics is described as an optical spring.

In general the reactive component of the input impedance can strongly tune the
resonant frequency of the mechanical resonator, while the resistive components tune
the damping. The slope of the reactance curve determines whether the spring constant
is positive or negative, while the magnitude of the real part determines the damping.

If the negative spring of the transducer exceeds the positive spring of the mechanical
resonator it can create dynamical instability similar to that of an inverted pendulum.

Fig.1.20 shows the reactive component of the input impedance for two values of
quality factor. The slope of these curves determine the strength and the sign of the
optical spring. For zero detuning the spring term is zero but for detuning equal to the
sideband frequencies strong positive and negative springs appear. A very important
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Fig. 1.20 The imaginary components of the input impedance represent the ”optical” spring
properties of parametric transducers which create positive or negative damping and cause
the transducer to change the mechanical frequency of the resonator as shown experimentally
in Figs. 1.27 and 1.28.

property of the springs is apparent from comparison of the above curves: positive
springs are associated with negative damping, while positive damping is associated
with negative springs.

In the next section we will see results from the resonant bar NIOBE that confirmed
the above behaviour. Interestingly, the strength of the electromagnetic spring was
sufficient that a few milliwatts of microwave power could significantly tune the resonant
frequency of a 1.5 tonne mechanical resonator.

We now go on to discuss the forward transductance of the parametric transducer.
The two sideband components (indicated by the + and - signs) of the forward trans-
ductance are given by:

V,Q [(w 1-2jA4+Q
Ziq =42 ) ===, 1.14
+ 21wo (wa ) (1 +4Q2?A% ( )

Normally both sidebands of the transducer will be amplified and demodulated
together. Then it is appropriate to combine both sideband transductances into the
combined forward transductance which is equivalent to the term Zs; of Eq. 1.5. Then
the total signal voltage for double sideband detection Vpgp is given by

Vbss = (|Z+1| + |Z,1|)u1. (1.15)

As a function of detuning the forward transductance shows a resonant peak at
the sideband frequencies, especially for high Q-factor. However Fig. 1.21 shows also
that the transductance is only weakly dependent on detuning for small detuning. This
means that a transducer in which there is say, weak seismic noise modulation causing
the gap spacing to be modulated, will have negligible changes in transductance if the
modulations are small compared with the sideband frequency. However, such motion
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would be accompanied by significant input impedance variations as shown in Figs. 1.19
and 1.20.

This phenomenon of impedance variation due to the offset frequency dependence
of optical springs is very important in ground based gravitational wave detectors.
Low frequency seismic-induced motions are difficult to avoid. They always give rise to
seismic frequency modulation. The phenomenon was clearly observed in the NIOBE
detector and is commonly observed in laser interferometer detectors. In NIOBE low
frequency tracking was used to minimise this effect.

10°
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—Q=10’
Q=108

forward transductance Z2 ’

0 2000 4000 6000 8000 10000
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Fig. 1.21 The forward transductance is not strongly dependent on detuning except in the
high Q-limit, where it can be substantially enhanced.

1.10 The design of NIOBE, a 1.5 tonne resonant bar with
superconducting parametric transducer

In the previous sections we have seen the implementation of non-contacting re-entrant
cavity transducers controlled in three dimensions and vibration isolated by magnetic
levitation. The impedance formalism for parametric transducers was presented, and
results were used to illustrate the complex behaviour of such systems.

The need for impedance matching has been emphasised in the preceding sections.
Matching to a lower impedance increases the mechanical amplitude and decreases
the applied force. This acts to increase the signal to noise ratio if the transducer
performance is dominated by series noise, such as the noise generated by frequency
fluctuations of the pump oscillator.

The output impedance of a mechanical resonator such as a large bar is given by
Muw,. Its large magnitude is difficult to match to a small transducer. The mechanical
input impedance is determined by the transducer parameters as discussed above, and
is tunable by changing the magnitude of the pump signal. To obtain reasonably good
impedance matching for NIOBE a secondary resonator mass of ~ 1kg was desirable.

The simplest means of impedance matching is to couple a low mass harmonic os-
cillator to the high mass oscillator. This provides narrow band impedance matching,
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Fig. 1.22 Mechanical model of a 2-mode antenna with a transducer. Such models can easily
be extended to multi-element impedance matching stages. In general impedance matching
allows increase in bandwidth.

because the coupled harmonic oscillator transfers energy between the resonator compo-
nents on a relatively long time scale. Broadband impedance matching was exquisitely
developed in the days of the acoustic gramophone. Devices such as levers and acous-
tic horns were used to couple the high impedance of a stylus needle moving in a
record groove, to a the low impedance of the air. Devices based on tapered whip-like
cantilevers also allow broadband resonant gain. If several tuned mass harmonic oscil-
lators are connected in a chain with successively lower masses it is possible to achieve
N-stages of impedance matching. Figure 1.22 shows a block diagram of a two stage
system, which can easily be elaborated to include additional stages (Blair et al., 1987).

Figure 1.23 shows the predicted bandwidth of various single, two and three stage
impedance matching networks. In the presence of significant noise sources, both sen-
sitivity and bandwidth are increased by using extra stages. Yet these curves also
emphasise the intrinsic narrow band nature of resonant bar detectors, compared with
laser interferometers that achieve ~ 1kHz bandwidth.

The concept for the readout of NIOBE was chosen to facilitate a) impedance match-
ing; b) a means for a simple low acoustic loss mechanical design for the re-entrant cavity
transducer; and c) a non-contacting coupling as illustrated in Figure 1.24. The need
for simple mechanical integrity was emphasised because complex mechanical elements
such as nuts and bolts have always been well known as sources of acoustic loss.

A simple single impedance matching element consisting of a pure niobium tapered
bending flap on a massive base was used (Fig. 1.24). It was attached to the bar
using very thin layers of epoxy resin bonding pads to create a very low loss acoustic
bond. It was this innovation that allowed the antenna to be operated without input
and output cables. Instead a pair of microstrip antennas enabled radiative coupling
of the microwave signal into and out of the transducer. This eliminated a critical
source of noise: acoustic vibration from the noisy cryogenic environment transmitted
as transverse acoustic waves through flexible cables.

The transducer shown in Fig. 1.24 had a single short semi-rigid cable between the
transducer and the microstrip antenna. It was fixed in location to prevent induced
vibration and losses. A simplified diagram is shown in Figure 1.25.

To obtain optimum noise performance a cryogenic microwave high electron mobility
transistor (HEMT) amplifier with noise temperature just a few times larger than the
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Fig. 1.23 Strain sensitivity curves showing the possibility of improving both bandwidth and
sensitivity of resonant mass gravitational wave detectors by modified impedance matching.
Curve A shows the sensitivity of NIOBE. Curve E shows the ultimate achievable sensitivity
that could have been achieved using three mechanical modes for improved impedance match-

ing combined with a quantum limited amplifier and reduced oscillator phase noise. Possible
intermediate cases are also shown.
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Fig. 1.24 Schematic diagram of the NIOBE transducer system showing the re-entrant cavity
parametric transducer and the non-contacting readout system. The base side of the transducer
was thicker than shown here to prevent epoxy-induced distortions from deforming the gap
spacing during cooldown. Figure 1.22 shows a mechanical model of the secondary resonator.

quantum limit (73, ~ 6K) was chosen to amplify the signal from the re-entrant cavity.
Such amplifiers, designed for radio astronomy, have excellent noise performance but
only if the signal level is very small.

While the expected signal sidebands from the vibration amplitude of the niobium
bar would be small, it would normally be almost impossible to set the microwave
couplings at each interface to be so close to unity that a significant amplitude of
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Fig. 1.25 The readout system for NIOBE which included a cryogenic interferometer and
a sapphire loaded cavity oscillator (SO) and a non-contacting readout system to prevent
cryostat acoustic noise from reaching the bar, and a servo system for compensating for phase
changes.

carrier signal would not be reflected back into the amplifier.

To overcome the consequent amplifier saturation problem, a cryogenic interferom-
eter was used to suppress the microwave carrier signal. The signal was obtained at
the differential ”dark port” of the interferometer. This allowed the HEMT microwave
amplifier signal level to be maintained at less than about -60dBm. Electronically ad-
justable phase shifters and attenuators were required to provide the correct amplitude
and phase of pump signal such that the the pump power at the amplifier was suffi-
ciently suppressed.

The phase shifters and attenuators themselves had to be specially developed for
the NIOBE transducer. They consisted of high permeability low loss ferrite-loaded
stripline circuits for which the permeability could be tuned using a superconducting
solenoid. Tuned beyond their transmission line cut-off, the devices acted at attenuators,
while in the linear regime they acted as phase shifters. Three such devices in series
were required to access 2w phase shift and up to 20dB attenuation. They operated
with fixed trapped supercurrents. A fourth device was used to provide a small servo
controlled phase correction signal to compensate for low frequency changes in the
spacing across the non-contacting antennas due to residual pendulum motion of the
niobium bar (Ivanov et al., 1993). This was required because the bar, suspended by
a long chain of vibration isolation components, acted like a simple pendulum with a
rocking frequency below 1Hz.
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An unavoidable problem was caused by having the re-entrant cavity fixed in loca-
tion relative to the sensing surface of the bending flap, rather than being magnetically
levitated in the configurations discussed earlier. Because the microwave resonant fre-
quency of the transducer could not be adjusted, it was impossible for this frequency
to be matched to the frequency of a fixed frequency low phase noise oscillator. Preci-
sion bonding of the cavity to the transducer assembly to about 0.3 microns resolution
caused 100MHz errors in the transducer frequency.

As part of the NIOBE project ultralow phase noise sapphire loaded cavity oscilla-
tors had been created, with quality factors ~ 10'°. These oscillators had exceptionally
low noise, but could not be tuned to the transducer frequency (Tobar and Blair, 1992).
A variable frequency low phase noise source was required as the pump oscillator.

When oscillator signals are mixed to create a new frequency, the noise performance
is generally dominated by the worst oscillator. The best option at that time was to
choose a frequency in the frequency band where the best possible frequency synthe-
sisers could be used in conjunction with an ultralow phase noise oscillator of fixed
frequency. The composite oscillator so created consisted of a sapphire loaded cavity
oscillator (Tobar and Blair, 1992), combined with the best Hewlett-Packard frequency
synthesiser operating at around 450MHz.

The entire microwave assembly shown in Figure 1.25 combined very high per-
formance cryogenic microwave electronics consisting of the supercurrent tuned phase
shifters, attenuators, circulators and microwave amplifiers, operating in a vacuum at
5K. The room temperature demodulation section included two mixers for deriving
the main signal output and the servo control signal used to compensate for the low
frequency rocking of the suspended niobium bar. The entire systenm work remarkably
well over many years. Thanks to masterful microwave and electronic engineering by
Eugene Ivanov, the phase servo worked so well that only in very large earthquakes,
when rocking amplitudes rose to ~ dmm, did the servo control systems lose lock.

One of the first experimental problems encountered when working with very high
Q-factor mechanical resonators is that they can be excited accidentally and maintain
very large amplitudes for many hours as shown in Fig. 1.26. This makes experiments
difficult and can lead to saturation of amplifiers and consequent excess noise. A simple
solution to this problem is the use of self damping or mode cooling through red-
detuning of the pump oscillator to the 3dB point of the transducer cavity response.
Self damping of the 1.5 tonne Nb bar was very effective. The Q-factor of mechanical
modes at 694Hz and 713Hz were reduced by 3 orders of magnitude using a few hundred
microwatts of incident microwave power as shown in Fig. 1.27. In Fig. 1.28 full data
for the electromagnetic spring effect in NIOBE is shown. Because it takes some time
for parametric instability to build up it was possible to explore the electromagnetic
springs in the blue detuning regime where the Q-factor becomes infinite.

NIOBE operated for long periods of time between 1993 and 2000 in the 5-detector
International Gravitational Events Collaboration. Four of the detectors used SQUID
transducers. NIOBE alone used a parametric transducer. The detector array was able
to set new upper bounds on the strength and the rate of gravitational wave bursts
(Allen et al., 2000). First experimental search for gravitational wave bursts was con-
ducted by a network of resonator bar detectors, at a sensitivity ~ 4 x 10721/ VHz.
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Fig. 1.26 A ringdown curve for NIOBE, showing amplitude decay of the 700Hz fundamental
mode by about 25% in six hours.

Qt Normal mode Q-factors

-60 -50 -40 =30 -20 =10 1]
Pl . incident microwave power to transducer [dBm]

Fig. 1.27 Self cooling as a function of microwave pump power. The Q-factor of the funda-
mental acoustic modes of the 1500kg Nb bar-transducer system was reduced by a factor 10°
using a few hundred microwatts of input power.

During the development of NIOBE the UWA group was also exploring other trans-
ducer technologies. Of particular interest here is the sapphire dielectric transducer
(Peng, Blair and Ivanov, 1994; Cuthbertson, Tobar, Ivanov and Blair, 1998). The
transducer element consisted of a pair of whispering gallery mode sapphire dielectric
resonators structured as a face to face pair of mushrooms. They operated at microwave
frequencies. The transducer was tuned by the interaction of the evanescent waves be-
tween the resonators. This transducer had a high Q-factor at room temperature ~ 108
K, and could be expected to have an extremely high Q-factor at cryogenic tempera-
tures @ ~ 10°. While its tuning coefficient was lower than that of a re-entrant cavity,
this was outweighed by its high Q-factor. The entire device is shown in Fig.1.29.
It used an interferometric readout in which one arm contained a reference sapphire
loaded cavity resonator. In the cryogenic regime the device operated in the resolved
sideband limit for audio frequency signals. A room temperature version was tested on
a Virgo superattenuator, and yielded very impressive sensitivty, able to see low fre-
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Fig. 1.28 The frequency dependence of the real and imaginary parts of the input impedance
act on the two longitudinal normal modes of NIOBE to change both the quality factor (top
curves) and the mode frequency (bottom curves). Red detuning lowers both the quality
factor and the mode temperature (i.e.the thermally excited amplitude distribution) because
it enhances the coupling to the upper sideband which absorbs energy from the resonator.
Detuning also creates an electromagnetic spring through the imaginary components of the
input impedance. A few hundred microwatts of microwave power is sufficient to cause one
mode of the 1500kg bar to be detuned by more than 1Hz.

quency acoustic modes that were hidden by the noise of conventional accelerometers,
as shown in Fig.1.30 (Peng and Blair, 1994).

While gravitational waves were not detected by resonant bar detectors, they set
important upper limits. NIOBE uncovered the beautiful physics of optomechanics with
parametric transducers, and was able to make displacement measurements ~ 10~ m.
The best noise temperature of about 100uK was achieved in the final run in 2000. Of
particular significance, NIOBE contributed understanding and knowhow which could
be applied to laser interferometer gravitational wave detectors, from high performance
vibration isolation to the fundamental optomechanics of the devices themselves.

1.11 Advanced Laser Interferometer Gravitational Wave Detectors

In previous sections, we have seen the conceptual similarity between the designs of
resonant bar detectors with parametric transducer and the laser interferometers. Many
important design ideas of modern laser interferometric gravitational wave detectors,
such as interferometric readout for balancing the technical noises, resonant cavities,
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Fig. 1.29 The sapphire dielectric cavity transducer. High Q-factor whispering gallery modes
interact through their evanescent fields. A solid spindle sapphire loaded cavity configured as
a loop oscillator provides a microwave field and acts as pump oscillator for the interferometric
pair of resonators. The solid resonator has high Q and low phase noise while the split resonator
is sensitive to acceleration due to its membrane suspension. The transducer resonator is locked
to the microwave source via a very low frequency feedback loop which applies a weak force
to the membrane.

frequency stabilisation, etc, can be found in the design of readout system of the NIOBE
resonant bar detector. Moreover, many of the important physical principles in modern
laser interferometric detectors such as the quantum limit, and modification of the
system dynamics by optomechanical interactions were manifest in the physics of bars
with parametric transducers. This similarity is not surprising. Both the principles of
interferometric detectors and the parametric transducer readout of a resonant bar are
based on the coupling between mechanical degrees of freedom and electromagnetic
fields. Both are optomechanical parametric transducers.

The differences between the bar detectors and the interferometric detectors are also
important to highlight, because they deepen our conceptual understanding of both
systems. First, as we saw earlier, the bar detector used the extremely high-Q acoustic
vibration of the bar to suppress thermal noise. This led to a relatively narrow detection
bandwidth. Laser interferometers also use high-Q resonance to suppress thermal noise.
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Fig. 1.30 The calibrated acceleration responses of a sapphire parametric transducer com-
pared with a high quality accelerometer. Both devices were suspended on the bottom of a
high performance multistage ”superattenuator” vibration isolator developed for the Virgo
laser interferometer gravitational wave detector. Numerous acoustic modes in the 0-10Hz
band were only discernable with the sapphire transducer accelerometer.

However by measuring the spacing between nearly free masses, the laser interferometer
achieves relatively large detection bandwidth especially if it works in the so-called
resonant sideband extraction mode as used by Advanced LIGO.

In the resonant bar, the gravitational wave tidal forces do work on the bar, thereby
exciting the fundamental internal longitudinal acoustic mode of the resonant bar.
In interferometers the center of mass of the mirrors respond like test particles to
the incoming gravitational tidal forces. At the technical level, the electromagnetic
fields used for sensing the motion of test masses is at the optical frequency in laser
interferometers, where as we saw above, microwave fields were used for NIOBE. This
“simple” change of electromagnetic wave frequency makes a big difference for detector
sensitivity, since advanced optical coating technology allows the creation of ultra-high
optical power (several hundred kWs). In late 1990s, the interferometer designs finally
won the race for sensitivity.

On 14 September 2015, Advanced laser interferometers (AdvLIGO) detected the
gravitational waves from a black hole binary coalescence event (Abbott, 2016). This
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detection was a great triumph of optomechanics. Advanced laser interferometers are
very sophisticated parametric transducers that directly receive gravitational wave sig-
nals. The improvement of LIGO by a factor ~ 3 in strain sensitivity (compared with
initial LIGO in 2006) brought signals over an audibility threshold. Below threshold we
could not resolve signals. Above the threshold we could recognize signals and obtain a
remarkable amount of information regarding black holes that were probably created by
the first massive stars in the universe. The discovery confirmed the theory of detection
in which laser beams measure spatial strains between freely suspended test masses.
It also gave us a calibration for astrophysical signals which allows firm predictions
of the benefits of sensitivity improvements. It opened the era of gravitational wave
astronomy.

Now that signals have been detected, the payoff in increasing LIGO sensitivity is
enormous. Each factor of 3 improvement increases the accessible volume of the universe
by approximately 3% = 27 times. This has multiple benefits: a) It increases the event
rate for the type of sources already detected (~ 30 — 30 solar mass black holes) by 27
times allowing statistical studies to begin. b) It greatly increases the signal to noise
ratio of nearer events (such as those already detected) allowing much greater resolution
of system parameters and deeper testing of general relativity, and c) it increases the
probability of detecting new sources such as stochastic backgrounds and continuous
wave sources.

The first detection of gravitational waves combined the optomechanics of kilometer-
scale high optical power dual recycling interferometers, with the minimization of ther-
mal noise by use of very high Q-factor mirrors and suspensions, and prevention of
unwanted optomechanical three-mode interactions that lead to instability. In this sec-
tion we will focus on specific aspects of interferometric detectors a) their fundamental
nature as parametric transducers, b) the parametric interactions that can cause insta-
bility, and c) the use of optomechanics to create devices able to enhance the sensitivity
of gravitational wave detectors.

1.11.1 Laser interferometer as a parametric transducer

The schematic diagram of Advanced LIGO is shown in Fig.1.31. In essence the device
measures changes in distance between two widely spaced mirrors, through the phase
shift of a very high quality factor optical mode, due to cavity length changes. The
cavity quality factor is approximately the cavity finesse (set by the mirror reflectivity
and transmissivity) times the number of free space wavelengths in the cavity. Typically
the quality factor is 10'2.

In practice single cavity detection is not currently possible, due to technical noise
sources. A Michelson interferometer configuration allows the detector to become a
differential device like a Wheatstone bridge, in which technical noise sources such as
intensity and frequency noise are balanced out. The microwave interferometer in the
NIOBE transducer readout (Fig.1.25) played a similar role. The 4km arm cavities
in the interferometer are designed to enhance the signal by multi-reflections. Theses
two arms are carefully matched so that the laser field will destructively interfere at
the dark port (See Fig.1.31). Under the influence of gravitational waves one cavity
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is lengthened when the other cavity is shortened and the beamsplitter extracts this
signal at the dark port.

A real detector contains a succession of serial and nested optical cavities with op-
tical linewidths varying from Hz to MHz. While complex, we want to emphasise that
fundamentally the detectors are parametric transducers similar to the transducers we
discussed earlier. Similar to the bar detector, the basic structure of laser interferometer
can be described by the general block diagram we saw earlier (Fig.1.14) for a resonant
bar with a parametric transducer. Instead of using a resonant bar as an intermediary
device between the gravitational waves and the transducer, the antenna and trans-
ducer are integrated into a single device. The test mass mirrors and the Fabry-Perot
Michelson interferometer form the parametric transducer. The pump frequency is the
stabilised laser light which is detected by homodyne detection at the beamsplitter.

In the local Lorentz frame, the optomechanical interaction between the cavity
field and the test mass differential motion transduces the mechanical signal to the
optical signal by phase modulation of the optical cavity laser field. As with the other
parametric transducers we considered, strong optomechanical coupling is required to
obtain a large transduced signal.

The method for increasing the optomechanical interaction is to enhance the intra-
cavity laser field intensity by adding a power recycling mirror (PRM). Because the
interferometer operates with a dark fringe at the output, the laser input power is
normally reflected. The power recycling mirror resonates the pump laser light within
the interferometer, allowing substantial power build up as long as the technical power
losses from scattering and absorption are low. The invention of power recycling was
a breakthrough that allows the creation of very high optical power interferometers
without the need of extremely powerful laser sources. For example, in current running
AdvLIGO, a 20W laser source can create ~ 150kW intra-cavity power, enhanced
by a factor of 7500. This power recycling concept was invented by Ron Drever at
a Les Houches Summer School in 1981 (Drever et al., 1981). While increasing the
optomechanical coupling, the high power also suppresses quantum shot noise.

The power recycling interferometer can be treated as a simple Fabry-Perot inter-
ferometer with a much higher power laser. In the presence of gravitational waves of
frequency (2, the intracavity laser field is perturbed by relative test mass motion at this
frequency. This perturbation generates two signal sidebands with frequencies wq =+ 2.
The signal is extracted at the dark port of the interferometer.

The gravitational wave signal frequency () appears only at the dark port of the
interferometer, because of the asymmetric action of the gravitational waves. Common
path effects in the two arms are canceled at the interferometer dark port. It is therefore
possible to resonantly enhance the signal sideabands at the dark port by introducing
a signal recycling mirror (SRM) (Meers, 1988). The signal recycling mirror sees a
composite cavity created by the two input test mass mirrors.

The design of advanced laser interferometer detectors combines power recycling
and signal recycling, and is normally described as a dual recycling interferometer.
This dual recycling interferometer can be described using two effective single cavities
as shown in Fig.1.31 (For details, see (Buonanno and Chen, 2003)).

Earlier we saw how the behaviour of parametric transducers could be modified
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Fig. 1.31 A simplified schematic diagram of Advanced LIGO showing the main optical
cavities. Left panel: the Dual Recycling interferometer configuration. This configuration can
be described by two effective single-cavities as shown in the right panel. The common mode
cavity corresponds to equal length changes in both arms. The differential mode cavity is
sensitive only to differential length changes between the two arms, such as those created by
gravitational waves. The common mode cavity is normally chosen to be resonant with the
pump laser frequency for maximal build-up of intra-cavity power. The resonant frequency of
differential mode cavity is detuned by tuning the signal recycling mirror. Since the common
and differential modes both involve motion in the two interferometer arms, these equivalent
representations require the mass of test mass mirrors and the intra-cavity power to be doubled
compared to a real detector. (Buonanno and Chen, 2003).

by detuning the pump frequency relative to the cavity resonance frequency. In a very
similar manner, many new possibilities are introduced to laser interferometer detectors
by tuning the signal recycling cavity. For example, the tuning of the position of the
signal recycling mirror changes the phase of the equivalent mirror created by signal
recycling mirror and input test mass mirror. For this reason, adjusting the position of
signal recycling mirror is equivalent to the detuning of the parametric transducer in
Section 1.9, which leads to optomechanical changes to the dynamics of the differential
motion of the test masses, through the action of optical springs.

For parametric transducers we used a 3x3 impedance matrix to describe the re-
lationship between the input and output quantities as given in Eq.1.10. Here we use
a similar formalism to describe laser interferometers. Specifically we need to be able
to describe how the intra-cavity laser field is disturbed by noise sources, such as the
quantum fluctuations that enter from the dark port, stochastic motion of the test mass
mirrors driven by thermal fluctuations and seismic motion and classical optical noise
due to light scattering and other processes. These disturbances contribute noise that
contaminate the signal field. Here, for simplicity, we only consider the quantum noise
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entering the dark port of the interferometer and develop an impedance matrix similar
to Eq. 1.10.

Impedance measures how a physical system responds to external excitation: me-
chanical impedance describes the velocity response to the external forces; electronic
impedance describes the voltage generated by the injected current. In optical resonator
systems, the impedance tells us how the cavity responds to inputs, which may be me-
chanical motion or optical fields. The impedance matrix formalism presented here is
not normally used. However, the individual input-intracavity field relations are widely
used in computing the sensitivity of gravitational wave detectors, for example see Ref.
(Kimble et al., 2001).
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Fig. 1.32 Transducer diagram of interferometer systems. The thick arrow here is the pump-
ing laser field with frequency wo. It is modulated by the test mass motion driven by grav-
itational waves at frequency 2. The input quantum vacuum also enters the system and
contributes quantum noise.

The impedance matrix we present below in Eq. 1.16 actually relates the input
fields and the relative velocity of the test masses to the intra-cavity fields of the
interferometer and the force acting on the test masses. For comparison, we used the
same impedance subscripts as in Eq. 1.10. This new impedance matrix, together with
a simple equation (Eq. 1.17) that relates the intra-cavity fields to the outgoing fields,
provides a useful tool for analyzing the quantum behavior of the laser interferometer.

In Eq. 1.16 we denote the sideband frequency component of the input vacuum
fields that enters the dark port of the interferometer by &SO) :i:Ql' These fields can also
be modified by squeezing.

The intra-cavity sideband fields, denoted by ALO L are connected to the input
fields by the output impedance Z; and Z__. The intra-cavity fields are also con-
nected to the test mass velocity vg by the forward transductances Z;, and Z_;.

Unlike the previous impedance matrix Eq. 1.10 which is based on a simplified
classical model given in Fig.1.17, here we have non-zero impedance matrix elements
Z4_ and Z_, which connect the upper and lower sideband fields. These terms arise
because radiation pressure creates correlations between the sidebands, described as
pondermotive squeezing.

14 and at are the annihilation and creation operator of light quanta,
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The force acting on the test mass Fg is connected to the input vacuum fluctuation
fields by the reverse transductance terms Z;4. This term, as before, describes back
action or radiation pressure noise. The connection between the force acting on the test
masses, and their relative velocity is given by the detector input impedance Z;;.2

All the above relations are summarised in the 3 x 3 impedance matrix given below:

Awo+0 Loy Ly Zyo Aug+92
Fo =\| Zi+ Zu Zi- v ) (1.16)
Al g Z_yZyZ._) \al _q

The connection between the intra-cavity field and the output field is given by:

[Swoﬂ:ﬂ = _&wO:I:Q + v 2’7/4000:‘:97 (117)

where 7 is the bandwidth of the optical resonance peak of the interferometer differential
mode, which is determined by the parameters of input test masses, end test masses
and the signal recycling mirror.

Now we will present the formula of the individual impedance matrix elements
in detail. First, the matrix elements Z,, and Z__ with dimension [Hz]~'/? can be

written as:
[y a+202(Fjy+ 0T Q)
A 0) =4+ — . 1.1
/== () j\gm[au(ym)ﬂaa (1.18)

Combined with Eq. 1.17 which connects the intra-cavity fields to the output fields, Z, |
and Z__ can be effectively considered as output impedance. Here av = 8wqI./mLc rep-
resents the optomechanical interaction strength, where wy, I., m, L, ¢, j are the pump-
ing laser frequency, intra-cavity power strength, mirror mass, cavity length, speed of
light, and v/—1 respectively. The optical detuning § is the frequency difference between
optical resonance peak of the interferometer differential mode and the pumping laser
frequency wy), determined by the parameters of signal recycling cavity.

Second, the forward transductances Z,; and Z_; with dimensions [m~'Hz '] are
given by

Z0(Q) = JWa/L)[EQ + jy) = 0] (1.19)

[+ (- j07 - ad
They describe the signal transduction to each intra-cavity sideband field. Because
photon number is dimensionless, the transductance quantities are slightly different
from the voltage and current transductances of the classical formalism.

In the quantum regime, the input fields a,,,+q are the fluctuating quantum light
entering into the cavity. This means that the force generated through reverse transduc-
tances Z14 and Z;_ acts back on the test mass motion. This is the back-action noise
that comes from the radiation pressure force fluctuations, similar to the back-action

2Note that here we use Q to represent the mechanical frequency, different from the notation wq
used in the discussion of bar detectors
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noise due to fluctuation currents in the previous transducer formalism Eq. 1.10. The
reverse transductance Z;4 and Z;_ has dimension [N - Hz Y %] and is given by:

Vhmya 1

i R R

(1.20)

The most interesting optomechanical physics manifest themselves in the matrix
elements Z_, and Z,_, and in the mechanical input impedance Z;;. As mentioned
above, the former describes pondermotive squeezing while the input impedance de-
scribes optical spring effects. The optomechanical interaction mixes the upper and
lower sideband fields through impedance matrix elements Z_ and Z; _:

Jon/v/2
Q202 + (v — j)? —ad’

Z_44-(Q)=7F (1.21)

Note that these terms vanish when we turn off the optomechanical interaction (o = 0).
This pondermotive mixing establishes a correlation between the phase and amplitude
fluctuations of the vacuum light, resulting in the generation of a squeezed light. The
squeezing angle and degree of squeezing are determined by the optomechanical cou-
pling strength. The physical process of this correlation is that the radiation pressure
force noise which characterized by the optical amplitude fluctuation drives the mo-
tion of test mass, then enters into the phase of the optical field (Kimble et al., 2001)
through phase modulation.

Pondermotive squeezing is one of the most important characteristics of optome-
chanical systems. This squeezing effect exists even for basic optomechanical systems,
such as a light beam interacting with a reflective mirror without any cavity structure.
Pondermotive squeezing was first observed by (Purdy et al., 2013). It could lead to a
new sources of squeezed light as long as the mechanical resonator is not corrupted by
thermal noise (Corbitt et al., 2006; Purdy et al., 2013).

The second important characteristic of optomechanical systems, as we saw on
NIOBE, is their optical springs. This arises, as we saw earlier, from optomechani-
cal modification of the input mechanical impedance Z;; with dimension [N -s-m™!]
represented by:

b

jma é
AOL% (=6 + j7) (2 + 6+ j7)

Here the first term represents the mechanical impedance of the tess mass system.
This term does not appear in Eq 1.11 beacause in the case of the resonant bar this
mechanical impedance is the impedance to which we are trying to match. For the in-
terferometer the gravitational wave is the signal sources, that sees both the mechanical
impedance of the test masses and the additional impedance due to the transducer. It
is clear that the second term of Eq.1.22 has the same form as Eq. 1.13, which shows
the unity of the physics of the microwave-bar system and the laser-mirror system. In
detuned laser interferometers, the optical spring can actually enhance the sensitivity in
a narrowband way since the response of test mass is increased when the gravitational
wave frequency is close to the optical spring frequency.
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Current Advanced LIGO is built based on a non-detuned configuration with § = 0.
Therefore the test mass dynamics is not modified and the previous impedance matrix
elements can be greatly simplified, making the physics behind these formulae more
transparent. For example, in the non-detuned case the transductance Z,, and Z__

can be written as:

7220 (@)= Y2y _J/2 (1.23)

e v =T 2 (y - jQ)?

It is clear that the first term in Eq.(1.23) comes from the direct response of a static
cavity to the incoming field a,,+q, dlﬂfﬂ, which reveals the fact that the cavity field
can be treated effectively map to a mechanical motion under the effect of a friction
force®. The second term comes from the contribution of the stochastic motion of the
test mass driven by the radiation pressure noise, which is equal to the transductance
Zf_:_O and ij_o when there is no detuning. Some interferometric gravitational wave
detectors, such as Japanese cryogenic detector KAGRA, plan to work in the detuned
region where the test masses dynamics are modified by optical spring (Aso et al.,
2013).

The modification of input mechanical impedance Z1; provides new insights about
energy interactions in laser interferometers. They can be understood in a simple pic-
ture that considers only the pump beam and the sideband signals. Upper and lower
sidebands are created by gravitational waves. The sidebands beat with the high power
carrier light. The beating signal creates radiation pressure forces that acts on the in-
terferometer test masses. Figure 1.33 shows the sideband energy flow. The key point
is that the radiation pressure force from one sideband has the opposite phase to the
force from the other sideband. Treating the gravitational wave itself as a part of the
system as shown in Fig. 1.14, it follows that one sideband extracts energy from the
gravitational wave, while the other sideband returns energy to the wave. Without de-
tuning, the gravitational wave detector has zero input impedance (cf Fig. 1.19). No
gravitational wave energy is absorbed. However the input impedance can be tuned to
a high energy absorbing value by detuning the detector.

With appropriate parameters, detuning increases the transductance and the input
impedance. Given that huge amounts of energy are available in gravitational waves,
it appears self-evident that extracting more of this energy should allow substantial
increases in detector sensitivity. However, to this date, it has not been proved that
such configurations can increase the signal to noise ratio.

It is useful to ask what is the mechanism by which detuning increases the energy
extraction? The answer is that detuning, as observed experimentally in NIOBE, creates
an optical spring. A detuned interferometer ceases to be one in which test masses float
freely. The optical spring creates a rigidity against which the gravitational wave has
to do work. The fraction of gravitational wave energy coupled into the detector is
set by the impedance mismatch ratio between the detector and the waves. While this
ratio will always be tiny,due to the vast impedance ¢®/G of free space to gravitational

3Written down explicitly, we have A = \/2v/(y—;€)a. This frequency domain formula corresponds

to the equation of motion of intracavity field A in the time domain as A = —714 + v/27va, which is
analogous to Newton’s second law: © = —vyv + f, where v is the velocity, f and yv are respectively
the driving force and friction force per unit mass.
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Fig. 1.33 Radiation pressure feedback in a laser interferometer. Gravitational waves cre-
ate signal sidebands. Each sideband beats with the carrier creating a radiation pressure force
which acts on the test masses. This radiation pressure force is either in-phase or in anti-phase.
Acting together the two forces cancel so that the test mass remains as a free mass. If unbal-
anced the gravitational wave does work against the radiation pressure force. The radiation
pressure forces determine the real and imaginary parts of the detector input impedance as
we saw in sections 1.9 and 1.10. They act to change the dynamical response of the detector
to gravitational waves but can also lead to instability.

waves, it is possible to increase the energy absorption by ~ 6 orders of magnitude,
as shown by in (Ma et al., 2015a) which derived the energy absorbed by the double
optical spring interferometer (Rehbein et al., 2008).

Modification of optomechanical dynamics not only happens for center of mass mo-
tion of test masses. It can also happen for mirror internal acoustic modes. In the
next section, we will discuss this effect which is of great importance in interferometer
design. We will see that the modification of the input mechanical impedance for the
mirror internal acoustic modes can make it difficult to achieve the required high opti-
cal power. Solution of this problem is an important frontier of research on advanced
interferometers.

1.12 Three Mode Interactions and Parametric Instability

All the parametric transducer systems discussed so far involve devices that create a
pair of signal sidebands. In most devices there is an intrinsic symmetry that allows both
sidebands to simultaneously exist, although their relative amplitudes can be varied by
detuning.

In 2001 Braginsky et al predicted three mode interactions in which a single side-
band frequency is resonant in an optical cavity transverse mode (Braginsky et al.,
2001). Such interactions are likely in long optical cavities because of their intrinsically
asymmetric mode structure.

In the three mode interaction photons from the pump laser are scattered into
transverse optical modes by acoustic modes of the mirror test masses. If the scattering
transition is to a lower frequency optical mode, it creates a phonon in the test mass.
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Braginsky’s group showed that this interaction could generate parametric instability.
Essentially it was realised that intense laser light can scatter inelastically from macro-
scopic acoustic modes of a mirror such that the photon energy is divided between a
lower frequency transverse optical photon and an acoustic phonon in the mirror, as
illustrated in Fig. 1.34(b). If the acoustic power injected by this mechanism exceeds
the acoustic losses of the mirror, the mirror acoustic amplitude will grow exponen-
tially, steadily increasing over seconds or minutes, until a very large amplitude (of say
1 nanometer) causes saturation of amplifiers and failure of the instrument.
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Fig. 1.34 (a) Classical picture of a cavity three-mode interaction: the main high power
cavity optical mode beats with a transverse mode generated by light scattered from a mirror
acoustic mode. The beat frequency causes a time varying radiation pressure force in phase
with the acoustic mode. This drives the mirror and excites the acoustic mode as long as
the transverse optical and acoustic mode shapes are similar. (b) The quantum picture of the
three-mode parametric interaction treats it as a photon-phonon scattering process in which a
carrier photon scatters from the acoustic phonon on the mirror surface to create a transverse
optical mode photon. The acoustic mode frequency is exactly equal to the difference between
the two optical frequencies.

In 2005 Zhao et al undertook a detailed 3D simulation of parametric instability in
Advanced LIGO type detectors. This led to a prediction (Zhao et al., 2005) that detec-
tors like Advanced LIGO would indeed experience three-mode opto-mechanical insta-
bility, involving tens of acoustic modes across the four main interferometer test masses.
Thereafter many sophisticated simulations and experiments in specially designed op-
tical cavities at Gingin, Western Australia were used to study the phenomenon.

It takes the extreme technology of long baseline laser interferometers to enter the
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regime where three mode instability can occur: 40kg scale mirrors with ultralow acous-
tic losses, 4km long optical cavities, and very high optical power ~ hundreds of kilo-
watts. On small scales the much larger free spectral range of shorter cavities causes
optical modes to be more widely spaced. Simultaneously smaller test masses have
a lower acoustic mode density so that the probability of coincidences between the
mode gap (the frequency difference between a cavity TEMo mode and a higher order
TEM,,, mode) and an acoustic mode becomes small. On the 80m scale of the Gin-
gin high optical power facility (Ju et al., 2004) only specific radii of curvature give
conditions for instability.

Using 80m long cavities with carefully designed kg-scale test masses and high
optical power it was possible to study most aspects three mode interactions: their
tuning, their suppression, and their use as high sensitivity transducers for monitoring
test masses.

In 2009 Zhao et al showed that 3-mode parametric interactions could be created
on a table-top scale using low mass acoustic resonators in the MHz frequency range
(Zhao et al., 2009). A parallel program of table-top studies of three mode interactions
was begun, using specially designed resonators and silicon nitride membranes. These
experiments led to the first observation of three mode parametric instability in free
space cavities in 2014 (Chen et al., 2015).

Despite the successful creation of three mode parametric instability in a small scale
device, the 2009 paper promised the creation of a new class of non-linear optomechani-
cal parametric devices based on three mode interactions. This has not yet been realised,
mainly due to the difficulty in tuning optical modes. Opto-acoustic parametric ampli-
fiers,(Zhao et al., 2009) with one acoustic channel and two optical channels offer the
possibility of being general versatile devices like optical parametric amplifiers. They
can allow creation of new sensors that could operate with quantum limited sensitivity,
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Fig. 1.35 An example of the cavity mode structure in a 4km LIGO-type arm cavity, showing
the transverse mode families relative to the cavity free spectral range and typical transitions
from the pump mode to certain transverse modes that could cause parametric instability if
a suitable acoustic mode existed in the test mass. Because the transverse mode frequencies
are strongly tuned by radius of curvature changes and typically have linewidths of kHz, the
parametric gain for such transitions varies with the thermal conditions.
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for the detection of weak forces and fields. Their successful implementation may need
the development of other optomechanical techniques such as optical dilution discussed
below.

In 2014 Zhao et al observed parametric instability in a cavity designed to be com-
parable to those of advanced interferometers (Zhao et al., 2015). Later in 2014 the
Advanced LIGO interferometer in Louisiana observed parametric instability (Evans
et al., 2015), at an optical power level consistent with the 2005 prediction. Preliminary
estimates (Gras et al., 2010) indicate that about 40 acoustic modes may be unstable
in Advanced LIGO at full optical power unless control methods are implemented.

Because the frequency of transverse optical modes depends strongly on the mirror
radius of curvature, any method that modifies the mirror radius of curvature can
allow parametric instability to be detuned. Thermal tuning uses surface heating to
change the mirror radius of curvature (by say 10m in 2000m). The method is now
fully confirmed and has been used frequently at the Gingin facility to tune three
mode interactions. Thermal tuning allowed the laser power threshold for instability
to be raised from 5% to about 12% in the Advanced LIGO detectors (Evans et al.,
2015). Unfortunately in a long baseline interferometer the mode density is so high that
thermal tuning generally tends to transfer the instability from one mode to another.
Thus additional control techniques are required.

There are various other methods for instability control. The methods can be sum-
marised under 4 headings (Ju et al., 2009): passive damping (Gras et al., 2009; Gras
et al., 2015), acoustic feedback(Miller et al., 2011), optical feedback (Fan et al., 2010;
Zhang et al., 2010), and detuning (Degallaix et al., 2007). Keeping in mind the fact
that laser interferometer gravitational wave detectors are the most sensitive instru-
ments ever created, with displacement noise sensitivity ~ 1072%m/ VHz, the risk in
any method of instability control is that noise forces will degrade the exquisite sensi-
tivity of the instrument. For example, noise can come from photon radiation pressure,
scattered light, thermal Brownian motion, electronics noise, and inhomogeneities in
mirror coatings.

Many suppression schemes such as ring dampers (Gras et al., 2009) and mechan-
ical mode dampers (Gras et al., 2015) were shown by modelling to cause significant
sensitivity degradation. Others such as optical feedback suppression (Fan et al., 2010)
were demonstrated at Gingin, but involved optical configurations that were complex
and risked introduction of noise. C. Blair et al have shown that 15.5kHz instabilities
can be controlled in LIGO by direct electrostatic feedback to the test masses using
electrostatic drive plates installed in Advanced LIGO (Blair et al., 2016).

In 2014 the UWA team discovered a new method (Zhao et al., 2015) of suppressing
instability consisting of low frequency radius of curvature modulation of test masses
using modulated radiant infrared heating. Suppression is achieved by diluting the
parametric gain across many modes in a time dependent fashion, using a modulation
frequency below the sensitive signal band. In principle this method can suppress the
parametric gain by about an order of magnitude and in theory it should not introduce
significant noise.

Three mode interactions have been shown to have very high sensitivity as a readout
for thermally excited acoustic modes (Ju et al., 2014). Because the mode amplitude
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depends strongly on three mode interaction gain conditions, simple monitoring of
ultrasonic acoustic modes through their three-mode interactions can be used to predict
which modes will become unstable when the power is increased. The technique was
demonstrated at Gingin.

As the optical power in Advanced interferometers is stepped up, acoustic mode
monitoring offers a useful tool for defining the instabilities that will have to be con-
trolled at the next step in power. This can give enough time for suppression methods
to be ready at the appropriate time. While proven at Gingin, for Advanced detec-
tors where the ultrasonic acoustic mode density is 1000 times higher, this approach
requires extensive measurements on thousands of acoustic modes, combined with de-
tailed modelling. Reference [(Ju et al., 2014)] shows that it can be developed into a
powerful tool for monitoring interferometer test masses with unprecedented precision.

1.13 White Light Optomechanical Cavities for Broadband
Enhancement of Gravitational Wave Detectors

We have seen above how optomechanics has been used to create gravitational wave
detectors, and how three mode optomechanical interactions lead to parametric insta-
bility. In this final section we show how optomechanics can be used to create a new
route to improved sensitivity, in the form of an optomechanical white light signal re-
cycling cavity. This type of scheme has been proven theoretically (Miao et al., 2015)
and the associated negative dispersion have been proven in the classical regime(Qin
et al., 2015). The white light cavity scheme offers possibly the only possible means of
significantly increasing interferometer sensitivity in a broad frequency band around 1-
2kHz. However it faces formidable challenges involving beautiful new implementations
of optomechanics.

Signal recycling is now a standard technique used in gravitational wave detectors
to resonantly enhance the signal sidebands. Throughout physics resonance allows a
narrow band of frequencies to be enhanced, at cost of reduced bandwidth. The white
light cavity breaks the inverse relationship between resonant gain and bandwidth. It
allows resonant build up of a broad band of frequencies. This is achieved by creating a
low loss optomechanical cavity with negative dispersion that compensates the normal
frequency dependence of phase accumulated in the main interferometer. The white
light cavity is a cavity in which the effective light velocity depends on wavelength such
that all frequencies are simultaneously resonant across the frequency band of interest.

In current advanced gravitational wave interferometers the signal recycling gain is
low to prevent loss of bandwidth. White light cavities are designed to create broadband
signal recycling with high gain, allowing a substantial improvement in sensitivity for
signal frequencies between 200Hz and 2kHz as shown in Fig. 1.37.

The white light cavity concept was first demonstrated using atomic media (Wicht
et al., 2002). Research by Salit et al (Salit and Shahriar, 2010), and by Pati et al (Pati
et al., 2007) confirmed the concepts. However Ma et al (Ma et al., 2015b) demonstrated
that those configurations based on atomic media have fundamental noise limitations.

The breakthrough came with the recognition that the same physics can be realised
with optomechanics. A millimetre scale mirror resonator coupled to a light field and
pumped with blue-detuned laser light creates a cavity with negative dispersion for a
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Fig. 1.36 the white light cavity frequency response (solid line) compared with that of a
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Fig. 1.37 Current Advanced LIGO sensitivity (top curve) and predicted sensitivity after a)
increase of laser power to the design level, b) implementation of frequency dependent optical
squeezing, c¢) and d) white light signal recycling at two levels of the noise parameter TQ !
(see text), and e) white light signal recycling combined with frequency dependent squeezing.
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signal beam, as shown in Fig. 1.38. The configuration is intrinsically unstable. The key
to making it practical is to use feedback through intensity modulation of the pump
beam as proposed by Miao et al (Miao et al., 2015).

White light cavity technology with noise at the quantum level can increase the
sensitivity of Advanced interferometers such as LIGO by 3-fold at 200Hz and 7-fold
at 1-2kHz, compared with realistic estimates of the improvements already anticipated.
Operated in conjunction with squeezed light techniques, white light technology could
give sensitivity as shown in Fig. 1.37.

Gravitational wave event rates for binary black holes similar to the source already
detected increase as the cube of the strain sensitivity in the relevant frequency band.
For curve e) in Fig. 1.37 the benefits of squeezing are combined with the white light
cavity. Event rates could increase to ~ 600 events per day! Other sources such 5-10
solar mass black hole binaries and the quasi-normal modes of the new born black hole
could become observable within a large fraction of the observable universe.

The greatest challenge in creating a white light cavity system is in creating a
suitable low optical loss resonant mirror with ultralow acoustic losses. Acoustic losses
create unacceptable thermal noise and need to be reduced by a factor ~ 10°. While
this sounds extremely challenging, an extensive analysis and design study by Page et
al (Page et al., 2015) indicates that it is possible.

The attainment of minimal thermal noise at room temperature requires the com-
bination of specially constructed resonators called cat-flap resonators, and quantum
noise cancelling optical dilution systems in which the mechanical resonance is created
by optical springs in a novel new cavity design called a Double End Mirror Sloshing
Cavity or DEMS cavity. In the devices we propose optical dilution minimises the ther-
mal fluctuations and optical cooling (self-cooling) suppresses the thermal amplitude.

These two techniques can allow thermal fluctuations to be suppressed below the
zero-point fluctuations, thereby enabling devices that are free of thermal noise, in
which the quantum behaviour of macroscopic objects can be explored. In the next
paragraph we will re-visit opto-mechanical self-cooling which was already introduced
in the context of NIOBE, but this time in the context of small scale resonators. Optical
dilution techniques will be discussed in detail in the next section.

One of the first applications of self cooling was the cold damping of NIOBE dis-
cussed above. In 2006 Cohadon et al (Arcizet et al., 2006) used optomechanics to cool
a micro-resonator from 300K to 10K and suggested that optomechanical cooling to the
quantum ground state might be possible. In 2011 Cohadon’s prediction was realised
when Chan et al (Chan et al., 2011) used optomechanics to successfully cool a 3.68GHz
mechanical resonator from 20K to the quantum ground state, and Teufel et al (Teufel
et al., 2011) used microwave optomechanics to cool a 10MHz resonator from 15mK
to the ground state. This work proved that thermal-noise-free mechanical resonators
were indeed attainable.

Regarding white light cavity technology, in 2014 Qin et al experimentally demon-
strated (Qin et al., 2015) tuneable linear negative dispersion, created in an optome-
chanical cavity with a blue detuned doublet of control beams. The system could have
very low optical losses dominated by a few ppm optical coating loss (Rempe et al.,
1992).A related scheme, but using a single control beam, and feedback stabilisation,



White Light Optomechanical Cavities for Broadband Enhancement of Gravitational Wave Detectors 51

Sy

9na/
beam Trapping
beam
e beamd
i\ e
E;\ue ae”

Fig. 1.38 The white light cavity (WLC) combines three laser frequencies interacting with a
single high Q-factor resonator. One beam (arbitrary frequency ~ 4mW) creates the optical
trap which creates a mechanical resonator (~ 200kHz) with ultralow loss. The second beam
(a few mW) tuned on the blue side of the optical cavity resonance creates a negative disper-
sion filter. The signal beam is the interferometer output signal. All beams are inside optical
cavities.

was proven theoretically by Miao et al. (Miao et al., 2015)

White light cavity technology opens up a broad band at the high end of the spec-
trum as shown in Fig. 1.37. Once brought to the quantum noise level, it could increase
the sensitivity of LIGO substantially as discussed above. In the very high event rate
regime, detectors could be switched between optimum high frequency sensitivity using
the whilte light cavity (Fig 1.37, curves c-e), and optimum low frequency sensitivity
using frequency dependent squeezing (Fig 1.37, curve b).

The lower five curves in Fig. 1.37 assume that test mass thermal noise will be
suppressed by use of cryogenics,(like the Japanese detector KAGRA now under con-
struction), silicon test masses, and low loss (low thermal noise) optical coatings such
as those developed by Crystalline Mirror Systems.

The key concepts that must be implemented to attain practical white light cavity
devices are summarised in Table 1.1.

1.13.1 Optical trapping, optical dilution and quantum noise

Optical traps were first used in manipulating microscopic objects such as molecules and
biological cells, usually called “optical tweezers”. An optical trap is a deep potential
well created by radiation pressure that confines a mechanical resonator. This enables
the losses to be optically diluted.

Using an optical trap, mechanical springs can be largely replaced by optical springs.
The dilution factor is the ratio of the elastic energy stored in the optical field to the
elastic energy stored in the mechanical spring. Strong optical dilution was demon-
strated by Corbitt et al. (Corbitt et al., 2007) who achieved a dilution factor ~ 10%.

The mechanics behind optical dilution is simple. If a lossless spring kopt is placed
in parallel with a lossy spring of spring constant ki, then the Q-factor of the final res-

onator is given by Qdit = Qint(kopt/kint) assuming structural damping. Since k ~ w?,
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Table 1.1 Technical requirements for improvement of gravitational wave detectors using
white light cavities.

CONCEPT FUNCTION BENIFIT

Optical dilu- | Use elastic stiffness created | Allows creation of high fre-
tion, Optical | by radiation pressure forces | quency resonators ~ 200kHz
trapping to replace mechanical springs | with very weak mechanical

to enable thermal fluctua-
tions to be suppressed by the
ratio of optical to mechanical
spring constants.

spring stiffness and very low
thermal fluctuations.

Quantum noise
suppression

Destructive interference of
vacuum fluctuations to can-
cel quantum radiation pres-
sure noise.

Create optomechanical res-
onators free of quantum radi-
ation pressure noise.

Optical cooling

Extract mechanical energy
from resonator.

Reduces thermal noise ampli-
tude without cryogenic cool-
ing.

White light cav-
ity

Optomechanical interaction
creates a negative dispersive
filter. In an optical cavity
a band of frequencies is
simultaneously resonant.

Allows resonant enhancement
of a broad band of signal
frequencies in gravitational
wave detectors.

Double end-
mirror sloshing

cavity DEMS

Cavity scheme for creating
strong stable optical dilution
with negative dispersion re-
sponse

Allow stable operation of the
system without deteriorating
the signal to noise ratio.

Cat-flap
onator

Res-

A mini-pendulum consisting
of a sub-millimeter scale low
loss mirror supported by
a nano-scale membrane or
nanowire suspension

Reduce mechanical coupling
to the thermal reservoir to al-
low high optical dilution, in
a device suitable for low loss
coupling to large scale optics.

the dilution can be estimated from the square of the ratio of optical spring frequency
to free resonator frequency. For maximum optical dilution we need to create resonators
with the lowest possible ki, (ie the lowest possible zero-gravity frequency). In practice
the quality factor of diluted resonators is less interesting than the noise. Very high Q-
factors are difficult to measure and normally optical cooling will simultaneously reduce
the Q-factor and the mode amplitude towards the quantum ground state.

The problems with simple optical springs are a) negative damping and b) quan-
tum radiation pressure noise. Strong dilution requires a strong optical field acting on
the mechanical resonator. By beating with vacuum fluctuations this creates strong
radiation pressure noise, which drives the resonator, thereby injecting extra noise and
setting limits on the maximum dilution.
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In 2012 a Caltech team, led by Kimble achieved optical spring trapping in a config-
uration that avoided quantum radiation pressure noise (Ni et al., 2012). They demon-
strated optical trapping at 145kHz, and a 50-fold increase in quality factor, consistent
with a prediction by Chang et al (Chang et al., 2012). The mirror to flexure mass ratio
limited their Q-factor, while torsional compliance and internal acoustic modes led to
optically induced angular instabilities.

In 2014 Ma et al (Ma et al., 2014) and Miao et al (Miao et al., 2015) analyzed
alternative dilution schemes; one in which the resonator mirror sits in the middle
of an optical cavity, the other an optomechanical cavity with double optical spring.
It was shown that a high reflectivity end mirror enables total destructive quantum
interference to cancel the radiation pressure noise (Marquardt et al., 2009), while
instabilities from negative damping are canceled.

The Double End Mirror Sloshing Cavity or DEMS cavity is topologically equivalent
to the membrane in the middle cavity. Figure 1.41 shows the DEMS cavity design. It
has the same Hamiltonian, the same noise cancellation and allows use of a double
sided high reflectivity cat-flap resonator (see Fig. 1.39. The DEMS cavity creates
optical springs in such a way that the negative damping terms cancel, to prevent
spring instabilities and also allows quantum radiation pressure noise to be suppressed
(Ma et al., 2014; Page et al., 2015). Note that the DEMS configuration mirror-in-the-
middle configuration are equivalent. The former allows separate control of transmission
and reflectivity and allows for use of an opaque substrate.

The key to creating ultra-high Q-factors is to create resonators with minimal sur-
face density, low acoustic loss suspensions. Reference [Page et al. 2015] shows that
dilution factors of 108 — 10'? can be achieved in cat-flap resonators , that utilise thin
suspension elements and adequate low loss materials as discussed below.

1.13.2 Optomechanical devices for gravitational wave detectors

While experiments on optomechanical devices have proved that the quantum ground
state is attainable, this has only been attained under special conditions of very low
mass, high mechanical frequency and cryogenic cooling. See the 2014 review by As-
pelmeyer et al. (Aspelmeyer et al., 2014). Devices suitable for enhancing gravitational
wave detectors have not yet been developed. They must have low optical losses and
ideally should operate at room temperature, but should have mechanical noise close
to the quantum ground state, therefore requiring optical cooling.

Aspelmeyer et al (Aspelmeyer et al., 2014) pointed out that the minimum require-
ment for quantum optomechanics at room temperature is the product of Q-factor x
frequency > 6 x 10'2. Optomechanical devices for enhancing gravitational wave detec-
tors have additional requirements which have not been met in any devices to date. The
requirement is determined by the detector bandwidth and leads to even higher Q-factor
requirements. Figure 1.39 shows the gain improvement ratio at 2 kHz as a function of
resonator Q-factor. This shows that Q-factors must be in the range 101° — 1012 (Miao
et al., 2015) to achieve up to 7-fold improvement in detector sensitivity.

The cat-flap resonator: The cat-flap is a miniature flexure pendulum with a flat
square optical test mass with linear dimension between 1mm and 0.lmm. Current
devices use a silicon nitride membrane or nanowires as the flexure. Future devices could
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Fig. 1.39 The gain improvement ratio at 2 kHz detection frequency as a function of resonator
Q-factor.

use graphene or nanotube suspensions. Optical dilution can allow extraordinarily high
quality factors, limited by two main loss mechanisms as discussed below.

a) Acceleration loss: the optical force from the optical spring acting mainly on the
mirror surface, deforms the mirror as it accelerates, thereby coupling the resonator to
internal loss mechanisms. This loss reduces as (wint /wopt)z, thus requiring the resonator
to be small and wepe not to be too high.

b) Suspension losses. These are mainly due to violin string modes in the suspension
fibres and require very high tension in low mass density suspensions. This limits the
maximum length of the suspension fibre to keep violin string frequencies > 1MHz.
Centre of percussion tuning of the trapped resonator by adjusting the laser spot po-
sition, can be used to reduce suspension losses 3-fold by ensuring that translational
reaction forces do not act at the suspension point, as demonstrated by Braginsky et
al (Braginsky et al., 1999).

Silicon nitride flexures can be constructed in the 10 — 50 nm thickness range. Since
the flexure spring constant depends on the cube of the flexure thickness/length ratio
there is large benefit in minimising the thickness. The suspension materials have high
tensile strength. We have designed for safety factors ~ 5. SiN tensile membranes show
Q ~ 5% 107 (Chakram et al., 2014) at room temperature. For our design the internal
membrane modes are about 10-times higher than the resonator frequency to reduce the
acceleration loss due to the coupling between the optical spring and the mirror internal
modes. Smaller resonators can also be suspended with silicon nitride nanowires.
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Fig. 1.40 The cat-flap resonator: A 0.5mm x 0.5mm low loss mirror suspended by a) a
10-50nm silicon nitride membrane, b), two nanowires, ¢) image of subscale devices created
by TNO.
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Fig. 1.41 The Double End-Mirror Sloshing (DEMS) cavity, that applies optical spring forces
to trap the cat-flap resonator while suppressing quantum noise through interference. The two
surfaces of the cat-flap mirror are the end mirrors of a two mode Fabry-Perot cavity. The tow
modes are created by the partially reflective mirror.

The intrinsic (gravity-free) frequency of the silicon nitride cat-flap is ~ 20Hz. If
this is diluted to 200kHz we have typical dilution factors of ~ 10%. The Q-enhancement
will be less than the dilution factor due to the loss mechanisms discussed above. We
estimate that Q ~ 10! could be observable at 200kHz for a 0.5mm square and 0.1mm
thick resonator.

1.14 Conclusion

We have surveyed concepts of optomechanics from the first implementation of su-
perconducting parametric transducers to current research challenges aiming to create
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Fig. 1.42 Laser interferometer gravitational wave detector with a white light cavity signal
recycling cavity. Negative dispersion is created in the triangular dispersion cavity. This acts
as a dispersive mirror, changing the length of the dotted optical path. The optically trapped
resonator in Fig. 1.41 is the key component in the negative dispersion cavity, which is acti-
vated through injection of blue detuned pump light. Feedback forces are applied by intensity
modulation of the pump light using an acousto-optic modulator (AOM).

optomechanical devices at room temperature that are largely free of thermal noise.
In between we reviewed the analysis of parametric transducers that first predicted
interesting resolved sideband phenomena and the nulling of the mechanical input
impedance. We went on to examine the use of microwave re-entrant cavity trans-
ducers and their application on the detector NIOBE which was an extreme large scale
application of optomechanics using microwaves. This experiment demonstrated strong
self damping and strong optical springs. Then we went on to examine the same physics
applied to laser interferometer gravitational wave detectors and the optomechanics of
three mode interactions which are a significant instability mechanism in the current
advanced gravitational wave detectors. The final section described a broad research
program now underway aiming to create noise free optomechanical devices suitable for
low loss light processing, able to create long white light cavities. While our focus has
been in improving gravitational wave detectors, optical dilution has the possibility of
broad applications from macroscopic quantum mechanics two new ultra-high devices
for measuring forces and fields.
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