

Introduction to Gravitational-Wave Astronomy Fred Raab, for the LIGO Laboratory and the LIGO **Scientific Collaboration** 27-Apr-16 LIC

Outline

My talk today

- » Basics of General Relativity and Gravitational Waves
- » Sources of Gravitational Waves
- » Detectors of Gravitational Waves
- » Some history
- » International Network of Terrestrial GW Detectors
- » Future detectors
- Mike Landry's talk next week
 - » Advanced LIGO Detector
 - » First Direct Detection of Gravitational Waves

Basics of General Relativity and Gravitational Waves

Wherein it is realized that space and time are things whose properties are manifested by phenomena that we collectively refer to as "gravity".

Free fall is weightless

LIGO-G1600932

Empty space and time are things, with real physical properties. Space has a shape, a stiffness and a maximum speed for information transfer. 6 LIGO-G1600932

K~[G/c⁴] is lowest order combination of G, c with units of 1/N

 $K \sim 10^{-44} N^{-1}$

⇒ Wave can carry huge energy with miniscule amplitude!

LIGO-G1600932

Sources of Gravitational Waves

Accelerating Quadrupole Mass Moments

Astrophysical Sources of **Gravitational Waves**

Credit: AEI, CCT, LSU

NASA/WMAP Science Team

Coalescing <u>Compact Binary</u> Systems: Neutron Star-NS, Black Hole-NS, BH-BH

- Strong emitters, well-modeled,

Cosmic Gravitational-

wave Background

- Residue of the Big

stochastic background

- Long duration,

- (effectively) transient

Bang

Credit: Chandra X-ray Observatory

Asymmetric Core <u>Collapse</u> Supernovae

- Weak emitters, not well-modeled ('bursts'), transient

Spinning neutron stars

- (nearly) monotonic waveform

- Long duration

Raab - Intro to GW Astronomy

LIGO-G1600932

10

Expected event rates

Binary neutron stars

- Initial LIGO reach: 15Mpc; rate ~ 1/50yrs
- Advanced LIGO ~ 200Mpc
- 'Realistic' rate ~ 40 events/yr

Table 5	Detection	rates for	compact	binary	coal	escence	sources.
---------	-----------	-----------	---------	--------	------	---------	----------

IFO	Source ^a	$\dot{N}_{ m low}~{ m yr}^{-1}$	$\dot{N}_{ m re}~{ m yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{ m max} \ { m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
N Initial E I I	NS-BH	7×10^{-5}	0.004	0.1	
	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			<0.001 ^b	0.01 ^c
	IMBH-IMBH			$10^{-4 d}$	10 ^{-3 e}
V	NS-NS	0.4	40	400	1000
ν,	NS-BH	0.2	10	300	
Advanced	BH–BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300°
	IMBH-IMBH			0.1 ^d	1 ^e

Rates paper: Class. Quant. Grav 27 (2010) 173001

Detectors of Gravitational Waves

No Law of Physics Forbids Them

Basic idea is simple

Noise cartoon

What Limits Sensitivity LSC of Interferometers?

Seismic noise & vibration limit at low frequencies

- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies

Myriad details of the lasers, electronics, etc., can make problems above these levels COMMISSIONING

LIGO-G1600932

Principal noise terms

Some History

Strategy: Build a Facility That Can LIGO House Evolving Generations of More **Powerful Detectors**

20

Proposal to the National Science Foundation

THE CONSTRUCTION, OPERATION, AND SUPPORTING RESEARCH AND DEVELOPMENT OF A

LASER INTERFEROMETER **GRAVITATIONAL-WAVE** OBSERVATORY

Submitted by the CALIFORNIA INSTITUTE OF TECHNOLOGY Copyright © 1989

Rochus E. Vogt Principal Investigator and Project Director California Institute of Technology

Ronald W. P. Drever Co-Investigator California Institute of Technology

Frederick J. Raab Co-Investigator California Institute of Technology Kip S. Thorne Co-Investigator California Institute of Technology

Rainer Weiss Co-Investigator Massachuset Baabte chilligoto, GW Astronomy

Figure II-2 A comparison of the strengths of gravitational waves (characteristic amplitude h_c and frequency f) for burst signals from various sources (dashed lines and arrows), and benchmark sensitivities h_N (solid curves and stippled strips atop them) for interferometric detectors today (prototype) and in the proposed LIGO (early detector, advanced detector). See the caption of Figure A-4a (a duplicate of this figure) and the associated discussion in Appendix A for more details.

9

The Laser Interferometer Gravitational-wave Observatory

- LIGO Observatories constructed from 1994-2000
- LSC created 1997
- Initial LIGO operated from 2002-2010
- Advanced LIGO 2015

Advanced LIGO detectors:

Australian Government Australian Research Council

LIGO Laboratory

Hanford

Caltech

Mission: Observe gravitational wave sources; operate the LIGO facilities; instrument science and technology; scientific education and public outreach.

Livingston

~200 scientists, engineers and staff; includes physicists working on instrument science and data analysis.

MI

First Direct Detection of Gravitational Waves

Opening a New Window on the Universe

A signal from a binary black hole merger

B. P. Abbott et al., Phys. Rev. Lett. 116, 061102

Raab - Intro to GW Astronomy

But what have you done for us lately?

- Emphasis on the O in LIGO:
 - More BBHs
 - Better location information
 - New sources like BS-NS and NS-NS
 - Better throughput, from online triggers to released skymaps to submitted papers
- Our collaboration is focusing on the phase transition brought on by first detection.
- The quality and number of available detectors is key
 - More detectors to form a global array are needed for many science objectives
 - Current facilities can be upgraded
 - New facilities can achieve factor of x10 and more beyond ALIGO design

LIGO leads but it's not alone: The global gravitational wave array

G1600919

2016 APS April meeting, Salt Lake City

Location, location, location...

- EM follow-ups are greatly facilitated by improving GW source location
- This requires a worldwide network of GW detectors operating at comparable sensitivities

 60° 30° 15° 0° $-150^{\circ}120^{\circ}-90^{\circ}-50^{\circ}-30^{\circ}$ 0° -30° -30° -75°

HILV

Error ellipses with 2 US sites + Virgo + India

B.P. Abbott, et al., Living Rev. Relativity, 19, (2016), 1 *Raab - Intro to GW Astronomy*

LIGO-G1600932

28

Initial S6 / Advanced O1

Science drives Requirements

- Stellar Evolution at High Red-Shift: Black Holes from the first stars (Population III)
 - » Reach z>~10
 - » At least moderate GW luminosity distance precision
- Independent Cosmology and the Dark Energy Equation of State
 - » Needs precision GW luminosity distance and localization for EM follow-ups (for redshift)
- Checking GR in extreme regime
 - » High SNR needed
 - » GW luminosity distance and localization not essential

Advanced LIGO upgrade path

- Advanced LIGO is limited by quantum noise & coating thermal noise
- Squeezed vacuum to reduce quantum noise
- Options for thermal noise:
 - » Better coatings
 - » Cryogenic operation
 - » Longer arms (new facility)

Summary

- GW150914 initiates Gravitational-Wave Astronomy.
- General Relativity provides an powerful framework from Earth-bound physics to mergers of stellar mass black holes at velocities near the speed of light.
- An emerging international network of detectors will provide more accurate positions of sources to enable EM follow-ups of GW events.
- There is still room within the laws of physics to develop more powerful generations of detectors.

Advanced LIGO timeline

