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LIGO Summary

e Lecture 1: Introduction
— Part 1: Intro to controls
— Part 2: System modeling

e Lecture 2: Basic Control Design

— Part 1: Feedforward
— Part 2: Feedback
— Part 3: Sensor Blending

e Lecture 3: Digital Control



LIGO Background Assumptions

 These lectures assume no prior knowledge of
controls.
 They do assume some prior exposure to
— Ordinary differential equations
— Fourier transform
— Laplace transform



LIGO Useful References

 Digital Control of Dynamic Systems, 3™ Ed.
Franklin, Powell, and Workman.

— Main focus is on the control of digitally sampled

systems, but also has a good review of continuous
control, system identification, optimal control,
and nonlinear systems.

* Modern Control Engineering, 5t" Ed. Ogata

— Standard introductory text to control



Lecture 1

Introduction to Controls &
System Modeling



Lecture 1 - Part 1

Introduction to Controls



LIGO Why we need control

» The ground moves Fabry-Perot cavity

and disturbs our Qéar‘y
mirrors.

e We use control to

keep the arm
lengths at a D S . ] ,

i |
constant 4 km + L__.'
104 m

Ref G1600525




LIGO Example of a feedback loop

Cruise control

Current velocit
e Y

Desired velocity




LIGO Feedback loop block diagram

Desired
velocity

Error

Gas

Gas flow
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LIGO Feedback loop block diagram

Desired
velocity

Error

Gas

Gas flow
actuator

flow

Car

Current
velocity

Velocity
sensor

Current velocit
e Y

Desired velocity

>

In general unstable!
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LIGO Feedback loop block diagram

Desired
velocity

Current
Gas flow velocity
Control — >
ontro actuator Car
Velocity
sensor
e Stabilize with the
C loci addition of a control
- urrent velocity flter

Desired velocity

Also gives you
parameters to tune the
response
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LIGO Basic system components

The ‘plant’
Desired N Current
velocity Gas flow velocity
Control — 3 >
actuator
Actuator ’

* Plant (car) — object to be controlled
— measures the plant response
* Controller — sets the loop dynamics to
achieve the desired behavior
e Actuator —drives the plant
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LIGO Types of control

* Signal flow These will be defined
_ Feedback or.m the next few
— Feedforward slides.

* Computation
— Linear
— Nonlinear
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LIGO Types of control

* Signal flow
— Feedback
— Feedforward

* Computation

— Linear

Nearly all our controls are linear.
Some exceptions include:

* Acquiring cavity lock

e ESD actuation (F a V?)

* |SI blend filter switching
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LIGO Types of control — feedback

* Feedback — Reacts to changes in the error
after they occur.

Desired
velocity

Error

Filter |

Gas flow
actuator

Car

Current
velocity

Velocity

SENSOr

>



LIGO Types of control — feedback

* Feedback — Reacts to changes in the error
after they occur. Could be unstable.

Error
Desired / Current
velocity Gas flow velocity
— >
Control actuator Car
Velocity

SENSOr
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LIGOTypes of control — feedforward

e Feedforward — Predict the future and correct
in advance. Theoretically always stable.

Hills
Hill
sensor
Car
model
V Current
velocity
> flow
control subtracts out the Gastlo — Car >
effect of the hill actuator 17




Desired
velocity

Feedback with feedforward
- Complimentary limitations, so often we can
get better performance using both together.

Current
velocity

Hills
Hill
sensor
Car
model
\ 2
Gas flow
I
Contro actuator Car
VeIOC|ty<

SENSOor
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LIGO Types of control - linear

* Linear
— Output is a linear combination of the inputs

2 X gas 2 x velocity
@ Car >




LIGO

Types of control - linear

e Linear

— Output is a linear combination of the inputs

axgas+bxgas

>

Car

a x velocity + b x velocity

>
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LIGO Types of control - linear

e Linear

— Output is a linear combination of the inputs

— Linear systems have a very well defined and
rigorous control theory

axgas+bxgas

>

Car

a x velocity + b x velocity

>



LIGO Types of control - linear

* Linear
— Output is a linear combination of the inputs

— Linear systems have a very well defined and
rigorous control theory

a x gas + b x gas a x velocity + b x velocity
> Car >

* Also, the output frequency = the input frequency *

22



aLIGO Seismic Isolation Performance

Ground

10" | Suspension Point 5 ke

Spectral Density [m//Hz]

GW observations
10 | P1600103 é hY > 10 Hz
10 " - . P p MNP & >

-1 0 1

10 10 10
Frequency [Hz]

10-17; f Test Mass \\ i
Y

Linearity is the reason we need good seismic isolation below 10 Hz, even though we’re
searching for GWs above 10 Hz. Large amplitude low frequency motion will have non-negligible
2"d order influences on the interferometer, causing upconversion to frequencies above 10 Hz.

Mechanisms include nonlinear behavior of the cavity, scattered light, optic pitch and yaw. -



LIGO Types of control - computation

e Nonlinear

— Output is some general function of the input

— No single theory for non-linear control

f(gas)

>

Car

h(gas)
>

Nonlinear system examples
* Acquiring cavity lock — the sensor signal only exists intermittently

* Rockets —the mass gets smaller as the propellant is consumed
* Robotic arms —the moment of inertia depends on the arm’s position



Lecture 1 — Part 2

System Modeling

G1600726
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Lecture 1 — Part 2

System Modeling

Recurring theme: more than 1 way
to look at a system. All are equivalent,
but each is useful in its own context.

G1600726 26



LIGO System Models

Example — mass spring system

x(t)
.

m




LIGO System Models

Equation of motion

S
e

mx+cx+kx=f

\ g

C

k -> stiffness

c -> viscous damping
m -> mass

f -> external force

X -> mass position




LIGO System Models

Equation of motion

"4
P
o+
v

k [~ mx+cx+kx=f

N } General solution
C "y PRy
X=Ale(a+za)) +A2€<G i) by

f

* A, and A, are constants whose values depend on the initial conditions
* X;is a particular solution with the same form as f
* otiw are the roots of the characteristic equation

o oisthe decay time constant

o w is the natural frequency



LIGO System Models

Equation of motion

S
e

mx+cx+kx=f

\ e el e /" \

C

. Time domain Frequency domain
k -> stiffness State space model Transfer functions
c -> viscous damping
m -> mass

f -> external force
X -> mass position
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LIGO System Models

Equation of motion

S
e

mx+cx+kx=f

i B /" \

C
: Time domain Frequency domain
k->stifiness State space model Transfer functions
c -> viscous damping
m -> mass
f -> external force
X -> mass position _
Both formats are widely used, often at the

same time.
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LIGO Models — time domain

Equation of motion

S
A

mx+cx+kx=f

k
f * The state space form rewrites an Nt
m —> . . :
| order differential equation as a system of
\\\ N, 15t order differential equations.

C
k -> stiffness
c -> viscous damping
m -> mass

f -> external force
X -> mass position
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LIGO Models — time domain

Equation of motion

S
A

mx+cx+kx=f

k
f * The state space form rewrites an Nt
{ order differential equation as a system of
\\\ N, 15t order differential equations.
C
Systemstates: X, = X  displacement

k -> stiffness o .
c -> viscous damping Ay =X velocity
m -> mass

f -> external force
X -> mass position

* Mechanical systems have 2 states for every DOF: typically displacement & velocity 3



LIGO Models — time domain

Equation of motion

S
A

mx+cx+kx=f

k
f * The state space form rewrites an Nt
m —> . . :
| order differential equation as a system of
\\\ N, 15t order differential equations.
C
System states: X, = X Matrlx equation
k -> stiffness . > |X=AX+ Bu

c -> viscous damping xz =X

m -> mass
f -> external force
X -> mass position

* Mechanical systems have 2 states for every DOF: typically displacement & velocity 4



LIGO Models — time domain

Equation of motion

S
A

mx+cx+kx=f

k
f * The state space form rewrites an Nt
m —> . . :
| order differential equation as a system of
& N, 1t order differential equations.
C

Matrix equation

k -> stiffness — 5(5 = A.;é + Blji

¢ -> viscous damping A =X / l

m -> mass

System states: X =X

f -> external force X, 0 1 X, 0
X -> mass position A _]y _7 + y f
X2 m m || *2 m

* Mechanical systems have 2 states for every DOF: typically displacement & velocity 32



LIGO Models — time domain

x(t) Equation of motion
k - f mx+cx+kx=f
m |[—>
N i X = AX + Bii

EEAN
/" /

A matrix: internal system dynamics B matrix: external input

36



LIGO Models — time domain

x(t)
™ Equation of motion
k
f mx+cx+kx=f
m —>
A\ 1 X =AX+ Bu <« System dynamics
C
The complefce state y = Cx + Du | <— Sensing function
space form is given by
the A, B, C,&D y=[ 10 ] A +[0]f Ex.Displacement
matrices. X, sensor

A is the dynamic behavior matrix
B is the input matrix.
C is the output matrix

D directly connects the input to the output (if such a connection exists) 37



LIGO Models — frequency domain

x(t) Equation of motion
k f mx+cx+kx=f
m — >
| Convert EOM to the frequency domain
W with the Laplace transform.

¢ Time derivative -> Laplace variable s

Laplace transform x(m52 +CS + k) = f

38



LIGO Models — frequency domain

x(t) Equation of motion
k f mx+cx+kx=f
m — >
‘ Convert EOM to the frequency domain
W with the Laplace transform.

¢ Time derivative -> Laplace variable s

Laplace transform x(m52 +CS + k) = f

Force to displacement ﬁ — 1
transfer function f ms> +cs + k

39



Models — time & frequency domain

comparison
Time domain (SS) Frequency domain (TF)
- - _ X 1
Domain X =Ax+Bu =
> - — 2
y =CX + Dii f ms +cs+k
Solution exponents _ Poles of x/f -> roots of
O £iw eig(4) :
B ms” +cs+k
Syst q # of rows of A, or # of poles of x/f, or the
yStEm Oreet the # of states order of the denominator’s

polynomial



Models — time & frequency domain
comparison

Time domain (SS) Frequency domain (TF)
- L X 1
¥ =Cx + Dii f ms +cs+
- MIMO (multi-input, multi-output) | - Examining the frequency
- Has many states content of the system’s
. - Various matrix operations are behavior
When is each useful for studying its properties | - Designing SISO (single-input,
more useful? |- some ‘modern’ controls single output) control filters

techniques are defined in SS
- Easy to numerically integrate

Example system: The model is defined as a SS The various controllers are
quadruple system, since it is MIMO and has designed by extracting TFs
pendulum test mass many states. between individual inputs and

suspension outputs from the SS model.



LIGO Example system —HAM ISI

N [~
\ e f
%ﬂ m |
Nl

mx+cx+kx=f

Physical parameters from G070156
k->125770 N/m
m = 1900 kg
c -> 3000 N/(m/s) (guess)

G070156

State space model

42



LIGO Example system —HAM ISI

State space model

Z H ‘]%1 —%1 M 2 H y(jn S — 2 H 62 16 ][ 2 ] [ S04
A B
y=[1 0 ][ j: ]+[O]f
C D

Roots of the system

. . Matlab code for state space format:
eig(A)=-0.814+3.10; HAMISI SS = ss(A,B,C,D);




3 ways to characterize these models

* Impulse response (or the similar step response)
e Complex plane (zero-pole map)
* * Bode plot of the transfer function

These are all equivalent, which we’ll see on the
following slides.

* Bode plots are used more extensively than anything else, but all are useful



LIGO Example system — HAM ISI

One way to characterize the system is to plot the impulse response

5 %10 | HAM-ISI model ir{npulse\response

Natural frequency = |eig(A)| = 8.14 rad/s = 1.29 Hz

I

\V)

Ideal impulse = delta function

Dispacement (arbitrary units)
o

<P §
2
i)
> ’
=] g— &
Matlab code: =
. 1mpu;_se(H‘liMISITSS) | Time
0 1 2 3 4 5 6 7 8 ) 10

Time (seconds)



LIGO Example system —HAM ISI

Matlab code for a pole-zero map:

pzmap (HAMISI SS)

Imaginary axis (rad/s)

10

8¢

-6 -
-8+

-10

-10 -8

A~ O

eig(A) =-0.814+8.10i

|

Complex plane pole map

X;

X Conjugate pair ||

6 4 -2 0 2 4 6
Real axis (rad/s)

8

10

Another way to
characterize the
system is to plot
the eigenvalues
(poles) in the
complex plane



LIGO Example system —HAM ISI

eig(A) =-0.814+8.10i

Complex plane pole map

-
o
-
-

/ Radius = natural frequency

s
Sa
-~
-~ -

lllll

lllll

-~
lll
~

l--—-——

~~~
-
-

10

0 O© <

0

(s/ped) sixe Areuibew

10

2 4

8 6 -4 -2 0
Real axis (rad/s)

-10



LIGO Example system —HAM ISI

eig(A) =-0.814+8.10i

Complex plane pole map

10 w |
8 P S e S / Radius = natural frequency
6 [ "/" ) % b
’C—\D\ 4 r '/' \\‘\ -
© r %
E " %
E 2r ' sin(angle)= damping ratio
S 0bo--- . Q = 1/(2*damping ratio)
> ) '
g 2 i
.@ ‘\ ll
g 4 l
6| ‘\\ & 1
8 e > i
_10 1 | | | 1 |
-10 8 6 -4 -2 6 8 10
Real axis (rad/s)



LIGO Example system —HAM ISI

eig(A)=-7.32+3.55i

10 Complex plane pole map

L T
1
1
1
8 1
e B o i
- 1 i
F 1 S
4" 1 ~~~
+7 1 i
’ 1 ~
6 B X d 1 N 4
" : \\
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~— ~ N 2
1 .
3 - : 1
(J k. '
E ’ ~“~~ : .
— /] ~ 1 '
2 [ ! ~“~~ 1 ' =i
N ,' Sa - : 3 x10 5 HAM-ISI model impulse response
X .' ~“~~ 1
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[y 1 A
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LIGO Example system —HAM ISI

eig(A)=0=x8.14i
10 ‘Corrllple)‘( pla:ne pple map
o X
6
9 4
8 |
= ; 6
i s
g 2 ! 5
g . -
£ : »
: I
8 \\_..“)% _____ ° 2% Sime (seconds) v
10 5 W

"0 8 6 4 2 0 2 4 6 8 10
Real axis (rad/s)



Z
O Example system — HAM ISI

Matlab code for a pole-zero map: eig(A) =-0.814+8.10;
pzmap (HAMISI SS) . -

Complex plane pole map

10
8" X Radius = natural frequency
5. ]
9 4 !
© i
E ":
E 2 ' sin(angle)= damping ratio
< T S S . Q = 1/(2*damping ratio)
> 1 1
S y :
£ 2 : :
> .| Poles must be in
4 i
E | the left half
M : | plane (LHP) for
8 T i stability!
-10 :

0 8 6 4 2 0 2 4 6 8 10

Real axis (rad/s) o



LIGO Example system —HAM ISI

Yet another way to characterize the system is to plot the transfer function

X 1 s=0+iw

This substitution converts the
w=2rf Laplace transform to the Fourier transform

o

X 1

£ [125770 190027 f)’ |+3000(27 )i

f ms®+es+k

Poles of the system
roots(ms” +cs+k)=eig(A)=-0.814+8.10i

Matlab code for transfer function format:
HAMISI TF = t£(1,[1900,3000,1257707);




LIGO Example system —HAM ISI

Bode plot of the x/f transfer function

—h
O|
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LIGO

Pole map vs Bode plot

Imaginary axis (rad/s)

-10

10

o

N L (0] (0]
T T T T

1 1 1 1
(o] 0] faN N

1
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10
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LIGO

Impulse vs Bode plot

Dispacement (arbitrary units)

N

N

o

'
N

'
EN

Impulse response

«107° HAM-ISI model impulse response

| | | | |
1 2 3 4 5 6 7 8 9 10
Time (seconds)

|
A

FFT of the
Impulse response

HAM-ISI model impulse response FFT

—_
o

Magnitude
5 o
(2} o
T

-
o|
X

107

Phase (degrees)

[ ' ' ' '
10° 10"
Frequency (Hz)
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LIGO Impulse vs Bode plot

Impulse response

HAM-ISI model impulse response
T T

Dispacement (arbitrary units)
)

Time domain

(m/N)

Magnitude

Phase (deg)

Transfer function

uuuuuuuuuuuu

uuuuuuuuuuuu

Frequency domain
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LIGO Lecture 1 Summary

* Control helps us achieve a desired behavior
— In general maintain desired setpoints

e Control can be either feedback or
feedforward

* Nearly all our controlled systems are linear

e System are modeled in both the time domain
and frequency domain. Both domains are
equivalent. Each is useful in its own context.



Lecture 1 — Backups

G1600726



Relationship between

LIGO
Laplace and Fourier

e Laplace becomes Fourier when the real part of s goes to zero
and the imagery part is frequency in units of rad/s

s=0+iw,w=2naf

* Why do we use Laplace for the transfer functions, but Fourier for
the bode plots?

o As far as | know, this isn’t discussed much in controls classes.
My hypothesis is that the transform is sufficient for
reproducing , since any time domain signal
can be reproduced by an infinite sum of sine waves. However,
the Fourier transform does not contain enough information to
represent the dynamics of the system that produced that
signal. Since poles and zeros in general have both real and
imaginary parts, the Laplace transform, with the addition of the
real part of s, is sufficiently general.



Cavity Signal

Pound-Drever-Hall (PDH) Signal for aLIGO

— 2 L L
o2 11
S 15 .
2 “Linear | -7 :\
= 1 region” k \\
= 11
o 0 R .
5 L PDH signal
2 -0.5 B 1o
= ~ i
5 -1 NG A
O \I I
S | |
n-1.5 1
5 il
§ - L
-28 -6 -4 -2 0 2 4 6 8

AL (nm)
The PDH signal for a 4 km aLIGO Fabry-Perot cavity with mirror power transmissions of 1.4% and
7.5 ppm. The cavity finesse is 445. The linear region between the dashed lines is 1 nm wide.

4.7TAL)
A

sin(
PDH =C : F = cavity finesse = 445
2F . ( AL )} A = laser wavelength = 1064 nm

P 2”1 C = arbitrary electronic scaling "

1+




LIGO Models —SS rel. disp. output

X,—> x(t)
\ Equation of motion
§ mx + kx = kx,
§ m
Y — X =AX+Bu <« System dynamics
8

i o 1 x ] o
= + X
N R 7 A N 7
y=Cx+ Du < Sensing function
y=[ 1 0 ] N +[-1]x, Ex. Relative displacement
X2 sensor

Note, to include the damping term, a different set of state variables is required. See T1400023.

Relative displacement sensor
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