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Summary	

•  Lecture	1:	IntroducBon	
– Part	1:	Intro	to	controls		
– Part	2:	System	modeling	

•  Lecture	2:	Basic	Control	Design	
– Part	1:	Feedforward	
– Part	2:	Feedback	
– Part	3:	Sensor	Blending	

•  Lecture	3:	Digital	Control	
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Background	AssumpBons	

•  These	lectures	assume	no	prior	knowledge	of	
controls.	

•  They	do	assume	some	prior	exposure	to	
– Ordinary	differenBal	equaBons	
– Fourier	transform	
– Laplace	transform	
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Useful	References	

•  Digital	Control	of	Dynamic	Systems,	3rd	Ed.	
Franklin,	Powell,	and	Workman.	
– Main	focus	is	on	the	control	of	digitally	sampled	
systems,	but	also	has	a	good	review	of	conBnuous	
control,	system	idenBficaBon,	opBmal	control,	
and	nonlinear	systems.	

•  Modern	Control	Engineering,	5th	Ed.	Ogata	
– Standard	introductory	text	to	control	
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Lecture	1	

IntroducBon	to	Controls	&		
System	Modeling	
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Lecture	1	-	Part	1	

IntroducBon	to	Controls	
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Why	we	need	control	

Ref	G1600525	

Fabry-Perot	cavity	•  The	ground	moves	
and	disturbs	our	
mirrors.	

• We	use	control	to	
keep	the	arm	
lengths	at	a	
constant	4	km	+-	
10-14	m	
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Example	of	a	feedback	loop	

Current	velocity	

Desired	velocity	
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Cruise	control	



Feedback	loop	block	diagram	

Current	velocity	

Desired	velocity	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Error	 Gas	flow	

actuator	

Gas	
flow	

+	-	
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Feedback	loop	block	diagram	

Current	velocity	

Desired	velocity	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Error	 Gas	flow	

actuator	

Gas	
flow	

+	-	
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In	general	unstable!	



Feedback	loop	block	diagram	

Current	velocity	

Desired	velocity	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Gas	flow	

actuator	+	-	 Control	

11	

•  Stabilize	with	the	
addiBon	of	a	control	
filter	

•  Also	gives	you	
parameters	to	tune	the	
response	



Basic	system	components	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Gas	flow	

actuator	+	-	 Control	

•  Plant	(car)	–	object	to	be	controlled	
•  Sensor	–	measures	the	plant	response	
•  Controller	–	sets	the	loop	dynamics	to	

achieve	the	desired	behavior	
•  Actuator	–	drives	the	plant	
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The	‘plant’	

Car	Actuator	



Types	of	control	

•  Signal	flow	
– Feedback	
– Feedforward	

•  ComputaBon	
– Linear	
– Nonlinear	
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These	will	be	defined	
on	the	next	few	
slides.	



Types	of	control	

•  Signal	flow	
– Feedback	
– Feedforward	

•  ComputaBon	
– Linear	
– Nonlinear	
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Nearly	all	our	controls	are	linear.	
Some	excepBons	include:	
•  Acquiring	cavity	lock	
•  ESD	actuaBon	(F	α	V2)	
•  ISI	blend	filter	switching		



Types	of	control	–	feedback	

•  Feedback	–	Reacts	to	changes	in	the	error	
ajer	they	occur.	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Gas	flow	

actuator	+	-	 Filter	

Error	
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Types	of	control	–	feedback	

•  Feedback	–	Reacts	to	changes	in	the	error	
ajer	they	occur.	Could	be	unstable.	

Car	

Velocity	
sensor	

Current	
velocity	

Desired	
velocity	 Gas	flow	

actuator	+	-	 Control	

Error	
Hills	
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Types	of	control	–	feedforward	

•  Feedforward	–	Predict	the	future	and	correct	
in	advance.	TheoreBcally	always	stable.	

Car	

Current	
velocity	Gas	flow	

actuator	

Car	
model	

Hills	

Hill	
sensor	

-1	
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control	subtracts	out	the		
effect	of	the	hill	



Car	
Current	
velocity	Gas	flow	

actuator	

Car	
model	

Hills	

Hill	
sensor	

Velocity	
sensor	

+	-	 Control	 +	-	
Desired	
velocity	

Feedback	with	feedforward	
-	Complimentary	limitaBons,	so	ojen	we	can	
get	beler	performance	using	both	together.	
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					Types	of	control	-	linear	

•  Linear		
– Output	is	a	linear	combinaBon	of	the	inputs	

Car	
2	×	gas	 2	×	velocity	
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•  Linear	
– Output	is	a	linear	combinaBon	of	the	inputs	
	

Car	
a	×	gas	+	b	×	gas	 a	×	velocity	+	b	×	velocity	

20	

					Types	of	control	-	linear	



•  Linear	
– Output	is	a	linear	combinaBon	of	the	inputs	
– Linear	systems	have	a	very	well	defined	and	
rigorous	control	theory		

	

Car	
a	×	gas	+	b	×	gas	 a	×	velocity	+	b	×	velocity	

21	

					Types	of	control	-	linear	



•  Linear	
– Output	is	a	linear	combinaBon	of	the	inputs	
– Linear	systems	have	a	very	well	defined	and	
rigorous	control	theory		

Car	
a	×	gas	+	b	×	gas	 a	×	velocity	+	b	×	velocity	

22	

					Types	of	control	-	linear	

*	Also,	the	output	frequency	=	the	input	frequency	*	



23	

Linearity	is	the	reason	we	need	good	seismic	isolaBon	below	10	Hz,	even	though	we’re	
searching	for	GWs	above	10	Hz.	Large	amplitude	low	frequency	moBon	will	have	non-negligible	
2nd	order	influences	on	the	interferometer,	causing	upconversion	to	frequencies	above	10	Hz.	
Mechanisms	include	nonlinear	behavior	of	the	cavity,	scalered	light,	opBc	pitch	and	yaw.	

P1600103	

Ground	

Suspension	Point	

Test	Mass	 GW	observaBons	
>	10	Hz	

aLIGO	Seismic	IsolaBon	Performance	



•  Nonlinear	
– Output	is	some	general	funcBon	of	the	input	
– No	single	theory	for	non-linear	control	

Car	
f(gas)	 h(gas)	

Nonlinear	system	examples	
•  Acquiring	cavity	lock	–	the	sensor	signal	only	exists	intermilently	
•  Rockets	–	the	mass	gets	smaller	as	the	propellant	is	consumed	
•  RoboBc	arms	–	the	moment	of	inerBa	depends	on	the	arm’s	posiBon	24	

					Types	of	control	-	computaBon	



Lecture	1	–	Part	2	

System	Modeling	

25	G1600726	



Lecture	1	–	Part	2	

System	Modeling	
	Recurring	theme:	more	than	1	way	

to	look	at	a	system.	All	are	equivalent,	
but	each	is	useful	in	its	own	context.	
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System	Models	
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Example	–	mass	spring	system	
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m!!x + c!x + kx = f
f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

EquaBon	of	moBon	

System	Models	
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m!!x + c!x + kx = f
f

EquaBon	of	moBon	

System	Models	

x = A1e
σ+iω( )t + A2e

σ−iω( )t + x f

General	soluBon	

•  A1	and	A2	are	constants	whose	values	depend	on	the	iniBal	condiBons	
•  xf	is	a	parBcular	soluBon	with	the	same	form	as	f	
•  σ±iω	are	the	roots	of	the	characterisBc	equaBon	

o  σ	is	the	decay	Bme	constant	
o  ω	is	the	natural	frequency	
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m!!x + c!x + kx = f
f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

EquaBon	of	moBon	

Time	domain	
State	space	model	

Frequency	domain	
Transfer	funcBons	

System	Models	
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m!!x + c!x + kx = f
f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

EquaBon	of	moBon	

Time	domain	
State	space	model	

Frequency	domain	
Transfer	funcBons	

Both	formats	are	widely	used,	ojen	at	the	
same	Bme.		

System	Models	
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f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

•  The	state	space	form	rewrites	an	Nth	
order	differenBal	equaBon	as	a	system	of	
N,	1st	order	differenBal	equaBons.	
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f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

x1 = x
x2 = !x

•  The	state	space	form	rewrites	an	Nth	
order	differenBal	equaBon	as	a	system	of	
N,	1st	order	differenBal	equaBons.	

*	Mechanical	systems	have	2	states	for	every	DOF:	typically	displacement	&	velocity	

displacement	

velocity	

System	states:	
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f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

x1 = x
x2 = !x

•  The	state	space	form	rewrites	an	Nth	
order	differenBal	equaBon	as	a	system	of	
N,	1st	order	differenBal	equaBons.	

!"x = A!x +B!u

*	Mechanical	systems	have	2	states	for	every	DOF:	typically	displacement	&	velocity	

System	states:	 Matrix	equaBon	
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f

k	->	sBffness	
c	->	viscous	damping	
m	->	mass	
f	->	external	force	
x	->	mass	posiBon	

m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

x1 = x
x2 = !x

•  The	state	space	form	rewrites	an	Nth	
order	differenBal	equaBon	as	a	system	of	
N,	1st	order	differenBal	equaBons.	

!"x = A!x +B!u

!x1
!x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0 1
−k m − cm

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

0
1
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
f

*	Mechanical	systems	have	2	states	for	every	DOF:	typically	displacement	&	velocity	

System	states:	 Matrix	equaBon	
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f m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

!"x = A!x +B!u

!x1
!x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0 1
−k m − cm

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

0
1
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
f

A	matrix:	internal	system	dynamics	 B	matrix:	external	input	
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f m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	Bme	domain	

!"x = A!x +B!u

!y =C!x +D!u

y = 1 0⎡
⎣

⎤
⎦

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 0[ ] f

System	dynamics	

Sensing	funcBon	

Ex.	Displacement	
sensor	

The	complete	state	
space	form	is	given	by	
the	A,	B,	C,	&	D	
matrices.	

•  A	is	the	dynamic	behavior	matrix	
•  B	is	the	input	matrix.	
•  C	is	the	output	matrix	
•  D	directly	connects	the	input	to	the	output	(if	such	a	connecBon	exists)	



38	

f m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	frequency	domain	

Convert	EOM	to	the	frequency	domain		
with	the	Laplace	transform.	

	Time	derivaBve	->	Laplace	variable	s	

x ms2 + cs+ k( ) = fLaplace	transform	
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f m!!x + c!x + kx = f
EquaBon	of	moBon	

Models	–	frequency	domain	

Convert	EOM	to	the	frequency	domain		
with	the	Laplace	transform.	

	Time	derivaBve	->	Laplace	variable	s	

x ms2 + cs+ k( ) = f
x
f
=

1
ms2 + cs+ k

Laplace	transform	

Force	to	displacement	
transfer	funcBon	



Models	–	Bme	&	frequency	domain	
comparison	
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!"x = A!x +B!u x
f
=

1
ms2 + cs+ k

Time	domain	(SS)	 Frequency	domain	(TF)	

eig(A)	
Poles	of	x/f	->	roots	of		

ms2 + cs+ k

System	order	
#	of	rows	of	A,	or	
the	#	of	states	

#	of	poles	of	x/f,	or	the	
order	of	the	denominator’s	
polynomial	

Domain	

σ ± iω
SoluBon	exponents	

!y =C!x +D!u



Models	–	Bme	&	frequency	domain	
comparison	
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!"x = A!x +B!u x
f
=

1
ms2 + cs+ k

Time	domain	(SS)	 Frequency	domain	(TF)	

Domain	 !y =C!x +D!u

When	is	each		
more	useful?	

-  MIMO	(mulB-input,	mulB-output)	
-  Has	many	states	
-  Various	matrix	operaBons	are	

useful	for	studying	its	properBes		
-  	Some	‘modern’	controls	

techniques	are	defined	in	SS	
-  Easy	to	numerically	integrate	

-  Examining	the	frequency	
content	of	the	system’s	
behavior	

-  Designing	SISO	(single-input,	
single	output)	control	filters	

Example	system:	
quadruple	
pendulum	test	mass	
suspension	

The	model	is	defined	as	a	SS	
system,	since	it	is	MIMO	and	has	
many	states.	

The	various	controllers	are	
designed	by	extracBng	TFs	
between	individual	inputs	and	
outputs	from	the	SS	model.		
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f

State	space	model	

Example	system	–	HAM	ISI	

Physical	parameters	from	G070156	
•  k	->	125770	N/m	
•  m	=	1900	kg	
•  c	->	3000	N/(m/s)			(guess)	

m!!x + c!x + kx = f

!"x = A!x +B!u
!y =C!x +D!u

G070156	
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State	space	model	

Example	system	–	HAM	ISI	

!x1
!x2

⎡
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⎢
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⎦
⎥
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=

0 1
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⎥
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⎥
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0
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⎥
f

!x1
!x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 1

−66.2 −1.6

⎡

⎣
⎢

⎤

⎦
⎥

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 0

5.3e− 4

⎡

⎣
⎢

⎤

⎦
⎥ f

y = 1 0⎡
⎣

⎤
⎦

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 0[ ] f

A	 B	

C	 D	

Roots	of	the	system	

eig(A) = −0.814±8.10i
Matlab	code	for	state	space	format:	
HAMISI_SS = ss(A,B,C,D);!



3	ways	to	characterize	these	models	

•  Impulse	response	(or	the	similar	step	response)	

•  Complex	plane	(zero-pole	map)	

•  *	Bode	plot	of	the	transfer	funcBon	

These	are	all	equivalent,	which	we’ll	see	on	the	
following	slides.	

44	*	Bode	plots	are	used	more	extensively	than	anything	else,	but	all	are	useful	



Example	system	–	HAM	ISI	

45	

Natural	frequency	=	|eig(A)|	=	8.14	rad/s	=		1.29	Hz	

Matlab	code:	
impulse(HAMISI_SS)!

In
pu

t	f
or
ce
	

One	way	to	characterize	the	system	is	to	plot	the	impulse	response	
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eig(A) = −0.814±8.10i

Example	system	–	HAM	ISI	

Conjugate	pair	

Matlab	code	for	a	pole-zero	map:	
pzmap(HAMISI_SS)!

Another	way	to	
characterize	the	
system	is	to	plot	
the	eigenvalues	
(poles)	in	the	
complex	plane	



47	

eig(A) = −0.814±8.10i

Example	system	–	HAM	ISI	

Radius	=	natural	frequency	
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Example	system	–	HAM	ISI	
eig(A) = −0.814±8.10i

Radius	=	natural	frequency	

sin(angle)=	damping	raBo	
Q	=	1/(2*damping	raBo)	
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Example	system	–	HAM	ISI	
eig(A) = −7.32±3.55i
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Example	system	–	HAM	ISI	
eig(A) = 0±8.14i
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Example	system	–	HAM	ISI	
eig(A) = −0.814±8.10i

Radius	=	natural	frequency	

sin(angle)=	damping	raBo	
Q	=	1/(2*damping	raBo)	

Poles	must	be	in	
the	lej	half	
plane	(LHP)	for	
stability!	

Matlab	code	for	a	pole-zero	map:	
pzmap(HAMISI_SS)!
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x
f
=

1
ms2 + cs+ k

s = 0+ iω
ω = 2π f

x
f
=

1
125770−1900(2π f )2⎡⎣ ⎤⎦+3000(2π f )i

Example	system	–	HAM	ISI	

Poles	of	the	system	
roots(ms2 + cs+ k) = eig(A) = −0.814±8.10i

This	subsBtuBon	converts	the		
Laplace	transform	to	the	Fourier	transform	

Matlab	code	for	transfer	funcBon	format:	
HAMISI_TF = tf(1,[1900,3000,125770]);!

Yet	another	way	to	characterize	the	system	is	to	plot	the	transfer	funcBon	
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Example	system	–	HAM	ISI	

Bode	plot	of	the	x/f	transfer	funcBon	

Frequency	(Hz)	

x
f
=

1
125770−1900(2π f )2⎡⎣ ⎤⎦+3000(2π f )i
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Pole	map	vs	Bode	plot	

Frequency	(Hz)	

x
f
=

1
125770−1900(2π f )2⎡⎣ ⎤⎦+3000(2π f )i

iω	 x
f
=

1
p1 − iω p2 − iω

p1	

p2	

angle x
f

⎛

⎝
⎜

⎞

⎠
⎟= angle p1 − iω( )+ angle p2 − iω( )

iω	
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Impulse	vs	Bode	plot	

Impulse	response	
FFT	of	the	

Impulse	response	
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Impulse	vs	Bode	plot	

Impulse	response	 Transfer	funcBon	

=	

Time	domain	 Frequency	domain	
FFT	

IFFT	



Lecture	1	Summary	

•  Control	helps	us	achieve	a	desired	behavior	
–  In	general	maintain	desired	setpoints	

•  Control	can	be	either	feedback	or	
feedforward	

•  Nearly	all	our	controlled	systems	are	linear	
•  System	are	modeled	in	both	the	Eme	domain	
and	frequency	domain.	Both	domains	are	
equivalent.	Each	is	useful	in	its	own	context.	

57	



Lecture	1	–	Backups	

58	G1600726	



RelaBonship	between		
Laplace	and	Fourier	

59	

•  Laplace	becomes	Fourier	when	the	real	part	of	s	goes	to	zero		
and	the	imagery	part	is	frequency	in	units	of	rad/s	

s = 0+ iω, ω = 2π f

•  Why	do	we	use	Laplace	for	the	transfer	funcBons,	but	Fourier	for	
the	bode	plots?	
o  As	far	as	I	know,	this	isn’t	discussed	much	in	controls	classes.	

My	hypothesis	is	that	the	Fourier	transform	is	sufficient	for	
reproducing	Eme	domain	signals,	since	any	Bme	domain	signal	
can	be	reproduced	by	an	infinite	sum	of	sine	waves.	However,	
the	Fourier	transform	does	not	contain	enough	informaBon	to	
represent	the	dynamics	of	the	system	that	produced	that	
signal.	Since	poles	and	zeros	in	general	have	both	real	and	
imaginary	parts,	the	Laplace	transform,	with	the	addiBon	of	the	
real	part	of	s,	is	sufficiently	general.		
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Plot of the PoundœDreverœHall (PDH) Signal for aLIGO

Cavity	Signal	

The	PDH	signal	for	a	4	km	aLIGO	Fabry-Perot	cavity	with	mirror	power	transmissions	of	1.4%	and	
7.5	ppm.	The	cavity	finesse	is	445.	The	linear	region	between	the	dashed	lines	is	1	nm	wide.	

PDH	signal	

“Linear	
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EquaBon	of	moBon	

Models	–	SS	rel.	disp.	output	
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System	dynamics	

Sensing	funcBon	

Ex.	RelaBve	displacement	
sensor	

xg

m!!x + kx = kxg

RelaBve	displacement	sensor	

x − xg

Note,	to	include	the	damping	term,	a	different	set	of	state	variables	is	required.	See	T1400023.	


