
Tracking Spectral Noise Lines in Advanced LIGO Data

Gillian Dora Beltz-Mohrmann, Wellesley College

Mentors: Alan Weinstein & Jonah Kanner, California Institute of Technology

LIGO SURF 2015

LIGO-T1500415

August 3, 2015

Abstract

The Advanced LIGO detectors are expected to make gravitational wave observations possible
within the next few years. However, sharp spectral noise lines continue to obscure the data, and
it is unknown if or how these lines wander over time. Therefore, we are developing a method that
will track the frequencies of the various noise sources which appear in our data. Using Python
for scripting, we utilize various signal processing techniques to extract information about the
frequencies present in our time series. We then heterodyne to examine how a given spectral line
wanders in frequency over time. Preliminary results using data from Advanced LIGO’s Engineering
Run 7 are included. In the future, this method will be automated to constantly examine new
data in quasi-real time, providing beneficial insight for improving the quality of the data and the
sensitivity to gravitational waves from spinning neutron stars and other astrophysical sources.

1



1 Introduction

Gravitational waves are ripples in space-time,
first predicted by Einstein’s theory of general
relativity in 1916. They can be produced
by a number of sources, including compact
binary coalescences, galactic supernovae, non-
axisymmetric spinning neutron stars, and the
stochastic gravitational wave background left
over from the Big Bang. Now, nearly a century
after the existence of gravitational waves was
predicted, the Advanced LIGO detectors are
expected to finally make gravitational wave
observations possible.

LIGO is designed to detect gravitational
waves using a laser interferometer, which mea-
sures with high precision the time it takes light
to travel between suspended mirrors1. If a grav-
itational wave passes by, the distance measured
by the light will change, and a photodector will
produce a signal. The LIGO instruments are
modeled after Michelson interferometers with
Fabry-Perot arm cavities. The detectors are
operated in unison at the different locations
to rule out false signals. The first generation
of LIGO ran from 2002 to 2010, and although
it did not detect anything, it proved that the
experiment was technologically possible2. Ad-
vanced LIGO is predicted to be ten times more
sensitive due its additional suspension cables,
and should soon be able to detect gravitational
waves. However, the data are confounded by
various sources of noise.

There are two components to LIGO strain
noise: a broadband component and sharp spec-
tral lines. One of the sources of the largest line
features is the electrical power system, which
operates at a frequency of 60 Hz and which

produces spectral lines in the LIGO strain data
at 60 Hz and all multiples (harmonics). Another
chief source is the vibration of the suspension
cables which hold up the mirrors. These noise
lines, of which there are about a dozen, are
called violin modes, and they typically produce
spectral lines in the data around 500 Hz (and
all harmonics). Other sources of line features
include calibration and dither lines, which are
deliberately placed in the data by moving the
mirrors. (The calibration and dither lines are
very close to pure sinusoids, so their harmonics
do not show up noticeably in the data.) We
would like to determine if and how the frequen-
cies of the lines drift. Thus, we are developing
a method for tracking the frequencies of these
noise sources.

2 Methods

2.1 Scripting and Data

We use Python3 for scripting, making exten-
sive use of a package called GWpy4, which
provides specific tools for studying data from
gravitational-wave detectors. Preliminary data
were taken from Advanced LIGO’s ER7 run
(specifically June 7, 2015), from both the Liv-
ingston (L1) and Hanford (H1) detectors.

2.2 Signal Processing

In order to identify the frequencies present in
our time series, we utilize various signal process-
ing techniques available in numpy5 and scipy6.
These include the fourier transform, spectro-
gram, and power spectral density (PSD), all of
which provide information about how the power
of a signal is distributed over its different fre-
quencies. (In order to reduce spectral leakage, a

2



Blackman window is applied.) These techniques
can give us further insight into the noise that we
detect. We use a high resolution PSD to identify
the exact frequencies of our spectral noise lines.

2.3 Heterodyning

Heterodyning is a signal processing method that
involves multiplying an incoming signal by a
complex exponential, and then integrating over
time. Thus, we are essentially computing the
integral H(g) =

∫ T
0 e2iπgt sin(2πft)dt, and then

dividing by T to get an average. (This is de-
scribed step-by-step in the Appendix.) The first
exponential, with frequency g, is chosen based on
the lines identified from our PSD, and the sec-
ond, with frequency f, represents only one fourier
component of a signal time series (in our case,
LIGO strain data). This technique allows us to
pick out frequencies f close to g, suppressing all
others because the heterodyne averages to zero
for them. We examine the heterodyne magni-
tude and phase plots to determine how the signal
frequency changes over time. If the heterodyne
and signal frequencies are one and the same, the
phase should be constant. However, if they are
different (that is, if the signal frequency wanders
over time), then the phase will vary.

3 Results

The results of our preliminary analysis of Ad-
vanced LIGO data are shown in Figures 1-8.
Time series plots of H1 and L1 data are shown in
Figures 1 and 5, respectively. H1 and L1 power
spectral densities, which give us the frequencies
and magnitudes of the spectral noise lines, are
shown in Figures 2 and 6. Plot of heterodyne
magnitude and phases from H1 and L1, which il-
lustrate how the frequencies of our spectral noise

lines wander over time, are shown in Figures 3-4
and 7-8. So far our observations are not neces-
sarily in line with what we expected. The phase
of the first violin mode in both detectors is not
constant, so the frequency is likely wandering,
but it is unclear exaclty how. We also suspected
that the power line would wander significantly,
but based on cursory analysis, its phase appears
constant, which would suggest that its frequency
is not drifting. We need to heterodyne at many
more frequencies and on much more data before
we can offer conclusive results.

Figure 1: Ten minutes of ER7 H1 data.

Figure 2: PSD of H1 data.

3



Figure 3: Heterodyne magnitudes of H1 data at
various frequencies.

Figure 4: Heterodyne phases of H1 data at various
frequencies.

Figure 5: Ten minutes of ER7 L1 data.

Figure 6: PSD of L1 data.

4



Figure 7: Heterodyne magnitudes of L1 data at
various frequencies.

Figure 8: Heterodyne phases of L1 data at various
frequencies.

4 Conclusions

Further analysis is needed to verify the rela-
tionship between the changing phase and the
wandering frequency, as well as to understand
the heterodyne results from the Advanced LIGO
data. We will examine more data as well as more

spectral noise lines over the next few weeks. The
final step will be to automate the entire process
so that the code runs through all incoming Ad-
vanced LIGO data minute by minute. For this,
we will set up a Condor job in ”cron mode” to
execute the script at specific scheduled time in-
tervals. All of the plots will be displayed on the
LIGO Summary Pages7.

5 Acknowledgments

I gratefully acknowledge the support of the
United States National Science Foundation for
the construction and operation of the LIGO Lab-
oratory, as well as California Institute of Tech-
nology Student-Faculty Programs Office, the Re-
search Experiences for Undergraduates Program
of the National Science Foundation, and the
LIGO Summer Undergraduate Research Pro-
gram. I also acknowledge the use of the LIGO
Open Science Center (https://losc.ligo.org), a
service of LIGO Laboratory and the LIGO Sci-
entific Collaboration, as well as Python version
2.7, developed by the Python Software Founda-
tion (available at http://www.python.org), and
GWpy, created using Sphinx 1.2.2 by Duncan
Macleod (2013).

5



References

[1] ”Science of LIGO.” LIGO Livingston. 07 May 2015. http://www.ligo-
la.caltech.edu/LLO/overviewsci.htm

[2] A. Cho. Feature: Physicists gear up to catch a gravitational wave. Science, 2015.

[3] Travis E. Oliphant. Python for Scientific Computing, Computing in Science & Engineering, 9,
10-20 (2007), DOI:10.1109/MCSE.2007.58

[4] GWpy. Duncan Macleod. 2013. https://gwpy.github.io/

[5] Stfan van der Walt, S. Chris Colbert and Gal Varoquaux. The NumPy Array: A Structure
for Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

[6] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-,
http://www.scipy.org/ [Online; accessed 2015-08-03].

[7] Summary Pages. Duncan Macleod. https://ldas-jobs.ligo-la.caltech.edu/ detchar/summary/day/20150803/

6 Appendix

We want to evaluate the integral

H(g) =

∫ T

0
e2iπgt sin(2πft)dt. (1)

This can be rewritten as

H(g) =

∫ T

0
cos(2πgt) sin(2πft)dt+ i

∫ T

0
sin(2πgt) sin(2πft). (2)

This can be expanded so that

H(g) =

∫ T

0

1

2
[sin(2πgt+ 2πft) − sin(2πgt− 2πft)]+i

∫ T

0

1

2
[cos(2πgt− 2πft) − cos(2πgt+ 2πft)].

(3)
Then, because we can assume that oscillatory functions integrate to zero if T is much larger than
a period, the sum terms disappear, and only the difference terms remain. Thus, we are left with

H(g) =
i

2

∫ T

0
cos(2πgt− 2πft) − 1

2

∫ T

0
sin(2πgt− 2πft). (4)

6



Evaluating the integral, we get

H(g) =
i

2

sin(2πgt− 2πft)

2πg − 2πf

∣∣∣∣T
0

+
cos(2πgt− 2πft)

2(2πg − 2πf)

∣∣∣∣T
0

. (5)

Taking the limits, we get

H(g) =
cos(2πgT − 2πfT ) − 1 + i sin(2πgT − 2πfT )

4π(g − f)
. (6)

We let

a = Re

(
cos(2πgT − 2πfT ) − 1 + i sin(2πgT − 2πfT )

4π(g − f)

)
(7)

and

b = Im

(
cos(2πgT − 2πfT ) − 1 + i sin(2πgT − 2πfT )

4π(g − f)

)
. (8)

To find the magnitude, we want
r = (a2 + b2)1/2. (9)

In this case,

a2 =
cos2(2πgT − 2πfT ) − 2 cos(2πgT − 2πfT ) + 1

16π2(g − f)2
, (10)

and

b2 =
sin2(2πgT − 2πfT )

16π2(g − f)2
. (11)

Thus,

r =

(
1 − cos(2πgT − 2πfT )

8π2(g − f)2

)1/2

. (12)

Or, letting
g = f + ∆f, (13)

we have

r =

(
1 − cos(2π∆fT )

8π2∆f2

)1/2

. (14)

To find the phase, we want

φ = atan
b

a
, (15)

which equals

φ = atan

(
sin(2πgT − 2πfT

cos(2πgT − 2πfT ) − 1

)
(16)

or

φ = atan

(
sin(2π∆fT

cos(2π∆fT ) − 1

)
. (17)

7


