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Abstract: 
One possible source of noise in interferometric experiments such as LIGO is thermo-optic noise which is caused by 
variations in the local temperature of the mirror coatings. To fully characterize this noise source we need to know α (the 
coefficient of expansion), and β (the change in index of refraction with temperature, dn/dT) for all materials used in the 
coatings. We are setting up an experiment at Whitman College to measure these coefficients, but we would like to 
determine which coatings will give us the lowest fractional error on each parameter. We wrote code in Mathematica to 
analyze sets of coatings, and determine the set that will give us the smallest errors on α and β. After running seventy initial 
coatings we found a number of good options. 
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In the LIGO noise curve seen above, there are two predictions for the 
thermo-optic noise. The old thermo-optic noise curve assumed that the 
thermo-elastic (TE) noise (pictured below, left), and thermo-refractive 
(TR) noise (pictured below, right) would add incoherently. However, the 
new noise curve is based on the understanding that the thermo-elastic 
and thermo-refractive noises should be added coherently since they are 
driven by the same underlying temperature change and thus can 
partially cancel. The equation for this coherent noise is: 
 

𝑆∆𝑥 𝜔 ≈ 𝛼𝑒𝑓𝑓𝑑 − 𝜆𝛽𝑒𝑓𝑓
2

𝑆Δ𝑇(𝜔) 
 

LIGO predicts that the 𝛼𝑒𝑓𝑓, (the combination of α, the thermo-elastic 

response, in each material) and 𝛽𝑒𝑓𝑓 (the combination of β, the thermo-

refractive response ,in each material) terms will at least partially cancel. 
However, to realistically predict this cancellation we need to know the 
coefficients to a high degree of certainty. Additionally, although it is 
below the current AdLIGO noise floor, eventually LIGO may decrease the 
Brownian noise enough that thermo-optic noise becomes a concern. 

 
To determine the coefficients, we first have to understand the thermo-
elastic and thermo-refractive responses in mirror coatings. Thermo-
Elastic noise is a physical change in position of the surface of the mirror 
due to the thermal expansion of the coating. Thermo-Refractive noise is 
a change in the complex reflection coefficient of the coating when 
temperature changes  cause  the optical thickness of the layers to 
change. 

Background:  

Next Steps: 
Although we have eliminated the reverse-Bragg coating as a likely 
candidate and we have found that roughly 11 layers gives us the best 
results there are still many more coatings to try. Next we will evaluate 
coatings with two or more half-wave layers inserted in various locations 
in the stack as well as some less conventional doublets that still add to a 
half wavelength (such as 1/10 – 4/10 and 1/6 – 1/3 coatings). 

The Problem: 

The main difficulty in getting α and β for a particular coating is that we can only actually measure dϕ/dT which depends on 
all four parameters. This means we need four linearly independent equations, or four different coatings to create a 
“measurement matrix” (see below) which we can invert and use  to solve for the coefficients: 

𝑑𝜑1 𝑑𝑇 

𝑑𝜑2 𝑑𝑇 

𝑑𝜑3 𝑑𝑇 

𝑑𝜑4 𝑑𝑇 

=

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

.

𝛼𝐿

𝛼𝐻

𝛽𝐿

𝛽𝐻

 

After we invert the matrix, we need to add and subtract combinations of our dϕ/dT values, and if the matrix is poorly 
constructed, small numbers can subtract while  errors on measurements (around five percent) add in quadrature, resulting 
in huge fractional errors on α and β.  For example: 

1.01 ± 0.1 − 1.0 ± 0.1 = 0.01 ± 0.1 2 ≠ 0.01 ± 0.0  (as we may naively expect) 

We would like to find a set of coatings that give us the smallest errors for α and β.  

Figure of Merit: What do we mean by “Best Coating”? 
 

It’s obvious that the best coating choice is one that has the smallest 
errors on the parameters. However, we need to define what constitutes 
smallest error and there are multiple ways to do so. For example, 
imagine that we had two measurements: 
 

 
20.0 ± 1.0
1.2 ± 0.8

  𝑣𝑠.    
20.0 ± 3.0
1.2 ± 0.2

 

Here, taking the sum of the two uncertainties (1.8 vs.3.2) is a completely 
different result than taking the sum of fractional errors (72% vs. 32%).  
Depending on how we calculate the lowest error either of these two sets 
could be considered the best. 

In our code, we decided to take fractional errors because we believe that 
having low fractional errors is important. We make the four fractional 
errors into a vector and calculate the length to get the figure of merit: 

𝐹. 𝑂. 𝑀. =  
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Defined this way, a small figure of merit will ensure that all four 
fractional errors are small. 

Initial Results: 
We tried this procedure for the following coatings:  
-Quarter-quarter stack with 6, 11, and 14 doublets 
-Bragg Stack (⅛ high index, ⅜ low index) with 6, 11, and 14 doublets 
-Reverse-Bragg(⅜ High index, ⅛ low index) with 6, 11, and 14 doublets 
-All of the above with a half-wavelength cap of low index material 
-All of the above with an additional half-wavelength layer of high or low 
index inserted at every point in the coating list.  
 
In our calculations the best coating sets were the quarter-quarter and Bragg 
stacks, while the reverse-Bragg stacks were never in the top choices. 
Furthermore, the coatings with 11 or 14 layers seemed to be preferred, 
while coatings with 6 layers were rarely chosen. 
 
The set that gave us our lowest figure of merit was the following: 
- A quarter-quarter stack with a half-wave cap and a half-wave high index at the last layer 
- A quarter-quarter stack with a half-wave cap and a half-wave low index at the twenty-first layer 
- A quarter-quarter stack with a half-wave cap and a half-wave low index at the ninth layer 
- A Bragg stack with a half-wave cap and a half-wave low index at the nineteenth layer 

 
For this set of coatings we found the following fractional errors: 
 

𝜎𝛼𝐿

𝛼𝐿
= 0.0385 ,

𝜎𝛼𝐻

𝛼𝐻
= 0.0336 ,

𝜎𝛽𝐿

𝛽𝐿
= 0.0414 ,

𝜎𝛽𝐻

𝛽𝐻
= 0.0360 

 
And the figure of merit is 0.0749. 
 
Our preliminary results are fairly unsurprising and they seem to support the 
experiments that have already been done (with quarter-quarter and Bragg 
stacks). It seems logical that the code would select coatings with an extra 
layer at the top, bottom and middle of the stack, because those have the 
most diverse placement and thus form the best measurement matrix. 
However, there are a few things in our preliminary results that are 
particularly interesting to note. Firstly, as mentioned, the reverse-Bragg 
coating never showed up in the coating sets with the best figures of merit. 
Furthermore, for our best set of coatings, the fractional errors are all less 
than 5 percent even though we added a nominal error of 5 percent early on 
in the code. We would have expected the fractional error to increase and 
we are currently looking into why these errors are smaller than expected. 

𝑑𝜑/𝑑𝑇 
𝑇𝐸

= 
−4𝜋

𝜆
 𝛼𝑖𝑙𝑖

𝑖𝑛𝑑𝑒𝑥

 𝑑𝜑/𝑑𝑇 
𝑇𝑅,𝑄𝑊𝐿

= 
𝜋(𝛽𝐻 + 𝛼𝐻𝑛𝐻 + 𝛽𝐿 + 𝛼𝐿𝑛𝐿)

𝑛𝐻
2 − 𝑛𝐿

2
 

Thermo-Elastic: Thermo-Refractive: 

Import a list of possible coefficient sets generated 
from the code above. 

For each unique combination of four coefficient sets 
calculate a figure of merit (see right). If it is smaller 
than one on the list of the N best vectors then use it to 
replace the worst value on the list. 

After going through all possible combinations the 
program will output an N-length list of the best figures 
of merits and their associated coating sets. 
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Part 2: Choose the Best Coating Combinations: 

Generate a matrix of the four vectors currently under 
consideration. 

If the determinant of the matrix is non-zero then invert the 
matrix and continue. If it is zero then the calculation is 
finished and we set the figure of merit to infinity. 

Calculate the expected dϕ/dT values using nominal 
thermo-optic parameters. 

Set the error in dϕ/dT as some fraction of dϕ/dT (0.05 in 
this case).   

Use the inverse matrix to propagate these errors to errors 
on the coefficients. 

Calculate the figure of merit. 

This code imports all the generated coatings and creates all 
unique combinations  of four coatings. However, this is a huge 
number of combinations so we only ask it to choose the N 
best combinations with the lowest error on the αs and βs. 

Part 1: Calculate Parameters for the Measurement Matrix: 
The code reads in a coating configuration. 
The configuration is in the form of a list for each layer, with the first element closest to the vacuum. For example, a Quarter 
Wavelength stack is a series of alternating  high index (tantala, n=2.065) and low index (silica, n=1.45) layers, each a quarter of a 
wavelength thick. The input list form would be {layer length (optical wavelengths), layer index of refraction}: 
{{¼, 1.45},{¼,2.065},{¼, 1.45},{¼,2.065},{¼, 1.45},{¼,2.065},{¼, 1.45},{¼,2.065}.....} 
 

It then calculates the expected values for thermo-elastic and thermo-refractive response. 
If our equation is: 

𝑑𝜑 𝑑𝑇 = 𝑎1𝛼𝐿 + 𝑎2𝛼𝐻 + 𝑎3𝛽𝐿 + 𝑎4𝛽𝐻 
To find, for example, 𝑎1, we calculate: 

 𝑎1 = 1 𝛼𝐿 𝑑𝜑 𝑑𝑇   at  𝛼𝐻= 𝛽𝐿 = 𝛽𝐻 = 0 
Where 𝛼𝐿 and 𝑑𝑇 are nominal values for the coefficient of expansion and a change in temperature. 
We then find the change in phase, 𝑑𝜑, by: 

1. Calculating the initial reflectance ,𝑟0. 
2. Calculating the new reflectance, 𝑟’, with 𝑙 → 𝑙 1 + 𝛼 ∗ 𝑑𝑇  for all low-index layers. 
3. Calculating 𝑑𝜑 = 𝑟′ − 𝑟0, adding the additional phase from the thermo-elastic response. 

Then find 𝑎2, 𝑎3, 𝑎4in a similar way. 
 

Finally, it outputs a potential row of the measurement matrix: {a1,a2,a3,a4}. 
For the Quarter Wavelength stack given above, with 11 doublets, the output is: 

Row = {-21.7282,-13.7364, 4.43988,1.45144} 

Source: Ogin et.al, LIGO-G1200269-v1 


