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of curves reveals several points of similarity. First, all curves for metals appear to have
a “cyclie” stress sensitivity limit” oz (indicated by solid squares in Fig. 36.15) below
which the curve representing damping vs. stress is a straight line on a log-log plot and
displays no stress-history effect. However, above oz, two changes occur: (1) the slope
of the curve changes with increasing stress, in some cases quite abruptly, and damp-
ing exponent n may attain very high values (e.g., 30 for mild steel), and (2) in practically
all metals the damping is not only a function of stress amplitude but also of the number
of prior stress cycles. Thus, a different curve is required for each stress history. Stress
history in this region may cause large changes in damping; e.g., a factor of 30 for mild
steel, at its fatigue strength. The limit stress o usually falls somewhat below the
fatigue strength of the material.

To facilitate comparisons between the reference damping units, loss factor » and D
under uniform stress («/8 = 1), the loss factor also is plotted in Fig. 36.15. Since the
relationship between D and » depends on the value of E, a family of lines for the range
of B = 5 % 100 30 X 10°lb/in.?is indicated for n = 1. The lines for the other values
of n correspond to a value of B = 15 X 10° Ib/in.?

COMPARISON OF VARIOUS MATERIAL DAMPING MECHANISMS AND
REPRESENTATIVE DATA FOR ENGINEERING MATERIALS

The general qualitative characteristics of the various types of damping are summarized
in Table 86.2 by comparing the effects of different testing variables. The data tabulated
indicate that, in general, anelastic mechanisms do not contribute significantly to total
damping at intermediate and high stresses; in these regions magnetoelastic and plastic
strain mechanisms probably are the most important from an engineering viewpoint.

TIn comparing the damping properties of several materials for engineering design and
particularly for resonant fatigue considerations, both the magnitude of damping energy
at a given stress and the proximity of that stress to the fatigue strength should be con-
sidered. Two methods for comparing the damping properties of materials are shown in
Tig. 36.16.12 These are hypothetical curves representative of comparisons commonly
observed in real materials. In Fig. 36.164, the damping properties of three materials
4, B, and C are shown as a function of stress (linear scales). The arrows marked o, in-
dicate the fatigue strengths for the materials, C' having the highest value and B and A
following in that order.

1f the damping properties of these three materials are compared on the basis of equal
stress amplitude, material A would be considered better than material B since it has
higher damping at all values of stress. Similarly, material B would be chosen in pref-
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Fic. 36.16. Hypothetical ecurves for three materials to illustrate methods of comparing damp-

ing properties.
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erence to material C. However, in many engineering applications the relative fatigue
strengths of the three materials also must be considered. When operated near resonance,
a part increases in stress until the energy input to the part is absorbed by means of damp-
ing. Thus, in choosing materials for high resonant fatigue strength, comparisons should
be made not only on the basis of damping at a given stress but also on the basis of stress
for equal energy absorption and the proximity of this stress to the fatigue strength.
For example, assume that the amount of energy which the material is required to absorb
is 0.7 in.-lb/eyele. The horizontal line drawn at this value of damping energy in Fig.
36.164 indicates that the three materials would be stressed to values of 4’, B’, and ¢’
(abscissa). In comparing these stresses with the corresponding fatigue strength, material
(' is stressed significantly above its fatigue strength. '

The _rela,tionship between damping and fatigue behavior for the three materials A, B,
and C is replotted in Fig. 36.168. In this graph, the abgeissa is the ratio of the induced
stress to the fatigue strength of the material. At stresses corresponding to the fatigue
strength, materials 4, B, and € have damping energy values given by A", B”, and "'
m.Flg. 36.168. On comparing the relative damping properties of the three materials in
this manner, material C' is the least effective energy absorber at its fatigue strength.
Material A has the highest damping at low stress ratios, but material B exhibits superior
damping properties for values of stress ratio in excess of 0.75.

Da,x‘nping vs. stress ratio data have been determined for a variety of common structural
materials at various temperatures.? Some of these data are listed in Table 36.5 (all
tests at 20 cpm). For a large variety of structural materials (not particularly selected
for large magnetoelastic or plastic strain damping), the data are found to lie within a
fairly well-established band shown in Fig. 36.17. The approximate geometric-mean curve
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Table 36.5. Damping, Elasticity, Fatigue, and

Static properties
Material
Type of (and test temp. if above Yield stress TeHilE tianEt
1 4 Mod. of elas. I, 0.29, offset), stre J
materia room temp.) Ib/in.2 ( l?;‘in.z ) Tb/in.
3
30.5 ¥ 10° 111 x 108 129 X 10
ipaliopn gtf'f;;m; 30,0 60.5 119
N-155 (1350°F) 3?; s sism
N-155 (1500°F) 21 e i
Stellite 31 AC 32.9 65.1 92.6
Stellite 31 AC (1200°F) 28.2 s i
Stellite 31 AC (1350°F) 26.4
Stellite 31 AC (1500°F) 25.4
Type 403 (TO0°F) g;g ik
Type 403 (900°F) . sisi .
L:g:lloy { 31.2 112 129
Lapelloy (900°F) 25.6 e ‘.
Titanium RC130B 16.53 139 152
RC130B (600°F) 14.5 SR 36
RC55 CW gf_i 81
5 CW (B00°F) 5 o -
ggg; A ‘ 13.8 57.0 75.7
RC55 A (600°F) 10.6 e e
204
Other ferrous Sandvik (O & T) 20.2 ‘ﬂ’g 5
materials Sandvik (N) 20.2 P =
SAR 1020 steel 20.4 : £
Gray iron 19.4 - %
Other 245-T4 aluminum 10.6 ;gg ZES
nonferrous J-1 magnesium 8.5 i .
metals Magnesium-silicon alloy 60 3
Manganese-copper alloy
i 40
Nonmetals (ilass laminate 3.4 s

n decreases. At ¢ = 20,000 Ib/in.2, » = 1.5; at ¢ =

v 2. 3
*Up to ¢ = 12,000 1b/in.?; above this value, i 5% & = 80,000 /it m = 15, at ¢ =

{Up to o = 14,000 1b/in.?; at ¢ = 20,000 lb/in.% n

ie shown. The equations for this two-segment curve are
2.4 g
D=11 (i) [~ < o.s]
T T

8
D =60 (i) [3 i o.s]
T O¢
However, the following single equation defines the mean damping with sufficient ac-
curacy for engineering purposes: vs .
o\ o
D= (#) + 6 (—) (36.43)
Te Ge
dwidth about this geometric mean curve for the various structural

i follows: from 14 to 3 times the mean value at a s_tress
Mpdlars a4 to 10 times at a ratio of

(36.42)

The approximate ban

terials included in the :
rr-naii:I;?O.Z or less; from 14 to 5 times at a ratio of 0f.?;2from Ao
; t0 50 times the mean value at a ratio of 1.2. ) ]
L?&lzgiﬁég:nom Fig. 86.17 for comparison purposes are data for four matex:ia]s having
especially high damping. Materials 1 and 2 are the magnetoelastic alloys Niveo 10 and
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Static Properties of Various Structural Materials

Fatigue behavior Damping properties
D at o, after D at 1209, o,
Fatigue Cyeclic
strength stress | Ratio U toien D at ﬁ%,;t' Max.
oy limit oz, |op/os o, e " 1gt-3 108 1pt-3 No.
Ib/in.? 1b/in.2 N cycles | cycles | oycles | of
J n eyeles
65X10% | 66x10° | 1.02 *0.2510712 | 2.9% | 1.40 | 0.85 1.4 1.4 5 10
53 33 0.62 2.0 2.5 0.4 0.4 45 25 180 220
40 26 0.65 0.13 3.0 2.3 1.8 140 14 700 30
20 25 0.86 0.19 3.0 3 1.0 10 11 50 60
38 24 0.63 0.14 2.9 0.7 0.6 8 0.9 50 20
38 35 0.92 774 2.1 2.7 |11 12 3 200 13
32 33 1,03 | 4,040 2.0 4.4 1.6 4.2 4.2 23 11
54 54 1.00 566 2.0 1.65 | 0.80 1.65 1.65 6 11
47 46 0.98 19.6 245 52 1.65 5.4 5.8 15 20
72 72 1.00 9.52 1 247 1.6 0.58 1.6 1.6 8 25
39.5 45 1.14 325 2,19 5.04 | 1.2 3.8 3.8 6 7
86 95 1.10 279 2.0 2.0 0.65 1.7 1.7 2.7 3.5
62 50 0.81 | 2,000 1.9 1.7 0.90 1.8 3 4.4 25
45 15 0.33 102 2.1 0.06 | 1.15 6 20 13 100
22 20 0.91 248 2.2 0.72 | 0.30 3.3 1.8 9.8 16
41 24 0.59 278 2.0 0.16 | 0.17 10 150 50 750
20.5 10.5 0.51 635 2.0 0.07 | 0.5 38 10 65 40
92 100 1.09 8.8 2.3 2.8 0.8 2.3 2.3 4.5 30
76 55 0.72 0.61 2.6 1.3 0.8 12 70 100 220
35.5 30 0.85 500 2.0 0.45 | 0.23 0.7 20 5 100
8.5 6.5 0.69 494 2.4 0.7 0.5 2 1.2 3.3 2.3
27 24 0.88 780 2.0 045 | 0.2 1 0.6 0.9 2.2
17 8 0.47 | 1,560 2.0 0.1 0.13 1.1 0.5 3.5 1
3.6 1.5 0.42 | 3,720 2.5 0.35 | 0.7 17 1.0
19.0 18 0.95 12 2,82 12 3.3 13 13 25 21
10.5 18 1.6 4.2 2.9 0.5 2 2 3.3 3.3

30,000 1b/in.2, n
40,000 1b/in.%, n

.05; for values of o > 40,000 lb/in.% n = 0.63.
1.3; at ¢ = 50,000 1b/in.%, n = 1.3; at ¢ = 60,000 Ib/in.?, n = 1.45.

403. Nivco 10 retains its high damping up to the stresses shown (data not available at
higher stresses). However, the 403 alloy reaches its magnetoelastic peak at a stress ratio
of approximately 0.2 and increases less rapidly beyond this point; when plastie strain
damping becomes dominant (at stress ratio of approximately 0.8), damping increases
very rapidly. By contrast, material 3, a manganese-copper alloy with large plastic
strain damping, retains its high damping up to and beyond its fatigue strength.® Ma-
terial 4 is a “typical” viscoelastic adhesive (G = 138 lb/in.?), assuming that the per-
missible cyclic shear strain is unity (experiments show that a shear strain of unity does
not cause deterioration in this adhesive even after millions of cycles).2 The magneto-
elastic material has a damping thirty times as Jarge as the average structural material
in the stress range shown in Fig. 86.17, and the viseoelastic damping is over ten times as
large as the magnetoelastic damping.

The range of D observed for common structural materials stressed at their fatigue
limit is 0.5 to 100 in.-1b/in.?/eycle, with a mean value of 7.0. For materials stressed at a
rate of 3,600 cpm under uniform stress distribution (tension-compression), 1 in.? of a
typical specimen will safely absorb and dissipate 0.064 hp (48 watts). Some high-damp-~
ing materials (those having D = 100 at the fatigue lirnit) ean absorb almost 1.0 hp
(746 watts)/in.? in the safe stress range, assuming no significant frequency or stress-
history effects.
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37-4 VIBRATION CONTROL BY APPLIED DAMPING TREATMENTS

Tigure 37.1 shows what can be accomplished at resonance by application of a com-
mercial damping material to a cireular 18-gage steel panel mounted in rigid clamping
rings of 12-in. internal diameter. The panel was driven through resonance by an electro-
magnetic exciter actuated by an audio oscillator; then, the sound pressure level was
messured 3 in. away. A 20-db reduction of sound level at resonance is demonstrated,
with practically no reduction of sound level at frequencies away from resonance. The
decrease of resonant frequency after application of treatment is due mostly to an increase
in the composite mass of the treated panel without compensating increase of stiffness.

The curves of Iig. 37.1 represent the frequency response of a distributed system
in its fundamental flexural mode of vibration. The resemblance to the forced-vibration
response of a lumped spring-mass system lends plausibility to the idealization of the
normal modes of distributed systems by equivalent masses and springs. Since such
idealization can be rigorously justified (see below), the mathematical treatment of viscous
damping acting on lumped-parameter systems becomes applicable to isolated mode re-
sponse in distributed systems, and the various concepts and measurement parameters
that are useful in specifying damping in the single degree-of-freedom lumped-parameter
gystem find their usefulness greatly extended. For reference purposes, the relations be-
tween the common quantities are summarized in Table 37.1. In terms of the response
of the simple spring-mass-dashpot systems, the following definitions are applicable:

¢/ce = fraction of critical damping for viscous or equivalent-viscous damping, where
¢ is the damping constant of the dashpot acting on the mass m in parallel to the
spring stiffness k and ¢, is the critical damping constant as given by Eq. (2.12)
n = loss factor of spring with complex stiffness given by k(1 + jn)
¢ = decay constant of system in free vibration given in terms of viscous damping
by k = ¢/2m
A = logarithmic decrement of free vibration of system defined in terms of suc-
cessive peak displacements during decay
decay rate of free vibrations expressed in decibels per second during exponential
decay of amplitude
Af = bandwidth of steady-state resonance of system as related at the half-power
points
Q = quality factor of steady-state resonance of system as related to the resonant
amplification factor, Ag
¢ = specific damping capacity of system in terms of ratio between energy dissipated
per eycle and elastic energy-storage capacity of the system

D

The first two quantities, ¢/c, and », are dimensionless parameters for specifying the
energy-dissipation capacity of a spring-mass system in general relation to dynamic
response. The next three quantities, x, A, and D, constitute properties of the motion
of the system that are observable during the decay of free vibration at the damped natu-
ral period of the system. The last three quantities, Af, @, and ¥, constitute properties of
the steady-state response of the system that are observable from measurements made
during forced vibration in the neighborhood of resonance. The interrelations displayed
in Table 37.1 will be shown to be useful in interpreting and discussing damping measure-
ments involving practical distributed systems, despite their definition in terms of single
degree-of-freedom system response.

In practice, the existence of resonances in a machine can be detected aurally by making
a slow continuous variation of the speed of a machine from a frequency considerably be-
low the normal operating range to a frequency considerably above. If, as speed is in-
creased, definite increases in loudness of the noise from the machine are noted at cerfain
critical speeds (assuming the elimination of standing-wave effects by averaging through
several observation points), this is probably due either to excitation of different reso-
nances or to suceessive excitation of a single resonance by different exciting components.
When resonances are so prominent that they can be detected by loudness changes in this
way, the large amplitude of the resonating part will permit its easy location.

More frequently, however, resonances will manifest themselves during speed change
by a change in the quality of the sound emitted as the resonant component appears from
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FUNCTION AND APPLICABILITY OF VIBRATION-DAMPING MATERIALS 37-5

Table 37.1. Interrelations among Common Damping Quantities Idealized for
Lumped-parameter Systems of One Degree-of-freedom
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and disappears into the background noise. In diserete-frequency noise and vibration
spectra measured at different speeds, the existence of resonance is made known by undue
prominence of successive noise components as the speed passes through values that excite
the fixed frequencies of resonance. The possibility must not be overlooked that some
resonance may occur at each speed by correspondence of some of the many excitation
components with any of the large number of natural frequencies possible. This makes
the continuously changing character of the noise the only clue to resonance as speed is
changed, because total loudness may be comparatively unchanged until the several reso-
nances have been mitigated. The absence of discrete peaks in narrow-band vibration
and noise spectra is no assurance of the absence of resonant conditions (see below).
Resonances can be excited and may require damping when the system is driven either

by broad-band mechanical excitation or by impinging airborne sound.

DIRECT IMPULSE EXCITATION AND SHOCK EXCITATION

Whenever a blow is delivered to a solid body of any kind, its natural frequencies are
excited. The inherent damping or vibration-damping treatment in this case determines
both the length of time each mode of vibration continues to persist and, to a lesser
extent, the amplitude of the initial excitation. As decay proceeds, the higher modes of
vibration generally disappear more rapidly and the fundamental mode of vibration per-

sists, especially in simple systems like unconstrained bars and plates.

In sheet-metal structures and housings, the impulse sound produced by the motion of
an undamped parel is characterized by what is called “tinniness.” In the consumers’
mind, such noise has come to be associated with cheap, flimsy construction. For this
reason, vibration-damping treatments are used in many commercial produets, such as
metal furniture and fixtures.

The rating of automobile body panels and similar pressed steel constructions, by

means of the quality of sound resulting from a blow with the knuckles, is particula
subject to abusive comparisons

when the quality of products comes under question.
The automotive damping treatment is a multipurpose application required to minimize

rly
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30 DAMPING OF MATERIALS IN STRUCTURAL MECHANICS

material composite or a structural joint. In Fig. 2.5 the properties of the
total specimen S are designated by the subscript 5. Thus, D, is the energy
dissipated by the entire member § (made of a material having a unit
damping value of D) and U, is the total elastic energy stored in the specimen
for which U is the unit strain energy.

The unit damping properties of the material may generally be determined
directly from the properties of the entire specimen. The relationships be-
tween material properties and specimen properties are given in Chapter VI
for a specimen or member made of macroscopically uniform materials.
Using these relations the unit damping energy D of the material can be
determined from the total damping energy D, and the unit strain energy U
from the total strain energy U.

The principal units for defining material, specimen, composite structures,
and dynamic systems are tabulated in Fig. 2.6. Nomenclature for the pro-
perties of materials and members is tabulated in rows I A, B, and C. The
properties of composites, structures, etc. (see Section 2.3), are identified
under major row II in Fig. 2.6. Nomenclature for the response of typical
systems is decribed in rows III D, E, and F. This response may be temporal
decay (row D), spatial attenuation (row E), or near resonant response
(row F).

Nomenclature for Linear Members and Materials. Under sinusoidal loading
the hysteretic loops for linear materials and members are elliptical in shape
and increase in area with the square of stress or strain amplitude. Of all
the units used to define the properties of linear materials the complex nota-
tion of linear viscoelasticity is in the most widely used, has a sound mathe-
matical basis, and has been agreed upon as a standard nomenclature (57 Le;
also see ComPLEX in Appendix C). The complex modulus, compliance, and
other notations which rheologists now consider quite conventional for
linear viscoelastic materials not only provide a basic, minimum and mathe-
matically consistent system, but one which is very useful in the practical
sense.

In order to clarify further the difference between specimen and material
properties, we consider first the properties of a linear specimen such as
shown in Fig. 2.5. The spring constant of such a linear specimen can be
defined in complex notation as follows:

k¥ =k, + ikl (Eq. d)

where k* = complex spring constant of the specimen or member; k; = elastic
spring constant or storage constant of spring; k;' = loss constant of spring.

Some of the features of complex notation for linear materials are discussed
in detail in Section 3.4 for Voigt viscoelasticity and some of the differences
in notation required for non-Voigtian units are reviewed in Section 3.5.
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Generally, the unit complex stiffness properties or moduli of a material
can be determined from the overall complex stiffness k¥ of a »; ecimen of
the material if the type of loading and stress distribution in th: specimen
are known. Under simple loading conditions the elementary equations of
the theory of elasticity are appropriate. Under uniform normal load:

0 = P[A, = ¢E = eEfl = ek, JA.. (Eg. e)
Thus E* = (l[A)k*, E' = (lJd) k., and E" = (JJA) k). (Eq. £)
Under torsional and flexural loads similar equations apply:
T = M,cll, = yG = 0G/]

o= My.[I,. (Egs. g)

Using such elementary equations, or more refined approaches as necessary,
the properties k¥ of the elasto-dissipative specimen can be reduced to the
unit moduli of materials, such as E for Young’s Modulus (normal stress),
and G for the shear modulus. These are defined below in complex notation.

E*=E'+ iE" (Eq. h)
G* = G + iG” (Eq. i)

where: E* and G* are the complex moduli of the material; £ and G” are
the elastic or storage moduli; £ and G are the loss moduli. Bulk modulus
K* and longitudinal modulus M* can be defined in a similar manner.

Another unit frequently used to define the damping properties of linear
(and nonlinear) materials is relative damping energy which is the ratio of
damping energy to strain energy given below:

loss coefficient of a material = 5 = D/2zU
loss coefficient of a member = 5, = D /2= U,. (Egs. j)

For linear materials the loss coefficient is independent of stress amplitude
as shown by the following equation:

Ja? JE
"= 2m2E T =w (Eq. 1)
Since n may exceed unity for viscoelastic materials (see row 7 of Fig. 2.4),
a distinction must be made between k* and k, and between E* and E'.
Forexample, ify > 1, then |[E¥| > 1.4E’(see equations given in Section 3.4).
Complex notation provides an excellent nomenclature for linear materials,
such as polymers, that have large damping,

Linear damping phenomena in metals at low stress (anelasticity) can
also be defined in terms of complex notation similar to that used in linear
viscoelasticity. However, in contrast with polymeric damping, anelastic
damping is usually very small (» is almost always less than 0.1 and generally
less than 0.01). Thus, a distinction between E* and £’ is usually unnecessary
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in anelastic materials (if < 0.1, then E* is within 1% of E’). The units 5
and E (where E = |E*| = E’) are generally used to specify the anelastic
and elastic properties of a metal.

Anelasticity studies have been made mostly by solid-state metallurgists
concerned with internal friction as a macrostructural research tool. Relative
energy units have been used almost exclusively for this purpose, the unit

=1 = 5 (or @ = 1/x) being the most popular. For anelastic and other linear
phenomena no distinction needs to be made between Q and O, (since Q = Q,
= |/n == 1/n, as reviewed in Fig. 2.6 and Section 6.6). Since » has been
adopted as the standard energy ratio unit in this monograph, it will be used
hereafter for presenting data on anelastic damping.

- Nomenclature for Nonlinear Members and Materials. The rheological
equations and nomenclature for nonlinear materials have not been brought
to a mathematical level comparable to that attained for linear materials.
Many of the procedures and assumptions (equation of state, stable struc-
ture, linear viscosity, etc., see Section 4.2) that have proved successful for
linear viscoelastic materials are generally unrealistic for structural materials,
particularly at stress levels of interest in structural mechanics. Simple ellip-
tical loops are generally not observed and complex notation is generally
inappropriate.

The two types of units generally used for defining the damping properties
of nonlinear materials are damping energy dissipation per cycle of stress (see
row A of Fig. 2.6) and ratios of damping energy to strain energy (see
row C). Such energy units are very useful for certain types of engineering
computations (if specified in unique, meaningful terms) but are less satis-
factory than the more compact notation of linear viscoelasticity theory.
Furthermore, the damping energy units specify only the area within a
stress—strain hysteresis loop and not its shape (structural metals at high
stress, for example, generally display hysteresis loops with sharp ends rather
than ellipses characteristic of linear viscoelasticity). Several of the curves
shown in Fig. 2.2 have approximately the same values for D, (same area)
although they are significantly different in shape. In the analysis of the
dynamic response of nonlinear systems, for example, both the area within
the hysteretic loop and its shape are important. In this context energy units
do not completely define hysteretic effects. However, in spite of the limita-

tions, damping energies D or D, appear to be the most satisfactory nomen- |
clature now available for nonlinear materials for most types of response

problems.

Metals and other structural materials sometimes display quadratic damp-

ing (damping exponent n = 2) particularly at low and intermediate stress.

Thus, the relative energy units are independent of stress. However, if the |
hysteretic loops are pointed, rather than elliptical (see Fig. 2.2), this type of |
damping cannot be categorized as truly linear. Nevertheless, for analytic
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purposes proportional damping of this type can be approximated by com-
plex notation. Aecroeclastic and other types of structural vibration problems
have been approached in this manner (51 S, 56 My, 60 Bis, also see 5.5).
In many cases the damping is sufficiently small so that E* = E’, and the
damping properties can be specified in terms of the relative energy unit.

Most structural materials at intermediate and high stress display non-
quadratic damping, and in some cases a very high degree of nonlinearity
exists (n = 15 and more). This means that the relative damping units are
often critically dependent on amplitude of stress or strain. Furthermore,
conventional strain energy definitions are not satisfactory for high-damping,
nonlinear materials (see Section 4.7). On the other hand, if such damping
properties were to be approximated by complex notation, £’ and in some
cases E’ would be a function of amplitude. In view of these difficulties
relative damping units and complex notation appear to be less satisfactory
for highly nonlinear materials than unit damping energy D.

Summary of Units for Members and Materials. Of the many units and
nomenclature used for designating the damping properties of materials
those listed in Fig. 2.6, rows A, B, C, and summarized below are considered
standard in this monograph.

(A) Absolute Damping Energy Units (applicable to both linear and non-
linear materials)
Unit value for a material (damping energy per unit volume): D in units
of in-1b/in3-cycle.
Damping energy dissipated in total specimen or member: D in units of
in-Ib/cycle.

(B) Complex Moduli (generally applicable to linear materials only)
Unit property of materials, such as:

E* = E' + {E'" (units of 1b/in?) (see Eq. h)
G* = G + iG” (see Eq. i)

Property of total specimen or member:
k¥ =k, + ik (see Eq. d)

(C) Relative Energy Units (applicable to both linear and nonlinear materials)
These are dimensionless ratios of damping energy to strain energy.

Unit properties of material:
loss coefficient n = D/2xnlU

quality factor Q = 2zU/D = 1/y

(see Egs. j)
(Eq. 1)

where U = unit strain energy of the material at maximum strain.
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the thermal diffusivity of the material. In addition, the manner in which a part is made (e.g., a
solid section from granite compared to a hollow section from steel), will affect the temperature
gradient across the part and hence the thermal deformations of the part. For example, when subject
to a given heat flux across its height, similar shaped beams designed for use in a coordinate
measuring machine experienced the following bending deformations (normalized to granite):
dGranite = 1.00, 3969, Alumina (cored) = 0.60, 8Solid aluminum < 0.10, dHollow aluminum =
0.25, 8Hollow steel = 1.80.92 As discussed in Section 2.3.5, often the best strategy for control of
thermal deformations is to isolate heat sources and actively cool them, insulate the structure,
maximize thermal conductivity of structural elements, and actively attempt to control the
temperature of the machine and the environment.

Manufacturability

A design engineer must integrate part configuration with material choice and manufacturing
methods, particularly when the part will be produced in high volumes. Ideally, a design engineer
would be familiar with all materials and manufacturing processes, so the situation would never
arise where a part could not be manufactured, or a better configuration bypassed because the design
engineer thought the part could not be manufactured when in reality it could. Fortunately, material
manufacturers are usually well aware of different manufacturing methods and are usually happy to
help with the selection of materials and manufacturing methods.

7.3.3 Material Damping33

The effect of material damping can be readily observed by placing your ear against a desk and then
hitting it (i.e., the desk) and listening to the sound as it decays. In a machine tool, vibrations can
be induced by cutting action or by some other excitation mechanism (e.g., a rotating component
that is slightly out of balance) that causes the toolpoint to move as it passes by; hence it is very
important to build a structure that has high damping to minimize this effect. Vibrations in a
structure are dampened by energy losses in the material and in the interfaces between
components.54

Although it has been extensively studied, the mechanism of damping in a material is
difficult to quantify and one must generally rely on empirical results.55 In fact, damping is highly
dependent on alloy composition, frequency, stress level and type, and temperature. Structural
damping levels are often quite low, and frequently the dominant source of damping is the joints in
an assembly. In fact, one must be extremely wary of damping data that is presented in the
literature, because often it is presented without a discussion of the design of the test setup.

There are several damping quantifiers that are used to describe energy dissipation in a
structure. The quantifiers include:

N Loss factor of material

Ms Loss factor of material (geometry and load dependent)

Ay Resonance amplification factor

®  Phase angle ¢ between stress and strain (hysteresis factor)
Or4 Logarithmic decrement36

AU The energy dissipated during one cycle

£  The damping factor associated with second order systems

2 KH Breyer and H. G. Pressel, "Paving the Way to Thermally Stable Coordinate Measuring Machines," Progress in
Precision Engineering, P. Seyfried, et al. (Eds.), Springer-Verlag, New York, 1991, pp. 56-76.

53 e danger of more or less perpetual vibration of significant magnitude is one of the bugbears of designers of

accurate instruments, and research leading to some practical data on this subject for various types of members is urgently
required." T.N. Whitehead.

54 Mechanical dampers (e.g, shear and tuned mass dampers) are discussed in Section 7.4.1. Joint damping is discussed in
Section 7.5 (e.g., see Figure 7.5.8).

35 A discussion of the many different microstructural mechanisms that generate damping in materials is beyond the scope
of this book. For a detailed discussion see B. J. Lazan, Damping of Materials and Members in Structural Mechanics,
Pergamon Press, London, 1968.

36 Most texts on vibration refer to the log decrement as &; however, to avoid confusion with discussions on
displacement termed 8, the log decrement will be referred here to as 8y q.
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The various damping terms are related in the following manner:

n=Llz=8-¢=40 (1.3.5)
A T 21U
Condition Damping energy integral o« Strain energy integral B
Tension/compression 1 1

2

Rectangular beam (uniform bending) P 0.5
_ 5 : . 1

Cylindrical beam (uniform bending) ] 0.33

Figure 7.3.2 Stress distribution and damping functions. Note that b/a = 1 for all cases
if n = 2. (After Lazan.)

The loss factor 1g can be determined experimentally by subjecting a specimen to various
frequencies and stresses while measuring the amplification. This allows for the damping to be

determined as a function of frequency and stress. The loss factors are equated by the following
relation:

_n B
n=nt (7.3.6)

where o and P are functions of load and geometry as shown in Figure 7.3.2. The factor n is a
measure of the stress in the material. When n = 2.0, the material is subject to a low stress.

The phase angle is the ratio of the apparent modulus of elasticity E2 at low frequencies and
the apparent modulus of elasticity E1 at high frequencies:

6= (7.3.7)

|

The logarithmic decrement 8 4 is a measure of the relative amplitude between N successive
oscillations of a freely vibrating system (one struck by an impulse):

8.,= L log, M (7.3.8)

The logarithmic decrement can also be related to the damping factor {, velocity damping factor b,
mass m, and natural frequency ®p of a second order system model:

(= %4 (7.3.9)
' aﬁm + mmn_
b = 2m{w, (7.3.10)

Note that the amplification at resonance of a second order system is given by

A=—1__ (<0707 (7.3.11)

"1
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7.3 Materials

Damping values for various materials are given in Table 7.3.2. The amount of damping
one obtains from a material is very low compared to the amount of damping that one can obtain
with the addition of a damping mechanism. Damping mechanisms can range from simple sand
piles to more complex shear dampers or tuned mass dampers as discussed in Section 7.4.1.

Material Load T o, o o f f & & An An
(°K) (°K) (ksi) (ksi) (Hz) (Hz)

Alumina 5.00E-06  1.50E-05 100000 33300
Aluminum (6063-T6) bending 1 6 2.50E-04 2.50E-03 2000 200
Aluminum (pure annealed) axial 50 300 3.50E-06  1.00E-05 143000 50000
Beryillium (18.6%Be) unspec. 2 50 7.50E-03  4.10E-01 66.7 1.3
Copper (brass) bending 50 600 1.50E-03  3.00E-03 333 167
Copper (pure annealed) bending 20 550 3.50E-03  1.00E-03 143 500
Glass bending 10 100 1.00E-03  3.00E-03 500 167
Granite (Quincy) bending 140 1600 2.50E-03  5.00E-03 200 100
Iron (cast, annealed) bending 100 2000 6.00E-04  1.50E-03 833 333
Iron (mild steel) bending 2.5 5.5 4.50E-04  7.00E-04 1110 714
Lead bending 20 160 4.00E-03  7.00E-03 125 71.4
Polymer concrete bending 3.50E0-03 143
Portland cement concrete bending 1.20E-02 41.7
Quartz (ground, piezo) unspec. 65k 5.00E-06 100000
Sand (loose on an Al beam)

beam alone bending 1000 4000 1.00E-03 500

50% wt. layer of sand bending 1000 4000 4.00E-02 9.95E-02 12.5 5.1

100% wt. layer of sand bending 1000 4000 9.95E-02 4.10E-01 5.1 1.3
Silica (fused, annealed) axial 73 1073 5.00E-07 5.00E-05 1000000 10000
Silicon nitride (n) unspec. 1.25E-05 40000
Soil (misc.) unspec. 6 30 4.99E-02 10.0

Table 7.3.2 Damping factors for a various materials for B/o = 1.57

7.3.4 Environmental Properties

In addition to being able to withstand mechanical loads, a part must be configured and a material
chosen to ensure that performance in adverse environments will be satisfactory., A precision
machine may operate in a clean temperature-controlled room, but thermal performance and
corrosion resistance must still be considered.

Thermal PropertiesS8

Table 7.3.1 listed common precision engineering materials and their thermal properties.
The thermal conductivity is a measure of how well heat is conducted through the material.
Materials with low thermal conductivities tend to develop hot spots or large temperature gradients.
As illustrated in Section 2.3.5, gradients cause bending moments, which lead to Abbe errors, So
even if a material has a very low coefficient of thermal expansion (e.g., Invar or Zerodur), if it is
subjected to large thermal gradients or local heat sources, a part made from it may deform more
than if the part where made from a material which diffuses heat well (e.g., aluminum). In practice,
however, precision instruments rarely encounter such large gradients, so a minimal coefficient of
thermal expansion is ofteri the dominant property that affects material choice. The specific heat of
a material is a measure of how much thermal energy can be stored in the material. Along with the
thermal conductivity, this allows the design engineer to determine how long it may take for the
part to reach thermal and hence dimensional equilibrium.59 Radiation coupling is governed by the
surface geometry, temperature difference, and thermal emissivity. The latter is a strong function of
the surface finish and chemistry. The decision on which material to use based on thermal growth
considerations may require careful finite element modeling or a simple experiment to simulate the
operating environment and machine configuration.

57 Most of the information in this table is from the earlier reference by Lazan. The value for polymer concrete was
provided by Fack Kane of Gandalf Inc., 206 San Jose Drive, Dunedin, Florida 34698.

58 Although this section on thermal properties may seem short, one should remember the emphasis placed on thermal
errors in Chapter 2. Ideally, every machine designer should have taken a good course in heat transfer.

39 See the conceptual design case study in Section 8.8.2.




