Appendix A
Pages from class notes of 'Advanced Structural Dynamics' class at MIT by Professor
Eduardo Kausel. Course number 2.060. September 2006.

The vibration absorber
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Let K, M denote the stiffness and mass of a structure, modeled as a single dof system, and let &, m
be the stiffness and mass of a vibration absorber or tuned-mass damper (TMD). The TMD is used
to ameliorate the intensity of motion in the structure when the latter is subjected to dynamic
forces F. We define

k

Q= ’}% Frequency of structure alone (without the TMD)
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The stiffness and mass matrices of the coupled system as well as the displacement and load
vectors are

“Lodd U )

Solving the eigenvalue problem for this 2-DOF system, we obtain the coupled frequencies
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Next, we evaluate the dynamic response in the structure elicited by a harmonic force with
amplitude F acting on the structural mass M. Neglecting damping in the structure (but not in the
oscillator), the dynamic equilibrium equation is then

k+iwec—w*m ~(k+iwc) w| [0
~(k+iwc) K+k+ioc-o*M|[|U[ |F

Solving for the response in the structure U, we obtain after brief algebra

F[lc—a)zm+icoc:| {
(K—(uzM)cuzm ) } ¢
S - +iwc
K —a*(m+M)

U= Eq. Al

[K-a?(m+M)]| k-

We shall show now that there exist two frequencies for which the response is independent of the
damping constant c¢. Hence, all amplification functions have these points in common, no matter
what the damping. These two points occur when the complex terms in the numerator and
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denominator cancel identically. This is satisfied if, and only if, the two real parts are equal, that is,
if

( K-w'M ) @’'m
K—-w*(m+M)

H k-w'm]=k- (2) Eq.A2

The plus/minus sign on the left-hand side is to allow for frequencies greater than that of the tuned
mass damper (a condition that would make the left-hand side term negative). If we consider first
the positive sign, we find that it is satisfied only if @ = 0. This solution is not interesting, because
it represents a static problem. On the other hand, if we consider the negative sign, we obtain the
biquadratic equation

m(m+2M)o" —E[k(m + M)+Km](u2 +2Kk=0

whose solution is

oY _ 1 oY - [y ] @, Eq. A
[Q]—“# (w)[Q]m [(Q) r] +p(2+m[9] () EqA3

The two frequencies given by this equation represent two points P, O through which all transfer
functions must pass, no matter what their damping should be. In particular, these two points must

10

/0 Fig. A2 @12 Fig. A3

also be traversed by the two transfer functions that correspond to zero damping and to infinite
damping, i.e. ¢=0 and ¢ =c0. In the latter case, the system behaves the same as if the TMD was
perfectly rigid. This in turn represents an undamped SDOF system with stiffness K, total mass
m+M, and frequency @, as defined earlier. This frequency, and that of the oscillator alone (@),
are bracketed by the two natural frequencies of the coupled system, as can be shown by
considering Rayleigh’s quotient with an arbitrary vector vT={a b}. From the enclosure

theorem, we have
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vIKv (a-bk+b’K 2
. = Sw;
v Mv a*m+b*M

o <R= Eq. A4

in which a and b can be chosen arbitrarily; if we consider in turn the two choices a=b as well as
b=0, we obtain the two inequalities

o} < Ko o} and @ < LIF w3 Eq. A5
m+M m

that is, @, <®, <@, and ® <@, <w,. It follows that the two points P, Q lie somewhere in

between the two natural frequencies at the intersection of the amplification function of the
undamped coupled system and the undamped SDOF system with augmented mass m+M . The
response amplitudes at these two frequencies are obtained by substituting the left-hand side of eq.
2 (negative sign case) into the denominator of eq. 1, and setting the dashpot constant to zero. The
result is

F
UP,Q o - Eq A6
K-awp,(m+M)

In general, the response amplitudes at the two frequencies for P, Q will not be equal. Optimal
tuning of the mass damper can be achieved by enforcing these two amplitudes to be the same:

K-a}(m+M)=+[K-w}(m+M)] Eq. A7

The case where both amplitudes are equal and have the same sign cannot be satisfied, since it
implies equal frequencies for P and Q. Alternatively, if we consider equal amplitudes and
opposite phase, we obtain

2K 24
wp+ Wy = = Eq. A8
. m+M 1+u
Equating this to the sum of the two roots in eq. 3, we obtain
2
i+l 1 (1+u)(F) +1
200 l+u 24 u Eq. A9
From here, we obtain the optimal tuning condition
o, 1 kM
Q l+u Km Eq. A10

which relates the optimal frequency of the oscillator to the design mass ratio. This ratio ensures
that the two points P, Q have the same height. The coupled frequencies observed with optimal
tuning are
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&z\[]*ﬂ"‘\/“*%#z Eq. All
Q

The optimal damping constant that should be assigned to an optimally tuned mass damper is the
one that would cause the transfer function at the two points P, Q to have a harizontal slope.
However, the analysis for this condition is rather cumbersome, and exact expressions are not
available. A reasonably close approximation is given by the expression’

& o 5% . | S8 Eq. A12
mQ. Q  \8(+u)

The transfer function for an optimally tuned mass damper is shown on the figure on the right. The
maximum amplification for this case is A, =1+2/4 .

Lanchester damping

A Lanchester tuned mass damper is one
in which the stiffness of the damper is
zero (or nearly zero). The optimal
parameters for this case are

Eq Al3 Arnnx =1+2/#

c 1
T 2mQ N\ 2(2+u)(14u)

@y _ - Mo 1
Eq. A5 ¢ 201+u) \1+4u

Eq. Al4 ¢
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Torsional Tuned Mass Damper LA

The torsional mass damper is a pendulum damper that automatically adjusts its resonant
frequency to the rotational speed of wheels and shafts. It is used to ameliorate vibrations in these
systems and dissipates energy through friction instead of viscous dashpots.

Consider a wheel to which two simple penduli of length L are attached. The penduli pivot about
diametrically opposite points that are distant a from the axis, and are maintained in place by
springs. As the wheel turns with rotational speed @, the pivoting points experience a centripetal

9 Den Hartog, J.P. : Mechanical Vibration (4" edition), McGraw-Hill, New York, 1956
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acceleration that elicits a fictitious centrifugal gravity field g’'=®’(a+L)> g, which in turn
imparts on the penduli a resonant frequency

wa:\/g=w,/l+£ Eq. Al6
L L

If a < L, then w, =@, implying an oscillator that is tuned to the rotational speed.

As an example of application, consider a machine shaft whose flexural vibration mode is being
excited by unavoidable eccentricities, and assume that the frequency of this mode is twice the
operational speed of the shaft. To suppress this vibration, we must design a tuned mass damper
that is tuned to that frequency, that is, having a natural frequency @, =2w@. This can be

accomplished by setting 4’ = @’(1+a/L), which yields a=3L.

Fig. A5
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