Searching for gravitational waves from the coalescence of high mass black hole binaries
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The coalescence of binary black holes is a promising class of sources of gravitational waves which
can be detected by ground-based gravitational-wave detectors. The frequencies of gravitational
waves generated by the coalescence of stellar-mass black holes lie in the advanced LIGO (aLIGO)
frequency band. aLIGO uses a search pipeline called GstLAL to search for coalescence signals from
the detector output. This search pipeline uses matched filtering to compute the signal-to-noise ratio
(SNR) and x* value of the detector signal. The maxima in the SNR, time series which have SNRs
higher than a threshold are known as triggers. The challenge is to discriminate triggers induced by
gravitational waves from those induced by noise based on the output of the matched filter. In this
project, we investigated the use of machine learning to achieve this goal. Random Forest of Bagged
Decision Tree (RFBDT) was used as the learning algorithm. Real detector data and simulated
signals were used as input to the classifier for training and evaluation. We tuned the RFBDT
parameters and the feature vector in order to optimize the performance of the classifier. We also
implemented the RFBDT in the GstLAL pipeline.

I. GRAVITATIONAL WAVES AND THEIR
DETECTION

A. Gravitational waves

General Relativity predicts that changes gravitational
fields produces ripples of curvature of spacetime. Gravi-
tational waves carry out energy and angular momentum
away from the source and propagate at speed of light.
When a gravitational wave passes through, it causes
stretching and squeezing between test masses. We have
not detected the stretching and squeezing effect from
gravitational waves directly, but we have indirect evi-
dence for the existence of gravitational waves.

In General Relativity, gravity is described by the space-
time curvature. The relationship between spacetime cur-
vature and energy-momentum is governed by the Einstein
field equations
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where R,,, is the Ricci curvature tensor, R is the scalar
curvature, g,, is the metric tensor, G is the gravita-
tional constant, c¢ is the speed of light and 7),, is the
stress-energy tensor. Einstein field equation illustrates
that mass curves spacetime, and curvature dictates the
flow of mass.

Considering a system which is far from the source such
that 7T},, = 0, the Einstein’s equation becomes

R, = 0. 2)

We consider the space-time as a small perturbation
to the Minkowski space-time, the metric tensor can be
written as

Guv = Nuv + h,ul/a (3)
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and h,, < 1. Under these assumptions, Eq. 3 admits
a transversely-propagating wave solution, which travels
at the speed of light and has two independent degrees
of freedom, which is known as the polarizations. If we
choose our coordinates such that the wave travels in the
+z direction, we can write the solution in terms of the
metric as
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where hy and hy are functions of time and space which
satisfy the wave equation
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where h = hy or hy. This is the description of gravi-
tational wave in General Relativity, and it travels at the
speed of light.

Eq. 5 shows that gravitational waves have two polar-
izations, which are plus polarization A4 and cross polar-
ization hy. FIG.[l| shows how an initially circular array
of test masses will move in response to a gravitational
wave.

In 1974, Joseph Taylor and Russell Hulse discovered
the first binary pulsar [6]. The binary consists of a neu-
tron star and a pulsar, the pulsar emits electromagnetic
pulse regularly towards the Earth. After more than a
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FIG. 1. Plus polarization hy (left) and cross polarization hy
(right) of gravitational waves [1].

decade observation, Taylor and Hulse discovered an or-
bital decay from the shortening of the period of the pulse.
The energy loss of the binary pulsar matches the loss due
to gravitational radiation. This provides an evidence for
the existence of gravitational waves.

B. Laser Interferometer Gravitational-wave
Observatory (LIGO)

LIGO is a large experiment aiming to detect the
stretching and squeezing of spacetime caused by passing
gravitational waves directly. There are two observatories
in the United States, one is the LIGO Livingston Ob-
servatory located in Livingston, Louisiana, another one
is the LIGO Hanford Observatory located next to Rich-
land, Washington.

LIGO is a Michelson interferometer which can detect a
small change between two arms. A laser beam is emitted
to the beam splitter and split the light to the two arms.
If two arms have the same length, then the light bounces
back to the splitter with a destructive interference, and
therefore, no light will be detected by the photosensor.
However, if there is a gravitational wave passing through
the detector and causes a length difference between two
arms, some light can travel to the photosensor and the
gravitational wave signal is detected. FIG. [2] shows a
simplified picture of a LIGO detector.
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FIG. 2. A simplified schematic of a LIGO interferometer [1].

In the operation of initial LIGO (iLIGO), no gravita-
tional waves were detected. After a five years upgrade,
Advance LIGO (aLIGO) is planned to begin a science
run in late 2015. Seismic noise, thermal noise and shot
noise are reduced in aLIGO as shown in FIG.[3l The sen-
sitive of aLLIGO is expected to be improved by 10 times
with respect to iLIGO.
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FIG. 3. Expected noise curve of aLIGO [14]. Advanced LIGO
is expected to increase the sensitivity by reducing seismic,
thermal and shot noise.

C. Compact binary coalescence

The frequency band of LIGO is about 10Hz - 103Hz.
The frequency of gravitational waves from the coales-
cence of compact binaries, such as binary neutron star,
binary black hole and neutron star black hole binary, lies
in the frequency band of LIGO, we expect to detect the
gravitational wave signals from this astronomical process.
Coalescence consists of three stages, which is known as
inspiral, merger and ringdown. When the gravitational
waves carry away energy and angular momentum from
the binary, the result in orbital decay and decreasing or-
bital period is known as inspiral. When the black holes
get close enough, they will merge into a single black hole.
After the merge, any distortion will dissipate in form of
gravitational waves, which is known as ringdown.

The inspiral process of binary black hole can be de-
scribed in quasi-Newtonian limit. From General Relativ-
ity, the total energy loss can be written in quadrupole
approximation as
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where M = mj + msy is the total mass of the binary,
w = myma/M is the reduced mass and r is the orbital
separation. By virial theorem, the energy of the system
can be written as
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after differentiate both sides with respect to time ¢, the
orbital decay can be described by

dr_1_r dp -
dt o 2G’m1m2 dt '

Substitute Eq. 7 into Eq. 9, the time derivative of orbital
radius can be written as
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and the evolution of the orbital separation can be ob-
tained after integration
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The stretching and squeezing effect caused by gravi-

tational waves between test masses can be described by

the strain amplitude h = AL/L. The strain amplitude

h generated by the source at distance D is related with
the orbital separation with

h(t) = <ifg) (fg?g) cos (D)), (1)

where
B(t) = / 21 foy (). (12)

faw (t) can be expressed in the quadrupole approxima-
tion
3
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where n = u/M and ¢, is the time for the orbit to reach
the intermost stable circular orbit (ISCO). This is the
inspiral part of gravitational waves from the compact bi-
nary coalescence under quasi-Newtonian limit. We take
the innermost stable circular orbit (ISCO),

faw (1)
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as the cutoff frequency for the post-Newtonian approxi-
mation. For the stage of merger and ring-down, the post-
Newtonian approximation breaks down since the rela-
tivistic effects are required to be taken in consideration.
Examples of time domain and frequency domain wave-
forms with varying parameters can be found in appendix.
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II. SEARCHING STRATEGIES FOR
GRAVITATIONAL WAVES FROM
COALESCENCE OF BINARY BLACK HOLE

GstLAL is a search pipeline which is used by aL.IGO
in searching for gravitational-wave signals from coales-
cence of compact binary. We aim to join gravitational

wave observations with electromagnetic wave observa-
tions. GstLAL is a low-latency search pipeline which
can send out astronomical alert to the electromagnetic
telescopes within a few minutes. In order to achieve the
low-latency search, several technique is used to reduce
the computational resource. A detailed explanation of
the pipeline can be found in Ref. [4, [5].

GstLAL uses matched filtering to find the coalescence
signals buried in noise. The search pipeline first com-
putes signal-to-noise ratio (SNR) of the detector output
with all the waveform templates in the bank of templates.
The maxima in SNR time series which is higher than a
threshold is known as a trigger. The matched filtering
is the optimal method to find the signal if the signal
is buried in stationary Gaussian noise. However, LIGO
data contains non-stationary noise, which are known as
glitches. The glitches can have a high SNR and cause
a false alarm in analysis, a x? veto is used to reject the
false signals.

A. Matched filtering

Matched filtering is a method to extract the signals
from a noisy data by comparing the detector output with
a predicted waveform template. The matched filtering
method is the optimal filter to get the largest signal-to-
noise ratio in stationary Gaussian noise. Consider the
detector output signal s(t) = n(t) + ¢(t) where n(t) is
the noise and ¢(t) is the gravitational wave signal, we
can compute the cross correlation between the detector
output with a template h

o(t) = /OO s(t)h(t + 7)dt. (15)
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We can transform it in to frequency domain, such that

o(r) = / T AR (eI, (16)

where 5(f) is the Fourier transform of s(t) and h*(f) is
the complex conjugate of the Fourier transform of h(t).
In order to whiten the signals, the correlation is weighted
by the power spectral density S, (f) = (2(f)n*(f')). The
matched filter output is
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Since the waveform contains some unknown parameters
such as amplitude and the coalescence phase. The un-
known phase can be searched over by forming the com-
plex matched filter outer

df. (17)
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The waveform templates are constructed for systems with
an effective distance Dog = 1Mpc. The normalized con-
stant for computing the SNR, which is the measure of



the sensitivity of the detector, is
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The time series of SNR is defined as

(20)

B. x° veto

To reject the false alarm, x? method is used to dis-
tinguish the true signals from glitches. x? compares the
detector output with the waveform template.

Consider the detector output signal s(t) = n(t) + q(t)
illustrated in FIG. [d] where n(t) is the noise and q(t) is
the gravitational wave signal, and the template waveform
h(t). We divide the frequency range of integration into a
finite number of bins fr < f < fi41, where k =1,...p.
We define the contribution to the matched filtering statis-
tic coming from the k-th bin by
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where 5(f) and h(f) are the Fourier transform of s(t) and
h(t) respectively, 5*(f) and h*(f) is the complex conju-
gate of the Fourier transform of s(t) and h(t) respectively.
If we sum over the matched filtering statistic from f; =0
to fp = oo, it gives

z=(s,h) = 2/000 [ﬁ*(f)g(f) + ﬁ(f)g*(f)} Si

n(f)
(22)
We can construct the x? as
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A true signal looks similar to the template waveform,
so it has a small x2. But for a glitch, the difference
between the output and the template is large, therefore
it has a large x2. We can use this method to separate
the signal from noise and increase the sensitivity of the
search pipeline.

C. Template bank

Gravitational wave signals of compact binary depend
on at least fifteen parameters which are listed in TABLE
[ The intrinsic parameters such as mass and spin affect
the waveform, and most of the extrinsic parameters only
affect the amplitude of waveform.
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FIG. 4. Components that may contribute to a detector data
stream (exaggerated for illustration). Top: Most of the time
the data stream is simply Gaussian noise n. Center Left: A
simulated binary inspiral signal h. Center Right: A simulated
transient x. Bottom: The combination of all contributions s
[3].

TABLE I. The compact binary parameter space. There are
at least fifteen parameters required to specify the orbit of a
compact binary (we have ignored parameters associated with
eccentricity and the finite size of neutron stars). We refer to
the parameters (1)-(8) as intrinsic parameters, while (9)-(15)
are called extrinsic. Parameters (9)-(13) enter only in the
overall amplitude of the signal, (14) can be maximized over
analytically, and (15) can be efficiently searched over with an
inverse Fourier transform [I].

Parameters

component masses mi, me
component spin vectors 5., S,
sky position (right ascension, declination) a,
binary orientation (inclination, polarization angle) ¢, ¢
luminosity distance D
coalescence phase Deoal
coalescence time teoal

The coalescence signals are parameterized by a set of
continuous parameters. Since we cannot construct infi-
nite set of templates for matched filtering, a finite set of
templates are chosen to construct the bank of templates.
The templates are chosen such that any possible signal
will have a loss of SNR > 0.97 with at least one template
in the template bank. The template bank is said to have
a minimal match of 0.97 [5]. In GstLAL, the stochastic
placement algorithm is used to construct the template
bank. A detailed explanation of the stochastic method
can be found in Ref. [7]. FIG. [5|is an example of tem-
plate bank used in GstLAL and FIG. [f]is an example of
injected simulated waveforms into GstLAL.

D. Transformations of templates

GstLAL is a search pipeline designed for a low-latency
search. In order to reduce the computational cost, two
transformations of the templates are used to reduce com-
putational costs [5].
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FIG. 5. An example of template bank used in search pipeline
with mass and effective spin are shown.
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FIG. 6. An example of injections used in search pipeline with
mass and effective spin are shown.

1.  Multibanding

a. Nyquist frequency Nyquist frequency f = % is

the half of the sampling frequency f;. The discretely
sampled data with sampling rate fs can completely rep-
resent a continuous signal which only has frequency con-
tent below the Nyquist frequency. The information of
signal with frequency higher than the Nyquist frequency
will be lost or aliased to lower frequency.

Since the beginning of the inspiral stage has a low fre-
quency, a smaller sample rate is used to reduce the com-
putational cost. The template is divided into time slices
in time domain, each template h;[k] is decomposed into
a sum of S non-overlapping templates

S=1 (4
hilk] = Z {gl ¥

s=0

if 5 < k/f0 < t5tl

. (24)
otherwise

9

for S integer {f%¢°} such that 0 = f9° < fO! < ... <
f%° = N. The sampling frequency of each time slice
must be smaller than Nyquist frequency. For the time-

sliced template intervals [t ¢!), [t1,¢2),..., [t~ 1, t9)
sampling at frequency f°, f1,..., f5~! can be downsam-
pled into

1.t i 18 s s

0 otherwise

FIG. [7] illustrates how multibanding works. Downsam-
pling reduces the total number of filter coefficients by a
factor of =~ 100 by treating the earliest part of the wave-
form at ~ 1/100 of the full sample rate [5].
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FIG. 7. Multi-banding of templates [5]. Different time slices
using different sample rate increase the computational effi-
ciency.

2. Singular Value Decomposition (SVD)

The templates in the template bank are highly similar.
SVD is a method to reduce the number of filters. A set
of templates can be factorized in form of

M-1
hilk] =) vioui[k], (26)
1=0

where uf[k] are the orthonormal basis templates and
v307 is the reconstruction matrix. The number of tem-
plates can be reduces from M to L® by taking away the
least important bases indicated by o7

L°—1

ik~ ) vhoiuilk], (27)
=0

SVD reduces the number of filters needed by another
factor of ~ 100 [5].

E. Ranking events

GstLAL ranks an event from most signal-like to least
signal-like using a likelihood-ratio statistic. For a detec-



tion using D detectors, the likelihood ratio is defined as
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where P(...|s) is the probability of observing (...) given
a signal, P(...|n) is the probability of observing (...)
given a noise, p; is the SNR in detector 4, x7 is the x>
value in detector ¢ and 6 are the intrinsic parameters
of the template. Assuming p and 2 are independent
variables in different detectors, the likelihood ratio can
be approximated as
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The likelihood-ratio ranking for each event can be cal-
culated by histogramming [9]. This ranking has a good
performance. However, it is difficult to include the in-
formation from auxiliary channels. We want to calculate
the likelihood ratio using machine learning because it is
more flexible to include the information from auxiliary
channels.

III. MACHINE LEARNING FOR SIGNAL
CANDIDATES RANKING IN SEARCH OF
GRAVITATIONAL WAVES FROM COMPACT
BINARY COALESCENCE

Ranking the candidates from least signal-like to most
signal-like is an important part of gravitational wave
searches. A set of features such as signal-to-noise ra-
tio, different types of x2, chirp mass and spin of a trigger
are obtained from the search pipeline. We are going to
rank the candidates using these parameters.

A computational technique called machine learning
can be used to train the computer to classify the trig-
gers from signal to noise. We will update the ranking
in the search pipeline using our machine learning rank-
ing. The efficiency of machine learning ranking is then
compare with that of likelihood-ratio ranking [8] under
a given false-alarm rate. The ranking statistic from ma-
chine learning is expected to be more feasible to include
the information of data quality from auxiliary channels.

A. DMachine learning

Machine learning is a method to learn from data. Ma-
chine learning is very useful when a pattern exists in a
problem, while we have data on it but we cannot pin the
relation down mathematically. We want to classify the
triggers into real gravitational wave signals and noise.
If a real signal has a different set of parameters from a
glitch, a pattern exist such that we can try to classify
a signal from noise using the output of search pipeline
as features. Besides, it is difficult to analytically write

down an equation that relates the classification and the
parameters, this leads to the help of computer. More-
over, we can simulate waveforms and the parameters can
be found through injection to the pipeline, this allows us
to use the simulation data to train the computer. Based
on these properties, we are going to use machine learning
to reduce the false alarm rate and optimize the sensitivity
of search pipeline.

1. Feasibility of learning

We are going to use finite set of data for the classifica-
tion learning. The hypothesis found using the in-sample
data can have a good performance with the in-sample
data, but there is no guarantee that the hypothesis pre-
forms good outside the data. In order to generalize the
learning from the in-sample data to out of sample data,
a theory is required to ensure the learning is probable
outside the sample data. It is important for us because
the theory can guarantee that the model found using the
data from simulation can also be used in real situation.

The Vapnik-Chervonenkis Inequality (VC inequality)
states that the probability of the difference between the
error of in-sample data and the target function Ej, and
the error of out of sample data and the target function
FEout, which less than a value ¢, is bounded by

P [|Ein(9) — Bou(9)| > ¢ < 4myg(2N)e 5N, (30)

where N is the number of in-sample data, and

mu(2N) = df (25V ) (31)

=0

where dy ¢ is a quantity depends on the hypothesis set
which measure the complexity of the hypothesis set.
mp(2N) is a polynomial with maximum power of N4ve.
The right hand side of the VC inequality contains a de-
cay exponential term. Since exponential increases faster
than polynomial, which can be proved by doing b + 1
times L’Hoptial’s rule

lim = =0, (32)

the probability will bound by a value less than one when
the number of data N increase to certain amount. There-
fore, machine learning is feasible for classifying the signal
and noise if the training data is enough.

2. Qwerfitting

Overfitting or overtraining is a big issue in machine
learning. FIG. [§] shows an example of overfitting. Over-
fitting is fitting the data more than it is warranted. Over-
fitting appears that the in sample error is small, but the



out of sample error is huge, leading to a poor general-
ization. The cause of overfitting is fitting the noise. We
can distinguish the noise into stochastic noise and deter-
ministic noise. The noise is the part that the hypothesis
set H cannot capture whole information of target func-
tion f. Stochastic noise is due to the randomness of the
input data (e of y = f(x) + €(x)), deterministic noise
is come from the limitation of the complexity between
target function and the hypothesis set. In order to deal
with overfitting, regularization and validation are used in
machine learning.

i

FIG. 8. An example of overfitting [I2]. The data on the
plot consists of stochastic noise. Although the fitting curve
passing through all the data point on the plot such that in
sample error is 0, the performance outside the data points is
poor, the out of sample error is huge.

a. Regularization Regularization is an approach to
deal with overfitting. Since overfitting is caused by fitting
the noise, in order to prevent fitting the noise, we can
constrain our learning model to prevent fitting it. From
practical observation, noise has the following properties

e Stochastic noise high frequency
e Deterministic noise non-smooth

Regularization is a method to prevent overfitting by
constraining learning towards the smoother hypotheses.
FIG.[9 is an example of regularization. Mathematically,
regularization is a method to deal with the ill-posed prob-
lems in function approximation.

b. Validation Validation is another method to pre-
vent overfitting. Recall the relation between in sample
error and out of sample error

Eout(h) = Ein(h) + overfit penalty

Regularization estimates the overfit penalty and try to re-
duce it to achieve a good generalization, while validation

FIG. 9. An example of regularization [I2]. The fitting without
regularization (left) and the fitting with regularization (right).

estimates the out of sample error E,,; using a valida-
tion set. The estimation can help us to choose a suitable
model.

Validation set is a data set other than the training set
and testing set. FIG. is an example using validation.
The validation set can be extracted from the training
set. Validation set gives the validation error F.,;, which
is a better estimation of out of sample error Eg,; than
the in sample error Ej, since the validation set does not
affect learning as much as training set does. The final
hypothesis is always chosen with the smallest validation
error E .

without validation with validation
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FIG. 10. An example of validation [I2]. The classification
without validation(left) and the classification with valida-
tion(right).

B. Binary classification

In binary classification, we can separate the outcome
of an evaluation set into four groups: true positives (TP),
true negatives (TN), false positives (FP), and false neg-
atives (FN).

True class
Background Signal
Class 0| True negatives (TN)|False negatives (FN)

Class 1| False positives (FP) | True positives (TP)




The number of data points fall in these four groups is
used for evaluating the ability of a classifier. The false
alarm probability (FAP) is defined as

FP

FAP = +5 7N

(33)
and the true positive probability or sensitivity (TPP) is
defined as

TP

TPP =757 FN

(34)
The classifier gives out a ranking statistic instead of a

class, false alarm rate (FAR) of an event with a ranking
R can be defined as

N(R > R*)

FAR = T

(35)
where N(R > R*) is the number of events with a ranking
R larger than some threshold R* and T is the total back-
ground time. A receiver operating characteristic (ROC)
curve, combining the false alarm probability, true posi-
tive probability and threshold, is used to illustrate the
performance of a classifier.

C. Random Forest of Bootstrap aggregated
Decision Tree (RFBDT) algorithm

RFBDT algorithm is a supervised learning algorithm
that can be used for our classification. RFBDT combines
the idea of random forest and Bootstrap AGGregatING
(bagging) which improves the overtraining problem of a
single decision tree and reduces the variance of the result.
We use the StatPatternRecognition (SPR) package [13],
which is a C4++ package for statistical analysis of high
energy physics data. RFBDT applies the technique of
bagging, which tends to have a better performance in
high noise situations compare to other techniques such
as boosting [10].

We want to distinguish signal from noise for each trig-
ger. Each signal candidate is characterized by a feature
vector containing a set of parameters which is useful for
the classification. We construct a decision tree using the
training set. The class (signal or background) of each
data point in the training set is known. A decision tree
consists of series of binary splits depends on the feature
vector parameters. The training set begins at the first
node of the tree and split into branches. The thresh-
old of each node is selected based on the optimization
criterion. The nodes split into branches continuously.
When no node can optimize the optimization criterion
or reaches the minimal leaf size that is predefined, the
node no longer split and becomes a leaf. When all the
nodes become leaves, a decision tree is created.

Bagging is a technique that resamples a set of data
from the training data. A different set of training events
is chosen randomly for each decision tree. A different sub-
set of feature vector parameters is also chosen randomly

at each node for the next split. We construct multi-
ple bagged trees to form a random forest. This method
makes each tree in the forest is unique and the result
from each tree can be averaged to reduce the variance in
the statistical classification.

The SPR package provides several optimization crite-
rion, the Gini index and negative cross-entropy are found
to have a suitable performance for the search [I1]. The
Gini is defined by

G(p) = —2pp (36)

where p is the fraction of signals in a node and p=1—p
is the fraction of background in a node. The data is
split at node to minimize the Gini index. The negative
cross-entropy is defined by

H(p) = —plogyp — plog,p (37)
The data is split at node to minimize the negative cross-
entropy function.

After the training using training set, the forest can be
used to classify signal to noise. An event is first start at
the initial node of each tree and passes through branches
until it reaches the leaf. We can compute the probability
of that event is an signal from the bagged decision trees
in the forest

S; 1
Pforest = X:ESE_FbZ = N Zsz (38)

where s; and b; are the number of signal and background
events from the training in the ith leaf and N is the
total number of events in all finial leaves. FIG. [[1] shows
how this value is calculated from a forest. The ranking
statistic Msorest, Which is the ratio of probability that
the event is a signal to the probability that the event is
a background, is given by
P(event|signal)

Pforest
Miorest = = 39
forest P(event|background) 1 — porest (39)

IV. RESULTS
A. Data set

The background is extracted from the data in aLIGO
engineering run 7 (ER7) and the signals are from the
simulated waveform injection. The data set with 18553
injections and 27607 background triggers is split into a
training set, a validation set and a testing set.

a. Background We estimate the background by
matching the singles of L1 and H1 detectors. A coin-
cidence signal has the same intrinsic parameters (masses
and spins) in the detection between two detectors, we
match the single data of L1 and H1 with the same masses
and spins while the difference between arrival time is
larger than a coincidence time window, to form an ac-
cidental coincidence event. A uniform time difference
distribution is used for background in order to simulate
the time difference distribution in accidental coincidence.



FIG. 11. A cartoon of a random forest. There are five decision
trees in this random forest. Each was trained on a training set
of objects belonging to either the black set or the cyan set.
Note that the training set of each decision tree is different
from the others. At each numbered node, or split in the tree,
a binary decision based on a threshold of a feature vector
parameter value is imposed. The decisions imposed at each
node will differ for the different trees. When no split on a
node can reduce the entropy or it contains fewer events than
a preset limit, it is no longer divided and becomes a ”leaf”.
Consider an object that we wish to classify as black or cyan.
Suppose the object ends up in each circled leaf. Then the
probability that the object is black is the fraction of black
objects in all leaves, prorest = 73% [11].

We define a default setting as n = 100, s = 5,1 =6 and
¢ = Gini index. FIG. is a histogram of the ranking
statistic of the evaluation set data using the default set-
ting. Assuming the threshold equal to 0.5, 98.1% of the
total evaluation data has been correctly identified. Since
the false alarm probability and the true positive prob-
ability depend on the threshold we choose, we can step
through the threshold from 0 to 1 to get the correspond-
ing false alarm probability and true positive probability
to obtain a ROC curve, which illustrate the performance
of that classifier. In each tuning, we change one param-
eter from the default setting to investigate the optimal
value of this parameter.

a. Number of decision trees We vary the number of
decision trees with n = 100, n = 500 and n = 2000. In
FIG. the ROC curve shows that there is no improve-
ment in increasing the number of decision trees more than
100. It is enough to have 100 decision trees in training.

b.  Minimum leaf size We vary the minimum entries
per leaf from [ = 1 to [ = 100. In FIG. the ROC
curve shows that [ = 5 has the best performance. As

b. Signal There is no gravitational-wave signal de-
tected until now. We use simulated waveform as our
signal. The coincidence signal events can be obtained by
injecting simulated waveforms into GstLAL.

1. Tuning parameters of RFBDT

RFBDT has several tunable parameters listed in TA-
BLE [l We use 9 features listed in TABLE [l to illus-
trate the tuning. The information about the distribution
of the data set we used and the ROC curve of the classifi-
cation with more features used can be found in appendix.
In order to get the parameters which can maximize the
performance of the classifier the most, we train the classi-
fiers with varying parameters using the training set, then
we evaluate the performance of each classifier by plotting
a ROC curve using the validation set data. The classifier
with the largest true positive probability (efficiency) at a
given false alarm probability has the best performance.

==+ Threshold
B Background [
[ Signals

10!

Density
[
<

,_.
o
N

—2
10700 0.4 . . 1.0
Ranking

FIG. 12. A histogram of the ranking statistics of the evalu-
ation data using n = 100, s = 5, 1 = 6 and ¢ = Gini index
setting. Assuming the threshold equal to 0.5, 98.1% of the
total evaluation set has been correctly identified.

mentioned in TABLE(I] overtraining occurs when [ is too
smaller while undertraining occurs when [ is too large. It



TABLE II. A summary of tunable parameters in RFBDT.

Option Parameter

Description

n Number of decision trees

1 Minimum leaf size

S Number of sampled parameters

¢ Optimization criterion

A larger number of decision trees provides a more stable ranking statis-
tic Miorest- However, the training set contains finite information, too
many trees in a forest make the trees become redundant and consume
more computational resources.

When the number of events in a node reaches the minimum leaf size,
the data stop from splitting into two nodes and the node becomes a
leaf. The choice of the leaf size corresponds to the overfitting issue. If
the leaf size is too small, the tree can classify the training data perfectly
but leads to a poor generalization, overtraining occurs. If the leaf size
is too large, the trees are undertrained and cannot classify an event,
result the ranking statistic Miorest concentrates at half between two
classes.

At each node, m sampled parameters are chosen randomly to from a
subset of original feature vector. The split criterion is evaluated for
each parameter inside the subset and a split parameter is chosen out
of m parameters. If m is too large, each node has the same number
of parameters for splitting as the original feature vector, some of the
parameters may be used again and again, the training set is not fully
explored. The trees in the forest are similar as a result of overtraining.
If m is too small, each node is forced to split base on poor parameters.
The split is inefficient and undertraining occurs.

The optimization criterion is used to choose the parameters used for
splitting out of sampled parameters and the splitting threshold. SPR
package provides several optimization criteria: correctly classified frac-
tion, signal significance s/+/(s + b), purity s/(s+b), tagger efficiency
Q, Gini index, cross-entropy, 90% Bayesian upper limit with uniform

prior and discovery potential 2 * (1/(s + b) — \/(b)).

10

TABLE III. The features from GstLAL output. H0 ;|
Feature Description 0.8t :
At Time difference between triggers in two detectors H1 an
mi The mass of the template matched to the data. mi > m E 0.6/
mao The mass of the template matched to the data. mq > mé
$1 The aligned spin of m;. é_() al
S9 The aligned spin of ma. qé . )/
pPH1 Signal-to-noise ratio of the trigger in H1 data. = 09 //,
pLL Signal-to-noise ratio of the trigger in L1 data. [ [ ———  1=2000
Xiq x? value of trigger in L1 data. =500 Rt
X x? value of trigger in H1 data. 0'1%*4 103 16_’5“ 101

False alarm probability

10

is reasonable for [ = 5 giving the best performance.

c.  Number of sampled parameters We vary the num-
ber of sampled parameters from s = 1 to s = 10. In FIG.
the ROC curve shows that s = 6 has the best per-

formance while we are using 9 dimensions feature space.

d. Optimization criterion We vary the optimization
criterion in SPR package. In FIG. the ROC curve
shows that Gini index, negative cross-entropy and dis-
covery potential have a similar performance. We can
vary the optimization criterion with these three option
in our future training. Using Gini index or cross-entropy

FIG. 13. ROC curve with varying number of decision trees.
No improvement can be achieved using more than 100 decision
trees.

can minimize the false alarm probability and maximize
the true positive probability which we are concerned the
most, while other optimization criterion may optimize
false negative probability or true negative probability
which we are less concerned.

The optimal setting of the classifier using GstLAL
output as the features is n = 100, Il = 5, s = 6 and
¢ = Gini index.



—_
(==}

o
o)
|

<
=)
:

o
=

True positive rate

0.2H —

1=20

1=40 |44

1=60
1=100

T

1073

102

False alarm probability

10°

FIG. 14. ROC curve with varying minimum entries per leaf.

Using [ = 5 has the best performance.
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B. Expanding feature space

Features of an event is a characteristic of it. A better
representation of an event can have a better performance
of the classifier. We investigate the performance of the
classifier by transforming the GstLAL output into other
quantities with physical meaning listed in TABLE [[V]
Classifiers used different features listed in TABLE [V] are
first trained with the training set, then they are tuned to
achieve optimal setting using the validation set as men-
tioned in the previous section. After that, the classifiers
are re-trained using the training set with the optimal set-
ting and compare their performance using a testing set.

TABLE IV. The features from transforming GstLAL output.

Feature Description
i _ _(mimp)®/5
M Chirp mass. M = EET—Ye
i : _ mim
n Symmetric mass ratio. n = m

M™3/3 Iy Related to chirp time coordinate.

my+mg)tt/5

-5/3 _(
M /n= (m1mg2)?
M~2/3 Iy Related to chirp time coordinate.

~2/3 ) _ (m1tmy)¥7/15
M /n T (mimg)7/5

Effective spin. yeg = Zifitmasy

Xeft mi+ma

Deft, H1 Effective SNR of H1. peg,u1 = 5 PHL 77
Ex

Peff,L1 Effective SNR of L1. peg,1 = £L1

/4
[ st sm0)]

TABLE V. The features from transforming GstLAL output.

Number of Features Feature space

2 2
Ata mai,mz, S1, PH1, PL1, XH1s XL1

9

12 At7m17m27517pH17levszlvxilaMa’theff

14 At7m17m2,517PH17PL17X12-117Xi17M77]7XeH
M I, M2

16 At7m17m27817pH17pL17X2H17X%13M3777Xeff

M_5/3/7l7 M_Q/B/m Peft,H1, Peff,L1
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FIG. 16. ROC curve with varying the optimization crite-
rion. Gini index, negative cross-entropy and discovery poten-
tial have a comparable performance.

We trained the classifier with 9, 12, 14 and 16 fea-
tures, the ROC curve which illustrates the performance
of the classifiers is shown in FIG. From the curve, the
classifier trained with 14 features has a little better per-
formance compare with the classifier trained with only
GstLAL output. The result shows that the classification
is related to the chirp time coordinate. Moreover, adding
effective SNR into the feature vector generates noise in
classification and leads to a poorer performance. It may
due to the redundancy of normal SNR and the effective

SNR.
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FIG. 17. ROC curve of classifiers trained with different fea-
ture space. Using 14 features for training has the best per-
formance. The result shows that the classification is related
to the chirp time coordinate. Moreover, adding effective SNR
into the feature vector generates noise in classification and
leads to a poorer performance. It may due to the redundancy
of normal SNR and the effective SNR.

C. Implementation of RFBDT in GstLAL pipeline

Ranking a gravitational-wave candidate is a part of
the whole analysis. We implement the RFBDT in Gst-
LAL pipeline. The flow chart of the pipeline is shown in
FIG. Single data of two detectors is obtained from
a database (SQLite format), which also contains the co-
incident events whose ranking are going to be evaluated.
Then, the background coincidence events are generated
by matching the singles. Injection events are obtained
from another database file containing the GstLAL out-
put of the simulated signals. After that, the training
data (PAT format) is sent to train the RFBDT classifier.
Once the classifier is trained, the coincident events are
sent to the classifier for evaluation. Finally, we update
the ranking of each candidate using our RFBDT ranking.

V. CONCLUSION AND FUTURE WORK

We tuned the RFBDT parameter to obtain the optimal
setting of the classifier. We expanded the feature vector
and investigate the performance of the classifiers. Be-
sides, we implemented the RFBDT in GstLAL pipeline.

GstLAL is using another method to calculate the rank-
ing of a gravitational-wave candidate. We would like to
compare the performance between our ranking using the
technique of machine learning with the likelihood-ratio
ranking currently use in GstLAL.

12

Features selection and extraction are important in ma-
chine learning. A more systematic method can be con-
ducted in features selection. For example, we can use
some selection algorithm for selecting useful features.
Moreover, we can do a principal component analysis

lDatabastla (sqlite) Injections (sqlite)
singles, coinc events ]

Create Background
(from singles)

v

Training pat

v

Train Classifier

v

Evaluate ranking for

coinc events

Evaluation pat

Update likelihood
(sqlite)

FIG. 18. Flow chart of REBDT pipeline. We implement this
part in GstLAL pipeline.

(PCA) to extract the linear transform of features from
GstLAL output and investigate the relation between the
GstLAL output.

Since RFBDT has several tunable parameters which
have to choose before training, we can update the RF-
BDT pipeline to choose the parameters by validation au-
tomatically.

The ultimate goal of multivariate statistical classifica-
tion is to include data quality information from auxiliary
channels. More investigation is required in order to in-
clude the data quality as a feature.
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Appendix A: Distribution of features in data set
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FIG. 19. The intrinsic parameters of (a) signals and (b) background. A plot of SNR, against x? of (c) H1 and (d) L1.
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Appendix B: Tuning for different features
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Appendix C: Waveforms with varying parameters
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FIG. 26. (a) Time domain and (b) frequency domain waveforms with varying mass. For a more massive system, the amplitude
of strain is larger. A more massive system also end the coalescence at a lower frequency since the energy loss of a higher mass

system due to gravitational radiation is larger.
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reduced mass is smaller. A higher mass ratio system has a smaller strain. Besides, the energy loss of the system due to the
gravitational waves is proportional to the reduced mass. Therefore, a higher mass ratio system end the coalescence quicker
with a lower frequency.
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FIG. 28. (a)Time domain and (b) frequency domain waveforms with varying distance. A more distant binary has a smaller
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FIG. 29. (a) Time domain and (b) frequency domain waveforms with varying spin. The chirp time of a larger spin system is
longer. A lager spin also has a slightly increase of strain and the merger occurs at a lower frequency comparing with the system

with same parameters.
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FIG. 30. (a) Time domain and (b) frequency domain waveforms with opposite spin. A negative spin has a smaller strain and

a shorter chirp time.
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FIG. 31. (a) Time domain and (b) frequency domain waveforms with precessing spin. For processing spin, the amplitude

modulation effect can be seen.
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