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Introduction



Introduction to Superconducting
Gravity Gradiometer (SGG)
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Test of Newton’s Inverse-square law
using SGG (1993)
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Gravitational Wave Detection



SGG as a Gravitational Wave Detector?

* In the Newtonian limit, Riemann tensor becomes gravity gradient.
= Gravity gradiometer measures Riemann tensor components.

Roo; = T} = —62¢/c’9xi8xj
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Tunable “free-mass” gravitational-wave detector

Robert V. Wagoner, Clifford M. Will, and Ho Jung Paik*
Institute of Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305
(Received 10 July 1978) '

We propose a new type of detector for gravitational radiation. It consists essentially of two masses whose
relative motion produces the driving emf of a resonant L-C circuit. The relative momentum of the masses
induced by a gravitational wave is determined by the current in the circuit. A unique feature of this system
is its ability to be tuned over a wide frequency range. If a quality factor O ~ 10° can be achieved in the
circuit, a laboratory-size detector cooled to 0.05 K in the absence of other noise could detect a continuous
wave metric perturbation i 2 3 X 10~*° at the frequency of the Crab pulsar after integration for 100 days.
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Current and Future SGGs



UM diagonal-component SGG (1993)
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= Test masses are mechanically suspended (f,,, ~ 10 Hz).

= Development was completed by early 1990s.

= 100 times better amplitude sensitivity than TOBA 20 years earlier.
—» 104 times better limit than TOBA in GW energy density.
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Cross-component SGG (2011)
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New Superconducting
tensor gravity gradiometer

= More sensitive SGG is under development with NASA support.

= Test masses are
magnetically suspend Sensing Coil
(o ~ 0.01 HZ).

=) Very high sensitivity Testhiass

Cross-comp.
Sensing Coil

Cover

Levitation Tube

Housing

-Precision

Levitation Tube ;
Mounting Cube

Balancing Screw

Test Mass 1

Test masses are levitated by a Six test masses mounted a cube
current induced along a tube. form a fensor gradiometer.

Paik 11



SOGRO:
Superconducting Omni-directional
Gravitational Radiation Observatory
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Superconducting
tensor gravitational wave detector

Az
SOGRO

(Superconducting Omni-
directional Gravitational
Radiation Observatory)

. " Each test mass has three
i 4 degrees of freedom.

% Combining six test masses,
a tensor GW detector is
formed.

N

By detecting all six components of the Riemann tensor, the
source direction (6, §) and wave polarization (A#+, <) can be
determined by a single detector. =) “Spherical” Antenna
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Actively Isolated /

Suspension Point

Suspension of SOGRO

" Go underground to reduce seismic and gravity gradient noise,
as well as to be far away from moving objects.
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Nodal Point

=i
1l /PendulumSupport

Cryostat

Nodal support prevents odd
harmonics from being excited.

Cable suspension gives f. < 103

Hz for three angular modes.

— Active isolation unnecessary.

25-m pendulum gives f, = 0.1 Hz

for two horizontal modes.

— Provide passive isolation for
high frequencies.

Problem: Platform is not rigid

enough.

— Triangulate with struts.

Alternative suspension: Optical rigid body
= Simpler cryogenics, larger baseline (up to 3 km?)

Paik
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Magnetic levitation

Stanford (1976)

1 ton Al antenna wrapped with Nb-Ti
sheet was levitated magnetically.

Field required to B?
levitate 5-ton mass: 24,

The biggest challenge:

To obtain symmetry,
vertical DM resonance
frequencies must also
reduced to 0.01 Hz.

Employ “push-pull
levitation” plus
negative spring.
Push-pull
levitation

sravity wave antenna
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Parametric transducer

" Near quantum-limited SQUIDs have 1/f noise below 100 kHz.

" Signal needs to be upconverted to f, = 100 kHz by pumping at
f, by using a parametric transducer.

" An inductance bridge can be coupled naturally to a SQUID.

THIRD SERIES, VOLUME 33, NUMBER 2 Physical Review D 15 JANUARY 1986

Superconducting inductance-bridge transducer for resonant-mass
gravitational-radiation detector

Ho Jung Paik*
Department of Physics, Stanford University, Stanford, California 94305
(Received 18 July 1985)

The sensitivity of cryogenic gravitational-radiation detectors is presently limited by the perfor-
mance of the transducers. A superconducting ac-pumped inductance bridge is proposed as a new
transducer for resonant-mass gravitational-radiation detectors. The impedance matrix of the trans-
ducer is computed to determine the input, output, and transfer characteristics of the electromechani-
cal system. It is shown that the dissipative forces exerted on the proof mass by the bridge circuit
through the two sidebands cancel each other almost exactly so that the Brownian-motion level is
nearly unaffected by the electric sensing circuit. This implies that an effective energy coupling coef-
ficient near unity could be used without being limited by the electrical Nyquist noise. With the
parametric up conversion of the signal, the inductance bridge can be coupled to a nearly quantum-
limited dc superconducting quantum interference device (SQUID). The sensitivity of the
gravitational-radiation detector employing the new superconducting transducer is computed as a
function of transducer parameters. It is shown that the proposed transducer, with modest values for
its parameters. is capable of matching a high- O gravitational-radiation antenna. cooled to 50 mK._ to
a nearly quantum-limited dc SQUID.
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Tuned capacitor-bridge transducer

OSCILLATOR DEMODULATOR OUTPUT
'J‘& [« ™ Capacitor bridge
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Achievable detector noise

For CW signal with impedance-matched bridge transducer,

8 |kTw, |@°-B|( 1)
S, (f)= e BQ D = (1+ ?j KTy pr KeTy =Nhao,
D P

Parameter SOGRO 1 SOGRO 2 Method Employed (SOGRO 1 /2)
Each mass M 5 ton 5 ton Nb square tube
Separation L 30 m 100 m Over “rigid” mounting platform
Antennatemp T 15K 0.1K Superfluid He / dilution refrigerator
DM frequency f, 0.01 Hz 0.01 Hz Magnetic levitation w/ negative spring
DM quality factor Qp 108 10° Surface polished pure Nb
Signal frequency f 0.1-10 Hz 0.1-10 Hz Detector noise computed at 1 Hz
Pump frequency f, 50 kHz 50 kHz Tuned capacitor bridge transducer
Amplifier noise no. n 200 10 Near-quantum-limited SQUID

Detector noise S,2(f) 2x1020Hz Y2 2x1021Hz 2 Two phase development
SOGRO can also be operated as tunable resonant detector.
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Seismic noise of bedrock: 107 m Hz 12

Seismic noise

10~/ — Seismic background
= Could be reduced to the required level i
by combining active isolation with CM 10
rejection of the detector. —~ 10| | Activeisolation
= 20-m pendulum with nodal support N v
= Passive isolation for > 0.1 Hz. E ol
Seismic noise of underground sites F>’ 10-12 - -
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Newtonian gradient noise

The Newtonian noise from seismic and atmospheric density
fluctuations cannot be shielded.

Rayleigh Wave

MR
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GWs are transverse and cannot have longitudinal components
whereas the Newtonian gradient does.

0 0 0 h, (1) h, (1) ()
hew (1) =| 0 h,(t) h (1) | hye(t) =] h,(t) hy(t) hy(t) |
0 h() —h() Mg (t)  hyg(t)  hgs(t)

— Could be distinguished in principle from near-field Newtonian
gradients.
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Sensitivity Goal

Paik
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Sensitivity goals of SOGRO

SOGRO 1: T=1.5K,SOGRO 2: T=0.1 K
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Major challenges:
= Large-scale cryogenics.
= Mitigation of Newtonian noise.

Paik

Detector cooled to 1.5 K
or 0.1 K and integrated
with near-quantum-
limited amplifiers.

Seismic noise rejected
by 1012 by combining
CMRR, passive & active
isolation.

Newtonian noise
rejected by 102~104
using tensor nature of
the detector and
external sensors.
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Thank you!
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