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Abstract

Current aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory)
suspensions and test masses are built from a fused silica substrate. In an effort to
further increase detector sensitivity in the mid LIGO frequency band, which may be
limited by thermal noise in the future, cryogenic silicon has become a candidate for the
next generation of detector suspensions and test masses due to its excellent mechanical
and optical properties. The fluctuation-dissipation theorem links microscopic thermal
noise fluctuations with macroscopic material damping, which in turn motivates the
study of damping mechanisms in silicon structures. In this project we demonstrate and
assess several methods for measuring the quality factor of silicon cantilevers, including
a continuous measurement technique capable of measuring the quality factor of several
resonant modes simultaneously. We also investigate the effects of parameters such as
temperature, cantilever geometry, and surface treatments on the quality factor with
the goal of informing future detector suspension designs.

1 Introduction

LIGO (Laser Interferometer Gravitational-Wave Observatory) is a massive physics experi-
ment designed to detect gravitational waves originally predicted by Einstein’s general theory
of relativity in 1916. Each detector is essentially a Michelson interferometer. As gravita-
tional waves pass through the detectors, they distort local space-time and change the effective
path length difference between the two perpendicular arms of the interferometer. This cre-
ates a relative phase shift between the two beams and allows for constructive interference
at the photodiode detector, resulting in a measureable signal that indicates the presence of
gravitational waves. Two independent detectors are operated in Livingston, Louisiana and
Hanford, Washington. The second generation of LIGO detectors, Advanced LIGO (aLIGO),
have been constructed and are currently being commissioned to optimize sensitivity. The
first data run of aLIGO is scheduled to begin in Fall 2015.

Research has already begun concerning the third generation of LIGO detectors. There are
many different sources of noise that limit the precision of the experiment, such as shot noise,
seismic vibrations, and thermal noise. In the mid frequency band relevant for the detection
of gravitational waves (∼ 10− 100Hz), thermal noise in the test masses and suspensions will
be a major factor limiting detector sensitivity. The aLIGO test masses and suspensions are
made of a fused silica material. Cryogenic silicon is now being considered as an alternative
construction material for the next generation of LIGO detectors in order to further reduce
thermal noise and increase sensitivity in the low frequency band of interest [1].

Thermal noise can be very difficult to measure directly. However, the fluctuation-dissipation
theorem relates the dissipation of a perturbed system to the thermal fluctuations of the
system at equilibrium. This means that the mechanical dissipation of the material can
be studied instead, and this is usually a much easier approach in practice. Previous work
has been done investigating the quality factor of thin silicon flexures through ringdown
measurement techniques [2, 3]. This project focuses on both ringdown measurements and
more advanced techniques such as continuous measurements using feedback control loops.
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2 Driven, Damped Oscillators

An externally driven oscillator with linear damping is most commonly modeled with the
differential equation:

mẍ+ bẋ+ kx = fext (1)

where m is the mass of the oscillator, b is the damping coefficient, and k is the restorative
spring constant. This differential equation is easy to solve in the frequency domain by taking
the Laplace transform:

ms2X(s) + bsX(s) + kX(s) = Fext(s) (2)

The transfer function of the system is defined as the ratio of X(s)/Fext(s):

H(s) =
X(s)

Fext(s)
=

1

ms2 + bs+ k
(3)

The system acts as a second order low pass filter. Our resonators have very small dissipation,
so we focus our analysis on the underdamped regime, where b2/4km� 1. It is also convenient
to introduce the three terms γ = b/m (damping ratio), ω0 =

√
k/m (natural frequency),

and τ = 2/γ (characteristic time). In this regime, the two poles of the transfer function are
at:

s =
−γ
2
± i

√
ω2
0 − γ2/4 (4)

The maximum value of |H(iω)| is at the frequency ωmax =
√
ω2
0 − γ2/2. Taking the same

underdamped limit above, the γ2 term is negligible so ωmax ≈ ω0. A plot of the transfer
function with normalized frequency is shown in Figure 1 below, with γ = 0.01:

Figure 1: Underdamped Oscillator Transfer Function

The damped oscillator acts as a mechanical second order low-pass filter with a resonance
feature around ω0. The quality factor Q of the resonator is defined as Q = ω0/∆, where ∆
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is the full width half max of the transfer function peak. From this definition, we have:

Q = ω0/γ =
ω0τ

2
(5)

The impulse response of the system can be found by taking the inverse Laplace transform
of the transfer function:

x(t) = e−t/τ sin (t
√
ω2
0 − γ2/4) (6)

where again the γ2 term can be safely ignored, so the final form of the impulse response is:

x(t) = e−t/τ sin (ω0t) (7)

An example trace of an underdamped oscillator excited by an impulse is shown below:

Figure 2: Underdamped Oscillator Impulse Response

3 Internal Damping

Equation 1 is not the only way to model a damped system. Internal damping within materials
is frequently described using a complex spring constant k [4]. In this model, the equation of
motion becomes:

mẍ+ k(1 + iφ)x = fext (8)

where φ(ω) is called the loss angle. The loss angle represents the phase lag between a sinu-
soidal restorative force and the resulting sinusoidal displacement. It can be shown that the
oscillator loses a fraction 2πφ of its kinetic energy per cycle by intergrating the work done by
the restorative force over a single displacement period. Again taking the Laplace transform
and setting the two different parametrizations equal to each other yields the expression:

γ(ω) =
ω2
0φ

ω
(9)
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The quality factor is only defined on resonance ω = ω0, so:

Q =
1

φ(ω0)
=
ω0τ

2
(10)

This relationship forms the motivation for studying the decay time τ of the oscillator. By
measuring τ we can calculate the loss φ, which then tells us about the thermal noise of the
resonator through the fluctuation-dissipation theorem.

4 Fluctuation-dissipation Theorem

Thermal noise is very difficult to measure directly, especially in the extremely low loss me-
chanical systems used in gravitational wave detectors. However, the fluctuation-dissipation
theorem (FDT) relates the dissipation of a perturbed system to the thermal fluctuations of
the system at equilibrium [7]. This reversibility symmetry of dissipation was first explored
by Einstein with his paper on Brownian motion published in 1905. Brownian motion is the
random motion of a larger particle immersed in a fluid of much smaller particles. This mo-
tion is the result of many random collisions between the particles. The phenomenon was first
noted by the botanist Robert Brown observing the chaotic motion of pollen grains suspended
in water. In his paper Einstein proposed the equation:

〈x2〉 = 2Dt (11)

where 〈x2〉 is the mean square displacement of the particle, D is the diffusion coefficient and
t is the total time that the particle has been free to travel. The diffusion constant is defined
as:

D =
kBT

6πηr
(12)

where kB is Boltzmann’s constant, T is the absolute temperature, η is the fluid viscosity,
and r is the particle radius. We can immediately see that this equation relates the thermal
fluctuations of a suspended particle, 〈x2〉, to a dissipation mechanism (drag/viscosity). The
FDT can also be used to explain phenomena such as Johnson noise in electrical circuits. The
mean square voltage measured across a resistor is given by:

〈V 2〉 = 4kBTRδv (13)

where R is the resistance and δv is the bandwidth over which the voltage is measured. Again
we can see the connection between the voltage fluctuations in the resistor and the dissipative
resistance. In order to apply the FDT to our damped oscillator system given by equation 8,
we define the external force fext to be a thermal driving force with a spectral density given
by:

F 2
th(ω) =

4kBTφ

ω
(14)
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This results in a noise power spectral density given by:

x2(ω) =
4kBTkφ

ω[(k −mω2)2 + k2φ2]
(15)

The equation tells us that (away from resonance) we can decrease the thermal noise in our
system by decreasing T and φ:

〈x2th〉 ∝
T

Q
(16)

This motivates our study of low loss materials at cryogenic temperatures for potential use
in gravitational wave detectors. It is also important to note that equation 16 is only true far
away from resonance. In current aLIGO detectors the first violin modes of the suspensions
are around 500Hz. From equation 15 it is clear that thermal noise power spectral density
is actually directly proportional to Q at resonant frequency ω0. This is consistent with the
equipartition theorem which states that each quadratic term in the systems total energy has
a mean value 1

2
kBT . Changing φ alters the distribution of the power spectral density but

the integral over all frequencies remains consistent.

5 Experimental Setup

Our lab has two vacuum chambers used for testing silicon resonators. A smaller chamber is
used as a prototyping stage where quick testing can be performed on new cantilever designs.
The larger chamber is a cryostat used for making measurements at cryogenic temperatures
using liquid nitrogen and liquid helium. The cryostat also contains the electronics necessary
for making continuous Q measurements.
The silicon cantilever is mounted on one end using a stainless steel clamp and the other
end is driven using an electrostatic driver (ESD). Different clamps are used depending on
the cantilver geometry. The cantilever displacement is measured by sending a HeNe laser
beam through a window in the cryostat. After the beam is reflected off of the cantilever, it
returns to a calibrated quadrant photodiode which measures the position of the beam which
is proportional to the cantilever displacement. Additional components in the system include
a power resistor used to control resonator temperature and a polyether ether ketone (PEEK)
base underneath the clamp for insulation from the cold plate. A SolidWorks model of the
experimental setup is shown below:
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Figure 3: SolidWorks Experiment Model. The silicon cantilever being tested is mounted on
a stainless steel post. A laser beam is reflected off the corner mirror onto the cantilever,
where it is then reflected back out of the chamber onto a quadrant photodiode The post is
attatched to a polyether ether ketone (PEEK) base for insulation necessary to maintain a
constant temperature. A power resistor is also fixed to the post in for temperature control.
The entire apparatus sits on a liquid nitrogen reservoir.

The following two pictures show the actual clamping setups used to measure both the rect-
angular and pinwheel shaped cantilevers.
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Figure 4: Rectangular Cantilever Mount

Figure 5: Pinwheel Cantilever Mount
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6 Cantilever Designs

We focus our analysis on three silicon cantilever designs. The first is a Glasgow-style can-
tilever received from a group in Taiwan. Previous measurements indicate that this is the
highest quality resonator of the three, most likely due to a combination of better wafer quality
and geometry favorable for minimum clamping loss. The dimensions are shown below:

Figure 6: Taiwan Cantilever

We also study a barbell-style cantilever which has a rectangular shape with a thinner section
in the middle:

Figure 7: Barbell (Painter2) Cantilever

The entire cantilever is 5cm long and 1cm wide. The two thicker end sections have a thick-
ness of 650µm and the thinner middle section is 250µm thick. The inner section was etched
using KOH. Both the Taiwan and Painter2 resonators are mounted in a retectangular clamp.
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Lastly we have a pinwheel style resonator that has four cantilever arms of different lengths.
This resonator is mounted on a radially symmetric post for measurements. All dimensions
shown below are in inches:

Figure 8: Pinwheel Cantilever

7 Measurement Techniques

7.1 Ringdown Method

In the ringdown experiment we determine the Q factor and loss angle of a thin silicon
cantilever by measuring the time constant τ of a damped sinusoidal amplitude signal. We
can then use 10 to determine Q. The general data analysis procedure consists of taking a
Fourier transform of the amplitude signal and then bandpass filtering around the resonant
frequency of the oscillator. An exponential curve can then be fitted to the filtered time
domain signal in order to estimate the decay time τ . Several plots outlining this procedure
are shown in Figure 9 below:
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Figure 9: Data Analysis Procedure. Cantilever displacement data is taken from a quadrant
photodiode and bandpass filtered around the resonant mode frequency. An exponential curve
is then fit to the filtered data in order to estimate the characteristic decay time τ .

In the example analysis above, the Q was determined to be ≈ 17, 755 with ω0/2π = 143.9Hz.
This measurement was performed on the fundamental Painter2 cantilever mode at room tem-
perature.

7.2 Continuous Method

In addition to the ringdown method described above, we also utilize a previously developed
continuous measurement technique to calculate the Q of our resonators. The continuous
measurement technique employs more advanced control systems such as a phase-locked loop
(PLL) and amplitude-locked loop (ALL) in order to drive the oscillator under test (OUT)
to a constant amplitude. A simple block diagram of the system is shown below:
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Figure 10: Continuous Measurement Block Diagram

A quadrant photodiode acts as the sensor in our current setup, measuring the relative dis-
placement of the cantilever. From this signal we bandpass filter around the modes resonant
frequency ω0 and send the signal to the ALL and PLL. The PLL first differentiates the signal,
producing a 90 degree phase shift. The signal is then amplified and sent through a saturation
block where it becomes a square wave. Finally the signal is again bandpass filtered around
ω0 to produce a constant amplitude sine wave phase shifted 90 degrees ahead of the original
displacement signal. The ALL works by taking the root mean square of the displacement
signal and comparing the result to an amplitude set point c. The resulting error signal is
then amplified by gain H and mixed with the PLL output to produce a drive signal for the
actuator.
In the limit of high open loop gain where ωU � τ−1 it can be shown that [6]:

φ = Q−1 =
2ωU
cHUω0

〈a〉 (17)

Where a is the control output of H, ωU = |SHUA|
2ω0

is the unity gain frequency (UGF), and
HU is the feedback gain evaluated at the UGF. Angle brackets indicate a time average. The
frequency ω0 can be easily calculated and the remaining parameters can be measured from
information required to maintain the control loops.

This measurement technique allows for a continuous measurement of the Q of the resonator,
which naturally allows for other parameters such as temperature or amplitude to be swept
during the measurement process in order to determine the effect on φ. These are important
factors when considering clamp design and isolation schemes. It can also be shown that
measurements using this technique have a constant signal-to-noise ratio (SNR) since the os-
cillator is held at a constant amplitude, while the SNR decreases over time with the ringdown
method. The continuous method is also useful for measuring very high Q oscillators, where
the ringdown decay time may be impractical if not impossible to measure directly.

We have successfully demonstrated the ability to measure different modes simultaneously
using this method. However, we are often limited by the actuator gain A due to the physical
setup of the experiment. The placement of our actuator, the ESD, heavily influences the
modes we are able to excite based on how close the nodes of the particular mode are to the
ESD active area. We are also unable to significantly excite torsional modes.
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8 Mechanical Losses in Silicon

Mechanical losses in solids come from a variety of different dissipation mechanisms. These
include processes such as phonon-phonon loss, surface loss, thermoelastic loss, and bulk loss.
We expect thermoelastic loss and surface loss to be significant loss mechanisms due to our
silicon resonator geometry. Various other dissipation processes such as gas damping are
inevitably present in our system, but should be negligible compared to other losses.

8.1 Thermoelastic Loss

Thermoelastic loss occurs when a solid is bent. As certain local regions are compressed
they heat up, while stretched regions are cooled (assuming a positive coefficient of thermal
expansion). This creates temperature gradients in the material. Heat fluxes driven by the
temperature gradient irreversibley dissipate energy, thus causing loss. Since thermoelastic
loss is highly dependent on the material coefficient of thermal expansion, cryogenic silicon
naturally becomes a good material choice for high quality mechanical systems due to its
vanishing coefficient of thermal expansion at 124K.

For isotropic materials in pure bending modes, the thermoelastic loss φTE is given by the
equation [5]:

φTE =
α2Y T

ρCp

ωτ

1 + ω2τ 2
(18)

where α is the coefficient of thermal expansion, Y is Young’s modulus, T is the temperature,
ρ is the material density, Cp is the heat capacity, and ω is the angular frequency of the
particular bending mode. The additional time constant τ is defined as:

τ =
ρCpt

2

πκ
(19)

where t is the thickness of the resonator and κ is the thermal conductivity. One of the major
reasons that cryogenic silicon is being considered for future gravitational wave detectors is
because silicon has a vanishing coefficient of expansion at 124K, so there shouldn’t be any
thermoelastic loss at this temperature. Figure 11 below shows a plot of the thermoelastic
loss φTE as a function of temperature. A thickness t = 50µm is assumed:
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Figure 11: Thermoelastic Loss as a function of temperature. The sharp drop in φ at T =
124K corresponds to when α, the thermal expansion coefficient of silicon, goes to zero.

Using 18, we predict a Q ≈ 50, 000 for rectangular cantilevers close to our geometry at room
temperature. This value is much higher than both our experimental data and COMSOL
FEA modeling which are shown below, indicating that thermoelastic loss probably isn’t the
limiting factor in our system at room temperature.

Table 1: Thermoelastic Loss in Silicon Pinwheel
Pinwheel Arm Length Eigenfrequency (Hz) Q (ringdown method) COMSOL Predicted Q
2.4′′ 184 2,260 29,583
2.2′′ 228 — 23,103
2.0′′ 294 2,300 17,995
1.8′′ 392 1,000 12,875

The COMSOL predicted Q is much lower than the theoretical equation because the COM-
SOL model also considers thermoelastic loss in the clamp and washers. Thermoelastic loss
was modeled in COMSOL by simulating temperature gradients caused by streching and
squeezing in the cantilever. An example of temperature analysis is shown below using the
fundamental mode of the Painter2 cantilever:
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(a) Painter2 Cantilever Top (b) Painter2 Cantilever Bottom

Figure 12: The models above represent relative heating in the cantilever, from which ther-
moelastic loss is calculated. Red represents warmer, compressed regions while blue represents
cooler, stretched regions.

8.2 Clamp Design and Clamp Loss Simulations

We are never truly measuring the cantilever loss in any of our experiments because the
cantilever isn’t a closed system fixed to an infinitely stiff anchor. Our measured loss is an
aggregate of losses in the cantilever, clamp, PEEK base, and even the cyrostat itself. Losses
in the clamp have been significant in previous experiments, so optimizing the clamp design
to minimize loss is an important task. The φ we actually measure can be estimated with the
equation:

φmeasured ≈ φSi +
Eclamp
Etotal

φclamp +
EPEEK
Etotal

φPEEK + ... (20)

Where E is the total strain energy stored in the particular component. This formula provides
a useful criterion for estimating the merit of new clamp designs.

We designed a completely new clamp for the next series of quality factor measurements.
Major changes from the previous model include a much thicker diameter and a lip to constrain
the sapphire washers and pinwheel cantilever itself in an effort to decrease clamp loss. The
SolidWorks design can be seen below:
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Figure 13: New Clamp Design

In order to test the new clamp design we created a COMSOL model of the system to calculate
the strain energy stored in each component for the first several modes of the longest (2.4in)
pinwheel cantilever. The model and results are displayed below:

Figure 14: COMSOL Model of 2.4′′ Pinwheel Cantilever, Fundamental Mode
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Table 2: Elastic Strain Energy Ratio
Eigenfrequency (Hz) Epinwheel (arb. unit) Eclamp (arb. unit) Ratio
161 3016 3.4 1.1e-3
1009 120264 139 1.2e-3
1449 212434 160 0.8e-3

The low strain energy ratios indicate that energy leakage into the clamp shouldn’t be a
significant factor in our measurements.

8.3 Surface Loss

Surface loss effects might also be a significant contribution to the net loss of our resonators.
These effects are not well understood and may be influenced by factors like surface roughness,
local lattice imperfections, and thin film deposits from other materials. We experimented
with surface loss simulations in COMSOL by adding thin, lossy layers to the surface of our
cantilever models. The following table shows the computational results of adding 19µm lossy
surface layers to the 2.4in pinwheel arm, along with experimental data:

Table 3: Surface Loss in Silicon Pinwheel
Eigenfrequency (Hz) Q (ringdown method) Bulk Loss Surface Loss COMSOL Predicted Q
161 2,260 2e-5 9e-4 2,230
1009 1,260 1e-4 9e-4 2,044
1449 3,600 8e-6 9e-4 2,280

These simulations closely match our experimental results and may indicate that there is
considerable surface loss in our system. With these results in mind, we imaged the surface
of the Taiwan cantilever using a USB microscope.

(a) (b)

Figure 15: Taiwan Cantilever Surface
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Although it is difficult to make quantitative observations, it is clear that the cantilever surface
is not perfectly smooth. In an effort to improve the appearance of the surface, we cleaned
the cantilever with isopropyl and again imaged the surface.

(a) (b)

Figure 16: Cleaned Taiwan Cantilever Surface

Large surface imperfections are clearly visible even after the cleaning. While there are no
immeadiate remedies for this problem, these results do indicate that we may be limited by
lossy surface effects. Surface deformities also appear to grow worse over time since we tend to
measure a decreasing Q the more we handle and reclamp the cantilevers. We will continue to
explore better manufacturing, etching, and cleaning techniques in order to minimize surface
losses.

9 Conclusions

Using a combination of theoretical predictions, computational modeling, and experimenta-
tion in the laboratory, we were able to draw several important conclusions from our work.
We dont think that thermoelastic or clamp losses are the dominant source of loss in our
system. As discussed previously, we dont see a large spike in the quality factor of our res-
onators around 124K. At this temperature the Q is still two orders of magnitude lower than
what we would expect if limited by phonon-phonon losses. Our new clamp design performed
similar to the older version despite a significant effort to reduce energy sloshing between the
cantilever and mount. There was not a significant change in measured Q from reclamp to
reclamp, and these factors indicate that clamp loss wasnt the dominant loss source in our
system.
We think that the quality factors of our current cantilevers are limited by surface layer ef-
fects. The COMSOL models with thin, lossy surface layers matched experimental data very
well. We can also see clear imperfections in the resonator surfaces. This also explains why
we tend to measure lower Qs the more we handle the cantilevers.
Aside from looking at different mechanical loss sources in our silicon cantilevers, we also fur-
ther developed the continuous measurement technique described above. By implementing
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multiple instances of the same control loops and filtering around different mode resonances
we are able to take continuous measurements of different mode Qs simultaneously. Appro-
priate filtering can significantly reduce the coupling between modes, and Qs measured with
this method agree with results from individual ringdowns and continuous measurements.

10 Future Work

We expect that we are currently limited by surface loss effects. In order to further investigate
these phenomena we will begin experimenting with different etching techniques. It will also
be important to look at losses in thin films and optical coatings that would be necessary for
the test masses in gravitational wave detectors.
A larger cryogenic experiment is also currently under construction. Once the optimal silicon
flexure design has been attained, it will be incorporated into the other experiment. The goal
of this larger experiment is to directly measure the thermal noise in thin silicon structures by
locking a laser to two separate cavities. Each cavity consists of a static mirror and a mirror
attached to a silicon structure. Thermal noise can then be measured interferometrically by
looking at the beat note formed by the two locked laser beams. The experiment is well into
assembly; most optical and electronic systems have been set up.
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