Optimization of Michelson Interferometer Signals in Crackle Noise Detection

Horng Sheng Chia, Gabriele Vajente

LIGO SURF Project

August 20, 2014

Crackle Noise

- Crackle noise may affect LIGO detection
- Impulsive release of energy or acoustic pressure
- Changes in geometry
- Question: is crackle noise a problem to LIGO?

Figure: Dahmen, Benzion, and Uhl, Phys. Rev. Lett. (2009)

LIGO

Crackle Setup

Output: Difference between symmetric and antisymmetric port readings

LIGO

Motivation

- Crackle experiment is prone to noises:
 - 1. Laser frequency noise
 - 2. Laser intensity noise
- Mirror misalignment also affects signal output
- Coupling of noises can be minimized by adjusting parameters of setup
- Before (Crackle 1 experiment):
 - trial and error
 - ideal parameters drift away due to environmental factors
- Now (Crackle 2 experiment):
 - Goal: automatically adjust these parameters to optimize output
- Simulation MIST optical toolbox

Laser Frequency Noise

- Variation of laser frequency
- Laser Frequency Noise Coupling, $g_{freq} = \Delta L/\nu$
- Aim: equalize macroscopic length difference, O(1mm)
- Piezo-translation stage controls length of one arm

Laser Frequency Noise (Algorithm)

- 100 measurements with random measurement uncertainties
- Average of 5 steps to complete algorithm

Laser Intensity Noise

- · Variation of laser power
- $RIN = \frac{\delta P}{P}$
- Aim: adjust microscopic length difference, O(1 nm)
- ullet Strategy: Locking (negative feedback) \Longrightarrow half fringe condition

LIGO

Mirror Misalignment

- Aim: align mirrors so fringe contrast is close to unity
- Fringe contrast = $\frac{P_{max}-P_{min}}{P_{max}+P_{min}} = \int \int Re[\psi_1\psi_2^*] dx dy$

Mirror Misalignment (Model)

- $L_2=$ length of arm, w = beam radius, k = wavenumber, $\alpha=$ misalignment angle, R = radius of curvature of wavefront

Gradient Ascent Optimization

- Crucial parameter: step size
- Divide fringe contrast pattern into approximate linear regimes

•
$$\delta = \delta_{max} \frac{grad_{local}}{grad_{max}}$$
, where $grad_{local} = \begin{pmatrix} grad_{x1} \\ grad_{y1} \\ grad_{x2} \\ grad_{y2} \end{pmatrix}$

Alignment Plots

Conclusion

- All 3 algorithms have been tested rigorously
- Next step: implement in real crackle experiment
- Acknowledge: Gabriele Vajente, Xiaoyue Ni, Alan Weinstein, LIGO SURF students, NSF
- Thank You!

Alignment Plots

