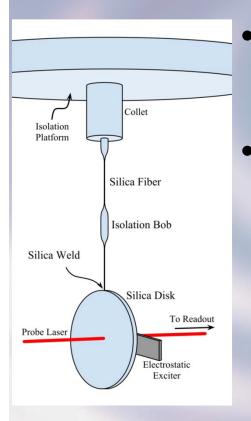

Optics Thermal Noise Work at American

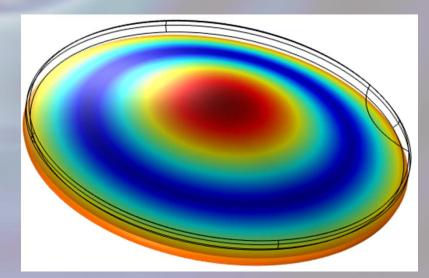

Gregg Harry, Sam Hickey, Jonathan Newport, Hannah Fair American University OWG Session, August 2014 LVC Meeting

G1400961

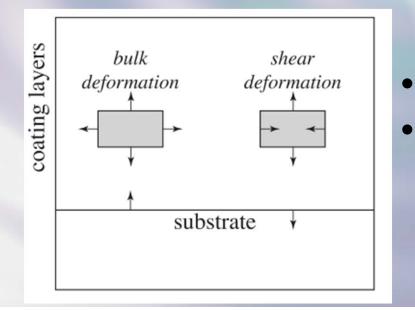
Overview of AU Lab

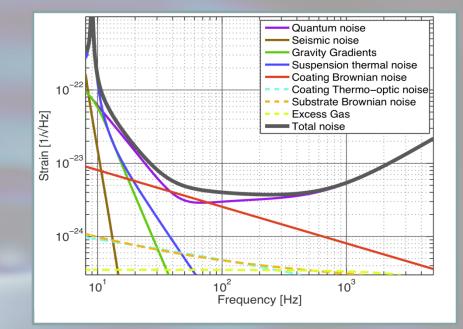

- The AU Thermal Noise lab has two bell jars dedicated to studying thermal noise in gravitational wave detector optics
 Dedicated finite element modeling computer
- PI Gregory Harry, Lab Specialist Jonathan Newport
 - Typically two students, currently Hannah Fair and Sam Hickey

Technique


Q Measuring Measure modal Q's of sample optics

- Determine mechanical loss from Q's In vacuum, silica fiber
 - In vacuum, silica fiber suspension, electrostatic excitation, birefringence laser readout


Finite Element Model


- Energy distribution in sample by FEA
- Determine modally (frequency), spatially, tensor elements

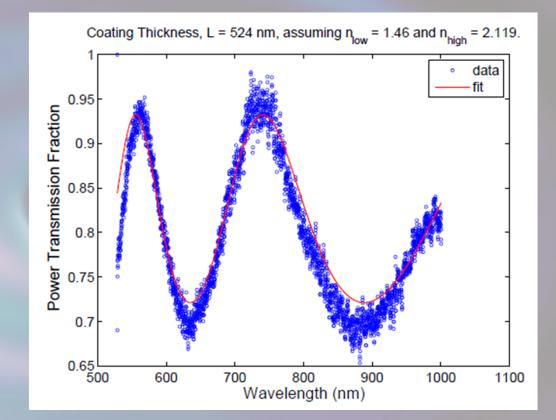
Coating Thermal Noise

- Coating thermal noise caused by mechanical loss
- Sensitivity limiting in aLIGO
 Titania doping, et al.
- Continuing in 3rd generation
 - Many approaches

- Hong et al, Phys. Rev. D 87, 082001
- Coating thermal noise depends
 on shear & bulk mechanical loss
 - Hong et al estimate 37% uncertainty in thermal noise from ignorance of these values in aLIGO

Ti-Ta Sample

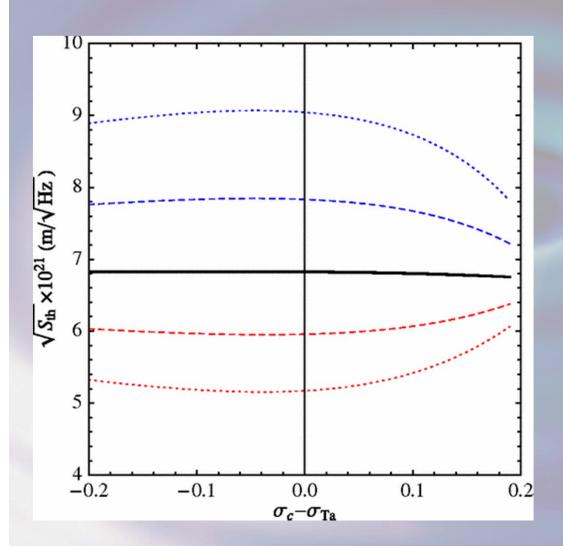
- Nominal thickness 0.5 μm
 - Being measured at ERAU
- Using standard values for
 - Young's Modulus 140 GPa
 - Poisson ratio 0.23
 - Density 2200 kg/m³


 Jonathan Newport has been doing FEA work

Mode	Frequency	Q	δQ	E _{shear} /E _{tot}	E _{bulk} /E _{Tot}
BF	2773 Hz	1.14 X 10 ⁶	2.5 X 10 ³	9.93 X 10 ⁻³	6.58 X 10 ⁻⁴
DH	4178 Hz	8.70 X 10 ⁵	2.6 X 10 ⁴	6.85 X 10 ⁻³	4.79 X 10 ⁻³
Hex	6307 Hz	9.32 X 10 ⁵	3.2 X 10 ⁴	9.37 X 10 ⁻³	9.65 X 10 ⁻⁴
DDH	9707 Hz	9.16 X 10 ⁵	3.8 X 10 ³	7.68 X 10 ⁻³	3.62 X 10 ⁻³
Oct	10943 Hz	8.87 X 10 ⁵	1.6 X 10 ⁴	9.05 X 10 ⁻³	1.18 X 10 ⁻³

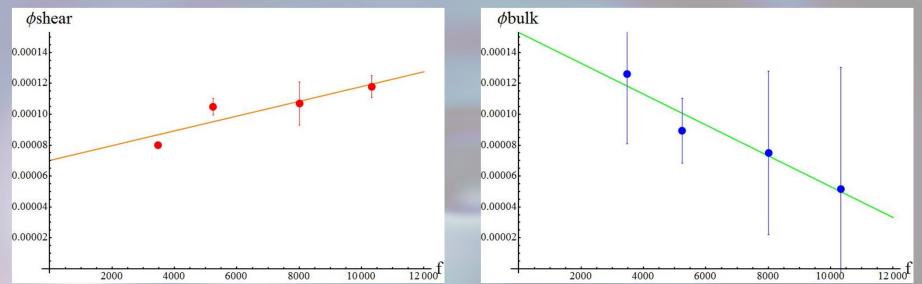
Coating Thickness

Transmission
 vs angle at
 ERAU by Andri
 Gretarsson



- n = 2.119 for 25% ti in ta from CGQ 24, 405 2007.
- Single layer fit gives $d = 0.524 \,\mu\text{m}$

Poisson Ratio



- Uncertainty in ti-ta Poisson ratio significant contributor to uncertainty in energy ratios
- Hong et al estimate it accounts for ~10% uncertainty in thermal noise

Results

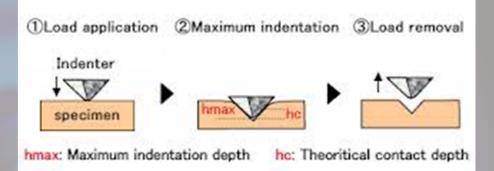
Bulk and shear ϕ as functions of frequency

 $\varphi_{shear} = 7.0 \times 10^{-5} + 4.8 \times 10^{-9} f$ $\varphi_{bulk} = 1.5 \times 10^{-4} - 1.0 \times 10^{-8} f$ Random uncertainties from energy ratios, systematic uncertainty from Poisson ratio

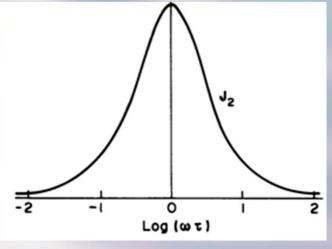
LIGO **Thermal Noise** Noise prediction from Hong paper 8 • With $\varphi_B(f)$ $\frac{S_{\rm th} \times 10^{21} \, ({\rm m}/\sqrt{\rm Hz})}{\rm b}$ 100 Hz $\varphi_B/\varphi_S = 2.2$ 1000 Hz $\varphi_B/\varphi_S = 1.9$ \rightarrow 20% worse aLIGO thermal noise • With φ_{R} constant 0.<u>_</u> 0.5 1.0100 Hz $\varphi_B / \varphi_S = 1.3$ ϕ_B/ϕ_S

1000 Hz $\varphi_B / \varphi_S = 1.3$

 \rightarrow 2% worse aLIGO thermal noise

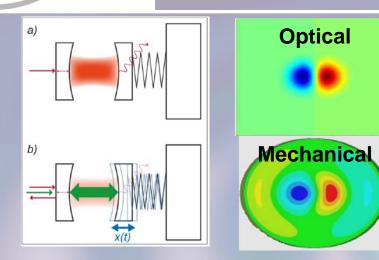

• Matt A found $\varphi_B/\varphi_S \approx 2$ in G1300063

2.0


5.0

Outstanding Issues

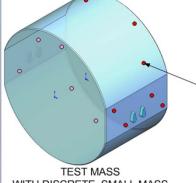
- Young's modulus and Poisson ratio
 - Nanoindenter
 - Acoustic reflection
 - Biggest source of uncertainty in aLIGO
 thormal poiso

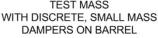


thermal noise • More precise FEA model

- Errors from energy ratios
- Linear loss model
 - Improve approximation
 - Thermal noise predictions
 - Compare to prototypes

Parametric Instability

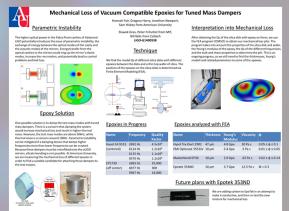

LIGO


Possibly problem in aLIGO from exchange of energy between optical cavities and mirror acoustic modes

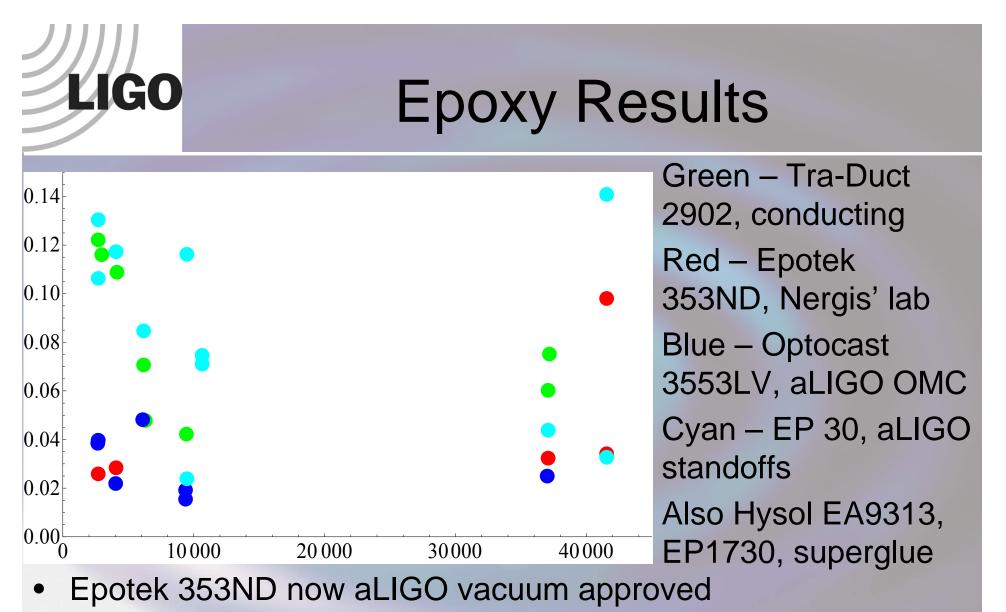
Possible solutions

- Ring heaters to adjust mirror mode frequencies
- Electrostatic drive to actuate on and damp acoustic modes
- Acoustic mass dampers to passively damp acoustic modes
- Optical mode active damping



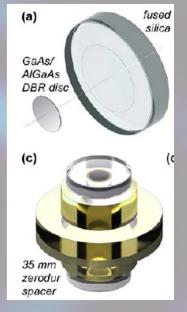

Epoxy Thermal Noise

- Retrofit rules out silicate bonding, best solution
- Use epoxy to connect dampers to mirrors



- Predict thermalnoise for dampers
- Need mechanical loss of epoxies

- All bad, some more than others
- Measure Q's, do FE analysis
- See H. Fair poster for details



- Adding carbon to Epotek 353ND
 - Make conductive
 - First attempt > 1 M $\Omega \cdot m$

Aluminum Gallium Arsenide (AlGaAs)

- Mechanical loss/thermal noise results – Low TN in quantum experiments $\varphi \approx 2.5 - 4 \times 10^{-5}$
 - Two Q results on silica substrates $\varphi \approx 1 - 2 \times 10^{-4}$

LIGO

- Crystalline Mirror Solutions recently able to make larger diameters, up to 10 cm
- Improvement in bond strength
- Flaw in AU/HWS sample due to scratch during transport/handling