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ABSTRACT

I show how to marginalise over the time parameter or the time and phase parameters semi-
analytically in gravitational-wave parameter estimation.

The likelihood1 for a gravitational wave signal in the
presence of coloured, Gaussian noise is

logL = −1

2
〈d− h | d− h〉 , (1)

where d is the detector data stream, h the waveform, and
the inner product is defined in the frequency domain as

〈a | b〉 ≡ 4∆f

N/2∑
i=0

ã∗i b̃i
Si

, (2)

with Si the ith frequency component of the one-sided
noise PSD.

Expanding the inner product in Eq. (1), we obtain

logL = −1

2
[〈d | d〉+ 〈h |h〉 − 〈d |h〉 − 〈h | d〉] . (3)

The time-dependence of the frequency domain waveform
is

h̃j = h̃
(0)
j exp [−2πij∆ft] , (4)

where h(0) is the waveform evaluated at a reference time,
t = 0. From this expression, we can immediately see that
〈d | d〉 and 〈h |h〉 are independent of time, while

〈d |h〉 (t) = 4∆f

N/2∑
j=0

d̃∗j h̃
(0)
j

Sj
exp [−2πij∆ft] , (5)

and similarly for 〈h | d〉.
If we are willing to evaluate 〈d |h〉 at integer timesteps,

t = k∆t, then we can write

〈d |h〉 (k∆t) = 4∆f

N/2∑
j=0

d̃∗j h̃
(0)
j

Sj
exp

[
−2πi

jk

N

]
, (6)

where we have exploited that ∆f∆t = 1/N . Expanding
the sum to all frequency components yields a factor of
1/2:

〈d |h〉 (k∆t) = 2∆f

N∑
j=0

d̃∗j h̃
(0)
j

Sj
exp

[
−2πi

jk

N

]
. (7)
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1 The likelihood up to a waveform-independent constant.

We can evaluate this expression efficiently for all k =
0, 1, . . . , N − 1 using the FFT:

〈d |h〉 (k∆t) = 2∆f FFTk

(
d̃∗h̃

S

)
. (8)

Since 〈h | d〉 = 〈d |h〉∗, we have

〈d |h〉+ 〈h | d〉 = 4∆f<

[
FFT

(
d̃∗h̃

S

)]
. (9)

Now that we can evaluate logL (k∆t), a quadrature rule
can be applied to approximate

log 〈L〉 = log

∫ T

0

dt exp (logL(t)) p(t), (10)

where p(t) is the time prior. The time parameter has
been numerically marginalised out of the likelihood.
TODO: Incorporate Ilya’s argument about the

necessary sample rate.
If we want to also marginalise over phase, Eq. (4) be-

comes

h̃j = h̃
(0)
j exp [−2πij∆ft] exp [iφ] . (11)

The time shifting can be accomplished by FFT exactly
as above, but we arrive at a modified Eq. (8):

〈d |h〉+ 〈h | d〉 = 4∆f<

[
exp (iφ) FFT

(
d̃∗h̃

S

)]
. (12)

It is convenient to perform the integral over phase before
integrating in time. The following definition is useful:

∫ 2π

0

dθ exp (A cos θ +B sin θ)

= 2πI0

(√
A2 +B2

)
, (13)

where I0 is a modified Bessel function of the first kind.
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We have

log 〈L〉 = log

∫ T

0

dt

∫ 2π

0

exp (logL(t, φ)) p(t)p(φ)

≈ log

[
∆t

N∑
k=0

I0

(
4∆f

∣∣∣∣∣FFTk

(
d̃∗h̃

S

)∣∣∣∣∣
)]

− 1

2
[〈d | d〉+ 〈h |h〉] , (14)

assuming that the prior on the phase, φ, is uniform on
[0, 2π).


