
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1300958 Advanced LIGO 3/18/2013

Front-end Control State Implementation

Stefan Ballmer, Chris Wipf, Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology

LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 159

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

LIGO LIGO-T1300958-v3

Table of Contents

1 Introduction ... 3

2 Front-end Operation ... 4

2.1 Operational Mode .. 4

2.2 Global State Machine .. 4

3 Control File Format ... 5

3.1 General Remarks .. 5

3.2 Example ... 6

3.3 XML Representation ... 8
3.3.1 CDATA Tag ... 8
3.3.2 Header ... 8
3.3.3 ControlStateDef Tag .. 8
3.3.4 Table Tag ... 9
3.3.5 Table Initialization .. 9
3.3.6 Global State Machine... 10
3.3.7 State Tag ... 10
3.3.8 Assign Tag ... 11

3.4 Conditional Definitions and Replacement Rules 12
3.4.1 Rule Tag .. 13
3.4.2 Include Tag .. 14
3.4.3 If, Else and ElseIf Tag .. 14

3.5 Tag Listing ... 15
3.5.1 Channel Tag .. 15
3.5.2 Dependent Tag .. 15
3.5.3 Control Tag .. 15
3.5.4 Safe and Value Tags ... 16
3.5.5 Lookup Tags .. 16

3.6 Example ... 16

3.7 Redefinition Rules .. 21

4 Command Line Parser.. 22

5 GUI for Editing the Configuration File .. 23

6 Other Remarks .. 23

 2

LIGO LIGO-T1300958-v3

1 Introduction
The purpose of this document is to define a workflow which reduced the exposed complexity of
the LIGO front-end models. It is not a state machine or an active controls system, but tries to
simplify the exposed control complexity of a front-end system by defining a number of state
control variables which in turn define the state of a large number of EPICS parameters.
Looking at an auto-centering servo we typically have two quadrant detectors with four input filters
each, followed by sum, pitch and yaw calculation. These values are then processed by two 2x2
input matrices, 4 servo filter bands, two 2x2 output matrix and actuation filters. This exposes a
vast array of EPICS control channels to the user. Most of them have fixed values and never change,
some of them may change in a scripted way and a few are adjustable.
From a user point of view most of this complexity is unwanted. The possible control states are
only a few. In the simplest case, it just consists of servo on or servo off. All of the filter banks
typically have fixed states, so do the input and output matrices. There may be an adjustable
threshold to determine the minimum light power on a quadrant detector. This is then used to
determine when to operate the auto-centering servo.
The idea proposed here is to define a small set of state control variables using a configuration file.
The configuration file will list the available states for each control variable. It will further define
whether a value is fixed or adjustable. If it is a fixed value, it will define it. Since we are dealing
with a configuration file which can be loaded at run-time, values are not hard coded in the front-
end model. Changes are no more difficult than loading a new filter. We will have the same version
and configuration control as with “foton” filter files, i.e. the files will get archived whenever they
get loaded to the front-end.
Channels (or tags) which are controlled by a state control variable can no longer be changed by
the user directly. Using EPICS, they become effectively read-only channels. This poses a problem
for commissioning, since being able to change a state on-the-fly and run a test is an important
diagnostics tool. We therefore recommend that each control state has two predefined states:
Default and Manual. The default state also serves as a safe state and is the default state after
booting. Additional states such as Auto-center and Hold can then be added by the user.
To facilitate large front-end systems which contain multiple subtasks, we also propose to
implement sub-state control variables. An ISC system may contain an auto-centering part, and
ALS part and an LSC part. Each part can then define one or more sub-state control variables.
Meaning, the auto-centering servo can have its own state control variable which is independent
from the other parts.
The guardian control software now has a much easier task. No longer does it have to watch a large
number of channels just to make sure they are in the right state. Active controls is also simplified.
Instead of setting numerous control values synchronously to instigate a state change, only a few
control variables have to be set. The guardian control software still has the task to recognize error
conditions, deduced lock states, inform the user and put the system into the desired state.
Summarizing, this document proposes to implement front-end control states to significantly reduce
the complexity of tracking, saving and referencing the interferometer status. This will provide an
effective status system, implemented directly in the front-end systems whenever possible.

 3

LIGO LIGO-T1300958-v3

2 Front-end Operation

2.1 Operational Mode
• The front-end to EPICS-server channel interface will include an additional check against

the configuration file. This check could be implemented on either front-end or EPICS
server side. An implementation as part of the EPICS server side has the advantage that the
same code could be used for controlling both front-end and Beckhoff applications.

• The desired state is commanded via additional EPICS channels specified in the
configuration file (one or more to command the main state(s), additional ones to command
every sub-state.

• If the commanded main model state specifies a value for a given EPICS channel, the value
from the configuration file will be used in the front-end, and fed back to EPICS as a read-
only variable.

• If the commanded main model state specifies a sub-state for a given EPICS channel, the
value corresponding to the commanded sub-state will be used, and fed back to EPICS as a
read-only variable.

• If the commanded main model state specifies manual operation for a given EPICS channel,
the channel value provided by EPICS will be used.

• The configuration file can be read from disk upon request or on boot-up (like the current
foton file). On boot-up the initialization values will be loaded.

• Upon loading the configuration file, a copy of the file is archived.

• The main and sub-state can be commanded through dedicated EPICS variables specified
in the configuration file.

• Configuration files are under version control. When a new configuration is loaded a dated
backup copy is automatically created.

2.2 Global State Machine
The program responsible for commanding the control states is itself a state machine. It has the
following states:

• Init (1): The system is initializing. No hardware access is performed.

• Preop (2): The system is ready to run and access to the hardware is active. EPICS channels
are manually accessible, but the controls state definitions are not enforced.

• SafeOp (4): The system is in a safe operating mode. Access to the hardware is active. The
controls state definitions are enforced, but all tables are held in their initialization state.

• Op (8): The system is running normally. Access to the hardware is active. The controls
state definitions are enforced, and the tables can transition to any of their predefined states.

 4

LIGO LIGO-T1300958-v3

These additional flags are available:

• Error (16): This indicates an error has occurred if reported by the readback channel. It is
interpreted as a request to clear the error when specified in the request channel.

• Configure (32): This indicates that the configuration file(s) is out of date and needs to be
reloaded, if reported by the readback channel. It is interpreted as a reconfiguration request
when specified in the request channel.

The global state machine employs two controls channels:

• (BASENAME)_STATE: This is the readback channel of the global state machine
indicating its actual state. It is read-only.

• (BASENAME)_REQUEST: This is the request channel of the global state machine which
can be used to request a transition to a new state or an action. 6

After start up the global state machine is set to the initialization state, while the requested state is
set to restart. The restart option is a combination of mode bits and flags.
Transitions are only allowed between adjacent states. A restart request from the initialization state
will first clear any errors, secondly read the configuration file and finally transition to Preop,
SafeOp and Op in sequence. Similarly, if the system is in Op mode, it has to first transition through
SafeOp to reach the PreOp state.
If multiple modes and flags are selected in a request, the system will first transition to the lowest
indicated state. There, it will perform any actions indicated by the flags. An error will always be
cleared before reading a new configuration. Finally, the system will try to transition to the highest
indicated state.
If an error occurs and the system is in Op mode, it will transition back to SafeOp and set the error
flag. If the error is due to a hardware access fault, the system will transition all the way back to the
initialization state. With the exception of the startup a transition to a higher state always requires
a user input.

3 Control File Format

3.1 General Remarks
• The file lists every EPICS channel used by the front-end model, with filter-module-related

channels and matrix-related channels grouped together.

• The IFO name will be omitted in the channel list, allowing copying files between
interferometers.

• For editing a dedicated GUI (like foton) will be written.

• The file will include tables to define the main state(s) and sub-states.

• In a main state table, a initialization values have to be specified. Channels not listed in any
initialization list will default to zero, and will be read-only in any state other than 0 (off).

• State 0 (off) and state 1 (default) always exist. An arbitrary number of additional states can
be defined.

 5

LIGO LIGO-T1300958-v3

• In the main state table, for each state and for each EPICS channel one of the following has
to be specified: 1) a value, or 2) manual operation through EPICS, or 3) a pointer to the
relevant sub-state table.

• An arbitrary number of sub-state tables can be provided. Unlike the main state tables, they
do not have to list all channels in an initialization list.

• In the sub-state table, for each sub-state and for each involved EPICS channel one of the
following has to be specified: 1) a value, or 2) manual operation through EPICS.

• For binary channels “manual” mode can be commanded for every bit individually. This is
done via a manual mask.

• In addition to the default state and the user-defined states, an off or manual state is
implicitly defined. It's state number is zero (0). For it, all channels default to “manual”.

3.2 Example

 LSC-MASTERSTATE

Channel name INIT 0: OFF 1: DEFAULT 2: RUN

LSC-DARM_GAIN 1 manual 2 3

LSC-DARM_SW1S 0xFF manual 0x33
(Mask: 0xF3)

0x33
(Mask: 0xF3)

LSC-CARM_GAIN 0 manual manual manual

LSC-MICH_GAIN 0 manual See INIT (0) Sub state
LSC-
GAINSTEPPING

 LSC-GAINSTEPPING

Channel name 0: OFF 1: DEFAULT 2: STEP A 3: STEP B

LSC-MICH_GAIN manual See default
above

1 2

 6

LIGO LIGO-T1300958-v3

<?xml version="1.0" encoding="UTF-8"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns:p="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd">
 <Assign Name="LSC-REFL_A_RF45_I_GAIN">1.2</Assign>
 <Assign Name="LSC-REFL_A_RF45_Q_GAIN" Type="man">1.2</Assign>
 <Table Name="LSC-MASTERSTATE" Type="main" Location="internal">
 <Assign Name="LSC-DARM_GAIN">1</Assign>
 <Assign Name="LSC-DARM_SW1S">0xF3</Assign>
 <Assign Name="LSC-CARM_GAIN">0</Assign>
 <Assign Name="LSC-MICH_GAIN">0</Assign>
 <State Number="0" Name="Off" Ramp="0"/>
 <State Number="1" Name="Default">
 <Assign Name="LSC-DARM_GAIN" Type="val" >2</Assign>
 <Assign Name="LSC-DARM_SW1S" Type="val" Ramp="0"
 Mask="0xF3"> 0x30</Assign>
 <Assign Name="LSC-CARM_GAIN" Type="man"/>
 </State>
 <State Number="2" Name="RUN">
 <Assign Name="LSC-DARM_GAIN" Type="val" RAMP="3.0">3</Assign>
 <Assign Name="LSC-DARM_SW1S" Type="val" Ramp="0"
 Mask="0xF3">0x33</Assign>
 <Assign Name="LSC-CARM_GAIN" Type="man"/>
 <Assign Name="LSC-MICH_GAIN" Type="sub">
 <![CDATA["LSC-GAINSTEPPING"]]>
 </Assign>
 </State>
 </Table>
 <Table Name="LSC-GAINSTEPPING" Type="sub" Location="internal">
 <State Number="0" Name="Off"/>
 <State Number="1" Name="Default"/>
 <State Number="2" Name="STEP A" RAMP="1.0">
 <Assign Name="LSC-MICH_GAIN" Type="val">1</Assign>
 </State>
 <State Number="3" Name="STEP B" RAMP="1.0">
 <Assign Name="LSC-MICH_GAIN" Type="val">2</Assign>
 </State>
 </Table>
</ControlStateDef>

 7

https://dcc.ligo.org/LIGO-T1300958/public
https://dcc.ligo.org/LIGO-T1300958/public/csdef.xsd

LIGO LIGO-T1300958-v3

3.3 XML Representation
We are using an xml file format. In XML, several characters are part of the syntactic structure of
XML and will not be interpreted as themselves, if simply placed within an XML data source. A
special character sequence needs to be used instead. These special characters are:

Special Character & ‘ “ < >

Escape Sequence & ' " > <

Purpose Ampersand Single quote Double quote Greater than Less than

3.3.1 CDATA Tag
Sometimes escaping a string is cumbersome. For these cases XML provides the CDATA construct.
Anything between the inner square brackets of “<![CDATA[]]>” is interpreted as character data.
The only restriction is that data cannot contain the sequence “]]>”.

Example: <![CDATA[“LSC-GAINSTEPPING”]]> allows the use of quotes directly.

3.3.2 Header
The XML header is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--This is a configuration file of the LIGO project!-->

3.3.3 ControlStateDef Tag
This xml tag describes the top level or root container. It is used to define a set of tables, states and
assignments. It can also include rules, conditions and includes. The latter are processed during
parsing and are intended to aid in complex setups.
The xml schema can be found at https://dcc.ligo.org/LIGO-T1300958/public/csdef.xsd.

Attribute xmlns: XML namespace; set to “https://dcc.ligo.org/LIGO-T1300958/public”.

Attribute xmlns:xsi: Set to “http://www.w3.org/2001/XMLSchema-instance”.
Attribute xsi:schemaLocation: Set to “https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd”.
A boilerplate XML file header can be found below:

<?xml version="1.0" encoding="UTF-8"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns:p="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd">

</ControlStateDef>

 8

https://dcc.ligo.org/LIGO-T1300958/public/csdef.xsd
https://dcc.ligo.org/LIGO-T1300958/public
http://www.w3.org/2001/XMLSchema-instance
https://dcc.ligo.org/LIGO-T1300958/public
https://dcc.ligo.org/LIGO-T1300958/public
https://dcc.ligo.org/LIGO-T1300958/public/csdef.xsd

LIGO LIGO-T1300958-v3

3.3.4 Table Tag
This xml tag describes a controlled state.
Attribute Name: Specifies the tag or channel name controlling the states defined in this table.
Attribute Mask: Specifies the bit mask which is applied to the EPICS channel before a state is
selected. This feature can be used to mask unimportant bits from a value.
Attribute Type: The choices are “main” or “sub”. The default is “main”, if omitted. Defines
whether the table specifies a main state or a sub state
Attribute Location: The choices are “internal” or “external”. For “internal” the controlling EPICS
channel is created in the EPICS server, and it is not accessible by the front-end itself. For “external”
the channel has to be defined in the front-end, and thus is accessible by the front-end.
For tables of type “main”:

Every table of type “main” has at least a State 0 (off/manual) and a State 1 (default state). If
not listed explicitly, the settings in state 1 correspond to the initialization values. During
initialization the table will be set to state 1, when not defined in the global state machine. The
default value can be overwritten by explicitly listing the table name in global state machine
and define an Op value. The SafeOp value is also 1 by default, but again can be overwritten in
the global state machine.
Multiple tables of type “main” are permissible, but their channel lists as defined in the
initialization section must be disjoint.
If a channel is neither listed in the initialization section of a table of type “main” or at the top
level, its value is set to 0 and not changeable in any state.

For tables of type “sub”:
The State 1 of a table of type “sub” is implicitly defined as being equal to the State 1 of the
main table pointing to it. However, this implicit definition can be overwritten by explicitly
defining a state 1.

Attribute Ramp: Defines the default ramp time in seconds for switching values within the table.
If omitted, values are changed immediately. Ramp times are not used during initialization.

3.3.5 Table Initialization
An Assign tag located inside the Table but outside a State tag is treated as a default value. Any
state which does not define its own assignment for a channel, takes its value from the default. This
is only allowed for a table of type “main”. It can only contain Assign tags of type “val” or “man”
(see below). If it is defined as “val”, its value is used for the default value. When it is defined as
“man”, the default is defined as manual.
If no special SafeOp value is defined within the global state machine (see below), the default value
also serves as the SafeOp value. A special case is an assignment of type “man” which also has an
associated valid value. In this case the default value is defined as manual, whereas the SafeOp
value is derived from the specified value. If the SafeOp value is indented to be manual, but the
default value is of type “val”, the tag needs a separate assignment within the SafeOp state of the
global state machine using the type “man”. The ramp time for SafeOp values derived from table

 9

LIGO LIGO-T1300958-v3

initialization is 0. An non-zero ramp value for SafeOp values, requires a definition within the
global state machine.
The initialization list must define all channels associated with a “main” table. No exception!
Any tag that is neither listed in the initialization list of a “main” table nor at the top level, is set to
and kept at zero (0).
If a tag is listed with type “val”, but has no explicit value, it is assumed to be zero (0), false (bit)
or an empty string depending on the type.

3.3.6 Global State Machine
The global state machine can be referenced explicitly by defining a table of type “top”. A table of
type “top” has the following predefined states: State 1 (Init), State 2 (PreOp), State 4 (SafeOp) and
State 8 (Op). These states cannot be overwritten or extended.
Explicitly defining the global state machine makes the associated controls channels accessible by
EPICS. The table name is used to define the base name of the controls channel.
Assign statements can only be listed for state 4 (SafeOp) and state 8 (Op). These are the only states
where the state definitions are enforced, and thus the assignments associated for all other modes
of the global state machines are irrelevant.
Table initialization outside the state definition is also possible. It has similar meaning to normal
tables. A value assignment of type “val” is treated as a constant and the value is set to a fixed value
for both SafeOp and Op modes. A value assignment of type “man” with a specified value is set to
a fixed value in SafeOp but left alone in Op mode. A value assignment of type “man” without a
specified value is left alone and ignored in all states.
A global initialization is an assignment tag outside any table definition. It is treated exactly like a
table definition inside the “top” table.

3.3.7 State Tag
This xml tag describes an individual control state.
Attribute Number: This specifies the number of a state. This corresponds to the selection value
of the controlling EPICS channel (specified in the attribute Name). The number zero (0) is reserved
for the off/manual state. The number one (1) is reserved for the default state. Negative numbers
are not allowed. If all the state numbers are equal or below 15, an EPICS mbbo record will be
used. If at least one state value is larger than 15, an EPICS longout record will be used.
Attribute Name: This specifies the name of the state. This will be used to define the EPICS value
type for mbbo records. For EPICS longout records the name is ignored. Maximum length is 16.
Channels are assigned to specific values inside a state. Omitting a channel implies inheriting the
settings from the initialization section.
The State 1 (default state) of a table of type “sub” is implicitly defined as being equal to the State
1 (default state) of the main table pointing to it. However this implicit definition can be overwritten
by explicitly defining a state 1.

 10

LIGO LIGO-T1300958-v3

Channels in State 1 (default state) can have manual entries and mask fields. However this should
be used sparsely, and only where needed. An example might be alignment sliders, whose good
settings can change from day to day.
State 0 (off) is special. In this state all channels will default to manual mode unless specified
otherwise.
If the table name uses a bit mask to omit neglect certain bits from the controlling channel, this bit
will be removed from the value and the more significant bits shifted down. This way states are
always numbered continuously starting from zero.
Attribute Ramp: Defines the default ramp time in seconds for switching values within the state.
If omitted, values are changed immediately. Ramp times cannot be specified for initialization.
Ramp times specified by a state override the one specified by a table.

3.3.8 Assign Tag
The Assign tag is used to assign values to channel names. When defined under ControlStateDef,
it denotes a global constant (using type “val”) or a manual value (using type “man”). A manual
value is used to initialize the channel, but is then left in manual mode.
When defined inside a table, it denotes an initial and default value for a channel. When defined
under a state, it defines the value associated with a state. A channel with its optional bit mask can
be defined exactly once under a table. It can be redefined inside multiple state tags of the same
table, or in an associated sub state table.
When defined at the top level, it cannot be redefined inside a table. When defined inside a table, it
cannot be redefined in another table.
Assign tags with the same channel name but a different bit mask are treated as different entities.
If a bit mask is used, it has to match when a channel entity is reassigned inside the different states
of a table.
Attribute Name: This specifies the name of a channel, but without the interferometer prefix, e.g.,
LSC_DARM_GAIN or LSC_DARM_SW2S.
Attribute Type: The choices are either “val”, “man” or “sub”. The default, if omitted, is “val”.
Specifies the type of assignment made to the specified channel in the specified state. The keyword
“sub”, implies that a sub state Table is defined which in turn will redefine the value.
Attribute Mask: This specifies a binary mask (up to 32 bits) for the channel. If a mask is used, it
has to be repeated in all associated assignments. A channel can be split into multiple entities which
have non-overlapping bit masks. Multiple entities of the same channel are for all practical purposes
treated like separate channels. Bits of a channel which are defined nowhere, are set and kept at
zero. Omitting the Mask attribute implies that no mask is applied, i.e. all bits of the data field are
used. With this definition a mask of 0 (no mask) and 0xFFFFFFFF (all bits used) are identical in
purpose. A mask can be defined as a decimal, octal or hexadecimal number. The allowed number
formats for mask bits are decimal, hexadecimal, octal and binary.

 11

LIGO LIGO-T1300958-v3

The data field of an Assign tag contains the following:
For Type=“val”, any of the following:

• Floating point number (e.g. 58.1, or 58E0)

• Decimal number (e.g. 58)

• Hexadecimal number (e.g 0x3A)

• Octal number (e.g. 072)

• Binary numbers (e.g. 0b00111010)

• Boolean value: true, T, false or F (case-insensitive)

• A string in quotes, indicating an EPICS field enum value (e.g. “inactive” or “off”) or a
string value. Keep in mind that the quotes need to be escaped with & or a CDATA
container.

For type “man”, the data field is either used as an initialization value or ignored.
For type “sub”, the data field specifies the sub-table channel name. It must be a quoted string.
This is only permitted in a table of type “main”. It is not permitted in state 1 (default state). If a
sub table has a non-zero mask associated with its name, the sub table channel name must add the
bit mask by first appending a ‘~’ character and then the mask in hex format without leading zeros
(and no “0x” prefix).
Omitting the data field for type “val” is equivalent to specifying 0 in the data field.
Attribute Ramp: Defines the ramp time in seconds for changing to the assigned value. Ramp
times only makes sense for value assignments. The value is ramped linearly from the previous one
to the newly specified one, when the state is changed. Tables can specify a default ramp time which
is used to switch all values used in the table. If a state specified a different ramp time, it gets
precedence over the table ramp time. Finally, a ramp time specified as part of an assignment takes
precedence over all others. The ramp time of a value is set at the time the assignment is
encountered. This is an important distinction, if the assignment is redefined later.

3.4 Conditional Definitions and Replacement Rules
A set of regular expression rules can be used to expand tag names. Rules can be defined at the
command line are then applied to all tag names found in a CSD file. Rules can also be defined in
an XML file and included through the command line. Or, they can be defined inside a CSD file
where they apply to tags within. Regular expression replacement rules are getting expanded at the
time the tag name is read from file.
Together with the ability to redefine an assignment, the following scenario is possible: A CSD file
with site independent definitions can be read and expanded into a site specific set of definitions.
A CSD file with a few site specific definitions can then be used to refine this set of definitions to
take care of site specific peculiarities.
The replacement rules can also be used to customize a CSD file to specific systems. For example,
identical hardware can use a common CSD file.

 12

LIGO LIGO-T1300958-v3

Replacement rules at the command line are specified using a sed style notation. It has the format
/expression/replacement/flags. Expression is the regular expression search string, whereas
replacement is the string to replace it with. The flags are used to indicate a global search (letter
‘g’), a case-insensitive search (letter ‘i’), and non-tag search (letter ‘a’). The default is case-
insensitive, tag names only, and only the first occurrence of expression is replaced. For example,
the command line string ‘-rl /IFO/H1/g’ will replace all occurrences if the string IFO with H1.

3.4.1 Rule Tag
A rule tag is used to define a regular expression replacement rule. A rule tag can be listed just
below a ControlStateDef container. In this case the rule is treated as a global rule which applies to
all subsequent containers. Rules are evaluated in reverse order of declaration. Meaning, the most
recently defined rule is applied first, and the rule which was defined first is applied last.
A rule can be defined inside a Table. In this case it is local rule which only applies to the current
table. A rule defined inside a State is local to current state.
The regular expression syntax is the one from C++11 using the ECMAScript format.
Attribute Name: Contains the rule name. This is an optional argument. If a rule has a name, it can
be reset or redefined. Only global rules can be named. All named rules are in global scope.
Attribute Flag: Contains flags for the regular expression evaluation. By default only the first
occurrence is replaced, and the search is case-sensitive. The flag ‘g’ can be used to specify that the
replacement rule needs to be applied to all occurrences which match the expression, and the flag ‘i’
can be used to specify a case-insensitive regular expression. By default rules are only applied to
tag or channel names. By specifying the flag ‘a’ it can also be applied to include file names and
conditions. By using a capital ‘o’ one can apply the rule to include file names and conditions only.
A rule typically contains one expression tag and one replacement tag. A named rule can also be
empty. In this case it reset the previously defined named rule.

3.4.1.1 Expression Tag
The expression tag is used to capture a regular expression. It has no attributes. The CDATA
construct can be used to avoid escaping the ampersand sign, the single quote, the double quote,
the less than and the greater than.
Anything between an opening “<![CDATA[“ and closing “]]>” will not be interpreted by the XML
parser. (The double quotes are not part of the string.)

3.4.1.2 Replacement Tag
The replacement tag is used to capture the replacement string. It has no attributes. The string is
used to replace each match. This may include a format specification and escape sequences that are
replaced by the characters they represent. The CDATA construct is allowed for replacement tags.

 13

LIGO LIGO-T1300958-v3

3.4.2 Include Tag
This xml tag is used to reference an external CSD file which will be parsed as an additional input.
It has to be defined within a ControlStateDef container, but not within a Table or Rule.
Attribute Name: Contains the file name. Replacement rules are evaluated for file names if they
are not restricted to tags. This can be used to hand down a directory path. If a relative path is used,
it is relative to the one of the current file.
Attribute Abort: Contains an error string. Aborts parsing with an error message, if include file is
not found. Prints out a warning by default. If the Abort is set to “-“, only a notice is printed.
The currently active set of global replacement rules will be passed down. The control state
definitions as well as the global replacement rules found in the new file will be added to the current
set. Includes can be nested but not more than 20 levels deep.

3.4.3 If, Else and ElseIf Tag
The If tag is used to instruct the parser to include the text within the container, if the specified
condition is met. Otherwsie, it is ignored. The ElseIf tag must follow an If or ElseIf tag and
continues the condition with another if as part of the else clause. The Else tag must follow an If or
ElseIf tag and closes the condition with the else clause. The condition tags can be used anywhere
below the ControlStateDef tag as long as it includes an xml tag. They can be nested too.
The If and ElseIf tag use name and match attributes. The Else tag does not.
Attribute Name: Contains a name which is compared against a match. Replacement rules are
evaluated on names.
Attribute Match: Contains a match string. It can be a regular expression. Replacement rules are
not evaluated on match strings.
Attribute Abort: Contains an error string. If the condition evaluates to true, the error message is
displayed and the parsing process is aborted. Replacement rules are evaluated on error messages.
With the name set to the site location using a variable, say “$(IFO)”, and with the match set to
“[H|L]1”, a replacement rule for “$(IFO)” can be used to select both H1 and L1 state definitions.

 14

LIGO LIGO-T1300958-v3

3.5 Tag Listing
Tag listings are the output of the xml parser. The parser will read the provided control state
definition files, apply the replacement rules, decide which parts to include, and generate a listing
ordered by tags (or channels). This tag is then used to enforce the state definition on a tag by tag
basis. It is possible to output this list in xml format. If there is a problem with the state definition
file, generating the tag list is a good diagnostics tool. Error and warning messages are printed in
the process and the final product can be examined directly to resolve more subtle issues. At the
moment tag lists are output only.
Do not mix up an xml tag with a channel or control tag! The first is an identifier in the xml file,
whereas the latter is a control channel.

3.5.1 Channel Tag
This is an xml tag with the name ‘Tag’. It describes a controls tag or channel. A tag or channel
container contains an optional list of dependents and collection of control tags.
Attribute Name: Contains the channel or tag name.
Attribute Type: Contains the type of the channel or tag. The type can be “single”, “mask” or
“unknown”. The type “single” describes a channel with a single controls tag. The type “mask”
describes an integer tag or channel which contains one or more control tags, each one with a
different bit mask. The type “unknown” denotes an invalid channel.

3.5.2 Dependent Tag
This xml tag describes a link to a dependent channel or tag. A dependent tag needs to be re-
evaluated when the originating tag changes value.
Attribute Name: Name of dependent control tag.
Attribute Mask: Bit mask of dependent control tag.
Name and mask uniquely identify a control tag. The mask can be omitted, when all bits are
effected.
Dependents are listed for each tag which requires a dependent controls to be updated on value
change. The two state and readback channels associated with the global state machine are listed as
dependents at the top level.

3.5.3 Control Tag
This xml tag is used to describe a single control. A control can be a constant value, the lookup
value or a table selection value.
Attribute Type: Contains the type of a control. The type can be “constant” for constant and
manual values, or “lookup” for the lookup values.
Attribute Mask: Contains the bit mask for controls that only look at a selection of bit in an integer
value.

 15

LIGO LIGO-T1300958-v3

3.5.4 Safe and Value Tags
Every control tag can contain a safe tag. Controls can also have a value tag. A safe tag describes a
value which will be applied when the state machine is in SafeOp. A value tag describes a default
which will be applied in Op mode, when no other value is defined. For control tags of type
“constant” a value tag of type “val” defines a constant value and effectively makes the value
unchangeable in Op mode, whereas a value tag of type “man” stays unrestricted.
Value tags are also used in lookup tables. In this case they must define a state attribute.
Attribute Type: Contains the type of the control. It can be “man” for a manual value or “val” for
an explicitly specified value.
Attribute State: Contains the state number for value tags within a lookup tag.
Attribute Ramp: Specifies the ramp time when the value is changed.

3.5.5 Lookup Tags
The xml lookup tags are used to implement a table lookup. They are listed below a control tag ot
type “lookup”. Each lookup control contains at least in lookup tag for a main table and optionally
a list of lookup tags for each sub table. Lookup tags list within themselves a list of value tags. One
value tag is required for each state which carries a settable value. If a state is undefined the default
value of the controls is used. Value tags for states can also be of type “sub”. In this case they do
not define a value but reference a sub-table instead.
Attribute Type: Contains the type of lookup. The type can be “main” for the main lookup table
and “sub” for all other lookup tables.
Attribute Name: Contains the tag or channel name which is used to determine the state.
Attribute Mask: Contains the bit mask for the above tag or channel name. A bit mask is applied
to the channel or tag value before the state is selected. Masked bits are removed from the channel
value and the more significant bits are shifted down to support a continuous set of state numbers.

3.6 Example
The following set of example files is a basic outline for the isc front-end targets. The intent is to
run the command

cdsinfo -ot -rl /%target%/h1iscex/o -i isc.xml -o isctags.xml

on the isc.xml file for each of the isc targets: asc, lsc, iscex and iscey.

 16

LIGO LIGO-T1300958-v3

isc.xml:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd">
 <Include Name="iscrules.xml" Abort="Need ISC rules file"/>
 <If Name="%loc%" Match="c">
 <If Name="%sys%" Match="lsc">
 <Include Name="%sys%.xml" Abort="Need LSC file"/>
 <Include Name="%ifo%%sys%.xml" Abort="-"/>
 </If>
 <ElseIf Name="%sys%" Match="asc">
 <Include Name="%sys%.xml" Abort="Need ASC file"/>
 <Include Name="%ifo%%sys%.xml" Abort="-"/>
 </ElseIf>
 </If>
 <ElseIf Name="%loc%" Match="[x|y]">
 <Include Name="iscend.xml" Abort="Need ISC file"/>
 <Include Name="%ifo%isce%loc%.xml" Abort="-"/>
 </ElseIf>
</ControlStateDef>

iscrules.xml:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd">
<!--Check valid target -->
 <If Name="%target%" Match="[h|l]1(?:lsc|asc|iscex|iscey)"/>
 <ElseIf Name="%target%" Match="%target%" Abort="Target specification missing"/>
 <Else Abort="Illegal target specification %target%"/>
<!-- Add Ifo as a prefix to channel names -->
 <Rule>
 <Expression><![CDATA[^[^:]+$]]></Expression>
 <If Name="%target%" Match="h1.*">
 <Replacement><![CDATA[H1:$&]]></Replacement>
 </If>
 <ElseIf Name="%target%" Match="l1.*">
 <Replacement><![CDATA[L1:$&]]></Replacement>

 17

LIGO LIGO-T1300958-v3

 </ElseIf>
 <Else>
 <Replacement><![CDATA[T1:$&]]></Replacement>
 </Else> </Rule>
<!-- Define %ifo% -->
 <Rule Flag="o">
 <Expression><![CDATA[%ifo%]]></Expression>
 <If Name="%target%" Match="h1.*">
 <Replacement><![CDATA[h1]]></Replacement>
 </If>
 <ElseIf Name="%target%" Match="l1.*">
 <Replacement><![CDATA[h1]]></Replacement>
 </ElseIf>
 <Else>
 <Replacement><![CDATA[t1]]></Replacement>
 </Else>
 </Rule>
<!-- Define %sys% -->
 <Rule Flag="o">
 <Expression><![CDATA[%sys%]]></Expression>
 <If Name="%target%" Match="[a-z]\dasc">
 <Replacement><![CDATA[asc]]></Replacement>
 </If>
 <ElseIf Name="%target%" Match="[a-z]\dlsc">
 <Replacement><![CDATA[lsc]]></Replacement>
 </ElseIf>
 <ElseIf Name="%target%" Match="[a-z]\discex">
 <Replacement><![CDATA[iscex]]></Replacement>
 </ElseIf>
 <ElseIf Name="%target%" Match="[a-z]\discey">
 <Replacement><![CDATA[iscey]]></Replacement>
 </ElseIf>
 <Else>
 <Replacement><![CDATA[]]></Replacement>
 </Else>
 </Rule>
<!-- Define %end% -->
<!-- Replace -END_ in channel names with -X_ or -Y_ -->
 <If Name="%target%" Match="[a-z]\discex">
 <Rule Flag="o">
 <Expression>%end%</Expression>
 <Replacement>x</Replacement>
 </Rule>
 <Rule>

 18

LIGO LIGO-T1300958-v3

 <Expression>-END_</Expression>
 <Replacement>-X_</Replacement>
 </Rule>
 </If>
 <ElseIf Name="%target%" Match="[a-z]\discey">
 <Rule Flag="o">
 <Expression>%end%</Expression>
 <Replacement>y</Replacement>
 </Rule>
 <Rule>
 <Expression>-END_</Expression>
 <Replacement>-Y_</Replacement>
 </Rule>
 </ElseIf>
 <Else>
 <Rule Flag="o">
 <Expression>%end%</Expression>
 <Replacement></Replacement>
 </Rule>
 </Else>
<!-- Define %loc% -->
 <Rule Flag="o">
 <Expression>
 <![CDATA[%loc%]]>
 </Expression>
 <If Name="%target%" Match="[a-z]\discex">
 <Replacement><![CDATA[x]]></Replacement>
 </If>
 <ElseIf Name="%target%" Match="[a-z]\discey">
 <Replacement><![CDATA[y]]></Replacement>
 </ElseIf>
 <ElseIf Name="%target%" Match="[a-z]\d(asc|lsc)">
 <Replacement><![CDATA[c]]></Replacement>
 </ElseIf>
 <Else>
 <Replacement><![CDATA[]]></Replacement>
 </Else>
 </Rule>
</ControlStateDef>

 19

LIGO LIGO-T1300958-v3

iscend.xml:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public csdef.xsd">
 <Assign Name="ALS-END_WFS_A _RF_I1_GAIN">6</Assign>
 <Assign Name="ALS-END_WFS_A _RF_I2_GAIN">6</Assign>
 …
</ControlStateDef>

isctags.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!--This is a configuration file of the LIGO project!-->
<ControlStateDef xmlns="https://dcc.ligo.org/LIGO-T1300958/public"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://dcc.ligo.org/LIGO-T1300958/public cstag.xsd">
 <Tag Name="H1:ALS-X_WFS_A_RF_I1_GAIN" Type="single">
 <Control Type="constant">
 <Safe Type="val">0B110</Safe>
 <Value Type="val">0B110</Value>
 </Control>
 </Tag>
 <Tag Name="H1:ALS-X_WFS_A_RF_I2_GAIN" Type="single">
 <Control Type="constant">
 <Safe Type="val">6</Safe>
 <Value Type="val">6</Value>
 </Control>
 </Tag>
 …
</ControlStateDef>

 20

LIGO LIGO-T1300958-v3

3.7 Redefinition Rules
The following rules apply when parsing one or more control state definition files:

• Multiple ControlStateDef tags can be defined within a single file, or in multiple files.

• If multiple ControlStateDef tags are defined within a file, they should have a different
target. If the same target name is used, the tables, states and assignments of the later
definition will be added to the first.

• Generally, it is expected that each table definition has a unique name. If a later table has
the same name, its states and assignments are added to the first table. It is treated as a
simple reiteration.

• If a table is redefined within the same ControlStateDef tag, it should have the same type
and location. If not, the later definition overwrites the previous one.

• If a table is redefined across multiple ControlStateDef tags, their location needs to be
identical.

• If a table is redefined with a different type, the later definitions are ignored.

• Two state definitions are considered identical, if they are associated with the same table
and if they have the same number. If a state is redefined with a different name, the later
name is ignored.

• An assignment defines a tag. Two tags are considered identical, if there name and mask
are the same. Tags are unique, if they either have different names, or if they have non-
overlapping bit masks and identical names.

• Tags which are neither identical nor unique have the same name and overlapping bit masks.
They are a mistake and result in undefined behavior.

• Tags are generally reiterated in different states of the same table. This results in different
values depending on the state of system. A tag can also be reiterated in a different table, if
the first table is of type “main” and the others are of type “sub”.

• If a tag is redefined within the same table and state, the later definition overwrites the
previous one.

• A tag which is defined in a table of type “sub”, but is never defined in a table of type “main”
is lost and will be ignored.

• However, it is a mistake to redefine a tag across different tables of type “main”. Or, to
redefine a tag in a table when it has already be defined as a global constant. When
conflicting tag definitions are present, all but one of the definitions will be ignored.

Generally, redefining a table or a state should be avoided. In a some cases, it may make sense to
have a global control state definition file and keep site specific variations contained in separate
files. Within the same file, it almost never makes sense to redefine a table or a state. Overwriting
a previous tag has similar implications. Good practice is to keep the definitions of tables, states
and tags within the same group to avoid confusion.

 21

LIGO LIGO-T1300958-v3

4 Command Line Parser
The program csdinfo can be used to parse a control state definition file. It can generate a new
control state definition file with all rules applied and the include files and conditionals taken into
account. The resulting control state definition file does not contain rules, include files and
conditionals, but represents the final configuration which will be used to deduce the constraints on
the control channels.
The output can also be in the tag list format. This format listed the configuration and constraints
for each individual control channel or tag. This is the configuration which is used to enforce the
configuration and constraints on each listed control channel or tag.
The command line arguments are as follows:

Usage: csdinfo [opt] -i 'csdfile' -o 'outfile'
 Displays information about a control state definition file.
 -w# warning level (from 0 to 4, default is 2)
 -rl '/regex/replacement/flg' replacement rule
 -rf 'rfile' file with regular expression replacement rules
 -bzz tags will be added as zero constants and zero SafeOp values
 use m for manual, rules are applied, must precede -bf argument
 -bf 'infile' read an ASCII file for generating a tag list
 -ot output a tag listing
 -i 'infile' input file name (stdin when omitted, empty for -)
 -o 'outfile' output file name (stdout when omitted)

Error messages are printed to the standard error output. With a warning level of 0, no messages
are displayed. A level of 1 indicates error messages only, level 2 includes warnings, level 3
includes notices, and level 4 is very verbose.
The –rl argument lets the user define a rule at the command line using sed style syntax. The –rf
argument lets the user specify a CSDef file with a set of rules. Rules are read in the order they are
defined. Rules defined at the command line act as global rules when parsing a CSDef file.
The –bf argument specified an ASCII file with one tag name per line. Empty lines, lines which
start with a # and lines which start with “RO “ are ignored. Rules are applied to the tags as they
are read. Multiple –bf arguments are possible. Tags which are defined in one of these ASCII files
and are not defined in the CSDef input file, will be added as constants to the output file. Using a
burt request file one can make sure no channel has been left out. The –bzz, -bmz, -bmm and –bzm
flags determine, if the added channels are treated as constant zeroes or manual valuesin Op and
SafeOp modes.
The –ot flag specifies that the output files is a tag list rather than a CSDef file.
The –i argument is used to specify an input filename. If none is specified, the standard input is
taken. If – is specified as the filename, an empty CSDef file is read. The –o argument is used to
specify the output filename. If none is specified, the standard output is used.

 22

LIGO LIGO-T1300958-v3

5 GUI for Editing the Configuration File
• The GUI provides an easily clickable graphical interface for setting the filter modules.

(Using “ezcaswitch” logic - not “ezcawrite” logic)

• The GUI provides a formatted matrix interface of system matrices

• The GUI provides a bitmap interface of configuring binary control channel.

• For all other channels the GUI allows entering the value.

• “Manual” or “sub-state” mode has to be setable on a “per bit”, “per FMx block”, “per
ON/OFF switch” or “per value” basis.

• In addition to basic edit functions, the GUI allows copying existing states.

6 Other Remarks
• On compilation the front-end code provides the list of channels and updates the existing

configuration file.

• On compilation new, previously non-existing channels will be we set to a value 0 (off or
disabled). In particular, active user action in the GUI will be need to define a channel as
“manual”.

• Upon restart the front-end code will load the initialization values and default to the
“default” state.

• Same infrastructure for Front-end and Beckhoff: Beckhoff-EPICS interface will be
upgraded to be able to parse the same format of state files for Beckhoff's EPICS channels.

 23

	1 Introduction
	2 Front-end Operation
	2.1 Operational Mode
	2.2 Global State Machine

	3 Control File Format
	3.1 General Remarks
	3.2 Example
	3.3 XML Representation
	3.3.1 CDATA Tag
	3.3.2 Header
	3.3.3 ControlStateDef Tag
	3.3.4 Table Tag
	3.3.5 Table Initialization
	3.3.6 Global State Machine
	3.3.7 State Tag
	3.3.8 Assign Tag

	3.4 Conditional Definitions and Replacement Rules
	3.4.1 Rule Tag
	3.4.1.1 Expression Tag
	3.4.1.2 Replacement Tag

	3.4.2 Include Tag
	3.4.3 If, Else and ElseIf Tag

	3.5 Tag Listing
	3.5.1 Channel Tag
	3.5.2 Dependent Tag
	3.5.3 Control Tag
	3.5.4 Safe and Value Tags
	3.5.5 Lookup Tags

	3.6 Example
	3.7 Redefinition Rules

	4 Command Line Parser
	5 GUI for Editing the Configuration File
	6 Other Remarks

