
On the feasibility of constraining the neutron star equation of state using advanced
gravitational-wave detectors

Leslie Wade1, Jolien D. E. Creighton1, Evan Ochsner1, Benjamin D.
Lackey2, Benjamin F. Farr3, Tyson B. Littenberg3, and Vivien Raymond4

1Department of Physics, University of Wisconsin - Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
2Department of Physics, Princeton University, Princeton, NJ 08544, USA

3Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
& Dept. of Physics and Astronomy, 2145 Sheridan Rd, Evanston, IL 60208 and

4LIGO - California Institute of Technology, Pasadena, CA 91125, USA

Advanced ground-based gravitational-wave detectors have the capability of measuring tidal in-
fluences in binary neutron star systems. In this work, we report on the statistical uncertainties in
measuring tidal deformability by using a full Bayesian parameter estimation implementation. We
show how simultaneous measurements of chirp mass and tidal deformability can be used to con-
strain the neutron star equation of state. We also study the effect of systematic and statistical error
on these measurements. We notably find that systematic error between post-Newtonian waveform
families can significantly bias the estimation of tidal parameters, thus motivating the development
of waveform models that are more reliable at high frequencies.

I. BACKGROUND AND MOTIVATION

Advanced interferometric gravitational-wave (GW) de-
tectors currently under construction are expected to be-
gin operating in the next few years. Advanced LIGO
is expected to achieve its design sensitivity c. 2019 [1],
at which time the detection rate of binary neutron star
(BNS) events will most likely be ∼ 40 yr−1 (though this
value is quite uncertain) [2].

When a compact binary coalescence (CBC) signal is
detected [3, 4], the corresponding interferometer data
stream segment is sent through a parameter estimation
pipeline to determine the source parameters of the sys-
tem. Some of these source parameters include the bi-
nary component masses and spins, the sky location, dis-
tance, and orientation of the system. Bayesian infer-
ence is used to explore the probability distribution of the
CBC’s source parameters by comparing model waveform
templates, whose form depends on these source param-
eters, to the data stream segment containing the GW.
For this work, we use lalinference_mcmc, which is in-
cluded in the LALInference LSC Algorithm Library [5],
as our parameter estimation pipeline. It is a Markov
Chain Monte Carlo (MCMC) sampler designed to effi-
ciently explore the full waveform parameter space in or-
der to make reliable and meaningful statements about
CBC source parameters [6–8].

This paper’s focus is on measuring the effect of tidal
influence on BNS GW signals with advanced detectors.
Neutron stars (NSs) in merging CBC systems will be
tidally deformed by the gravitational gradient of their
companion across their finite diameter. This effect is in-
significant at large separations but becomes increasingly
significant as the NSs near [9]. The internal structure
of a NS, which is characterized by its equation of state
(EOS), determines how much each star will deform. The
amount that a NS deforms will affect the orbital decay
rate, which is encoded in the observed gravitational wave-

form. Therefore, if a gravitational signal from a BNS
system is detected, then such a detection could provide
insight into the NS EOS [9–11].

In order to make meaningful statements regarding the
recoverability of tidal parameters from BNS signals, it is
important to understand the effects of error on param-
eter estimation. One such obstacle to measuring tidal
influence is accurate waveform modeling. The error re-
sulting from inaccurate waveform models is a kind of sys-
tematic error. Some of the most commonly used CBC
waveforms rely on a post-Newtonian (pN) expansion in
orbital speed. As the CBC inspirals, the orbital speed
of the binary components increases leading to a higher
frequency signal. These waveform families are thus unre-
liable at high frequencies at which orbital speeds become
large [12], and also where tidal effects emerge. Another
difficulty in measuring tidal influence results from fluc-
tuations in detector noise. This type of error is called
statistical error. Tidal influences only noticeably affect
the final high frequency orbits of the binary where the
detector noise (in strain units) is comparatively large.
Extracting such a small influence occurring in the high
frequency band is an investigation at the very brink of our
detectors’ sensitivity. Even small fluctuations in detec-
tor noise might be able to dramatically affect the recovery
of tidal deformability. Understanding the magnitude of
these two sources of error is the core motivator of this
work.

Several studies have used the Fisher Information Ma-
trix (FM), which is only valid in the large signal-to-noise
ratio (SNR) limit, to estimate the measurability of tidal
effects on the CBC gravitational waveform [9–11, 13–16].
Flanagan and Hinderer were among the first to show that
advanced detectors can constrain the tidal influence of
NSs on the early inspiral portion of the CBC waveform.
They notably use pN waveforms truncated at 400 Hz to
remove the unreliable high-frequency portion of the pN
model [9]. Hinderer et al. later investigated how well con-
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straints on the tidal deformability from the early inspiral
can discriminate between several theoretical relativistic
NS EOSs [10]. Also using pN waveforms, they find that
advanced detectors will likely only be able to probe stiff
EOSs.

Additional FM studies moved away from the use of
pN waveforms in favor of waveforms that are more re-
liable at high frequencies. Read et al. probed the late
inspiral portion of the CBC waveform with numerical rel-
ativity (NR) simulations, which are accurate during the
late inspiral and merger epochs [13]. They find that the
additional high frequency information results in greater
measurement accuracy of the tidal deformability. For a
1.35 M�:1.35 M� BNS system at an effective distance
of 100 Mpc, the 1σ (68%) measurement uncertainty of
σΛ̃ ∼ 100, where Λ̃ is the tidal deformability parameter
introduced in Section II B. For comparison, this amounts
to measuring the radius of the NS to ∼ 10%. Damour,
Nagar, and Villain also probed beyond the early inspiral
with tidally corrected effective-one-body (EOB) wave-
forms, which they claim to be accurate up to merger.
They show that advanced detectors should in fact be able
to constrain the NS EOS for reasonably loud signals [15].

While the above mentioned studies are very progressive
and informative, the FM is not always trustworthy in es-
timating the measurability of source parameters [17–20].
Though it is known that FM estimates are only accurate
for loud signals, recent investigations have highlighted
additional shortcomings of FM estimates when compared
to real GW parameter estimation pipelines [18]. It is now
clear that there is no substitute for full Bayesian results
when making definitive statements regarding parameter
estimation.

Del Pozzo et al. recently performed Bayesian simu-
lations of BNS systems with tidally corrected pN wave-
forms. They find that advanced detectors will be able to
measure tidal effects on GW signals and constrain the NS
EOS by combining information from many BNS sources
[21]. While this result is very important, their analysis
assumes that true BNS signals have the exact same form
as their model. Although the authors acknowledge this
limitation, it is necessary to study how much their result
depends on this assumption.

Recently, there have been several FM investigations
that have studied the effects of systematic error on the
measurability of tidal parameters [13, 14, 22, 23]. In par-
ticular, Yagi and Yunes in [22] and Favata in [23] both
find that current PN waveforms, which are known only
up to 3.5PN order [12], cannot be used to make accu-
rate measurements of tidal effects. This is an extremely
important result that motivates a full Bayesian inves-
tigation into the effect of systematic error from tidally
corrected PN waveforms on parameter estimation.

In this work, we use a full Bayesian framework to
demonstrate the ability of advanced detectors to con-
strain the NS EOS by measuring the effects of tidal influ-
ence on BNS signals. We estimate the anticipated mea-
surement uncertainty associated with using the advanced

LIGO/Virgo network to recover tidal influence in BNS
systems. We find that systematic error significantly bi-
ases the recovery of tidal parameters. Additionally, we
find that statistical error can on occasion considerably re-
duce the measurability of tidal parameters. We consider
only BNS systems.

This work is organized as follows. In Section II we re-
view how tidal influences affect the CBC waveform. In
Section III we briefly outline the parameter estimation
pipeline used in this analysis and present estimates of
the measurement uncertainties of using advanced detec-
tors in the recovery of tidal influences in BNS systems.
In Section IV we explain how simultaneous mass-like and
radius-like measurements, specifically the measurement
of chirp mass and tidal deformability, can help constrain
the NS EOS. In Section V we describe the two main
sources of error in parameter estimation, and how much
each source of error affects the recovery of tidal param-
eters. We finish with a summary of our main results
in Section VI. We also refer the interested reader to
Appendix A where we derive how the tidal corrections
appear in several pN waveform families.

II. TIDAL CORRECTIONS TO CBC PN
WAVEFORM FAMILIES

In this section, we review the effects of tidal influences
on the CBC waveform. For a more complete discussion,
refer to Appendix A, which outlines how tidal effects ap-
pear in the following pN waveform families: Taylor T1,
Taylor T2, Taylor T3, Taylor T4, and Taylor F2. For
more details regarding each of these waveform families,
see [12] and references therein.

A. Constructing tidally corrected pN waveforms

To model the CBC waveform, it is customary to ap-
proximate each massive body as having infinitesimal size.
As the two point-particles orbit, they emit GWs that
carry energy away from the system. This causes their
separation to decrease while their orbital frequency in-
creases. The strength of the signal will also increase with
increasing frequency, giving the CBC signal a characteris-
tic ‘chirping’ property. The energy and flux of the point-
particle system (Epp and Ėpp respectively) are currently
known to 3.5 post-Newtonian (pN) order [12].

If the two compact objects are NSs, each will start to
deform under the tidal field of the other as their separa-
tion decreases. The deformation of each body will have
an effect on the rate at which the bodies coalesce. BNS
systems therefore depart from the point-particle approxi-
mation at high frequencies and require an additional cor-
rection to the energy and flux of the system relative to
the point-particle terms.

Since a NS in a binary system will deform under the
tidal influence of its companion, its quadrupole moment
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Qij must be related to the tidal field Eij caused by its
companion. For a single NS, to leading order,

Qij = −λEij , (1)

where λ = (2/3)k2R
5 parameterizes the amount that a

NS deforms [9]. The i and j are spatial tensor indices,
k2 is the second Love number, and R is the NS’s radius.
Since λ parameterizes the severity of a NS’s deformation
under a given tidal field, it must depend on the NS EOS.
NSs with large radii will more easily be deformed by the
external tidal field because there will be a more extreme
gravitational gradient over their diameter. For a fixed
mass, NSs with large radii are also referred to as having
a hard EOS, and, for the same mass, NSs with small radii
have a soft EOS. Therefore, NSs that have large values of

λ will have large radii, a hard EOS, and become severely
deformed in BNS systems; on the other hand, NSs that
have small values of λ will have small radii, a soft EOS,
and will be less severely deformed in these systems.

Tidal effects are most important at small separations
and therefore at high frequencies in BNS systems. Tidal
corrections to the energy δEtidal and tidal corrections to
the flux δĖtidal add linearly to the point-particle energy
Epp and flux Ėpp. Though the leading order tidal correc-
tion is a Newtonian effect, it is often referred to as a 5pN
correction because it appears at 5pN order relative to the
point-particle terms. In this work, we keep the leading
order (5pN) and next-to-leading order (6pN) corrections
to the energy and flux [24]:

δEtidal = −1
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]
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The total mass M = m1 + m2, where m1 and m2 are
the component masses, η = m1m2/M

2 is the symme-
teric mass ratio, x = (πGMfgw/c

3)2/3 is the PN expan-
sion parameter, fgw = 2forb is the GW frequency, forb

is the binary’s orbital frequency, and χ1 = m1/M and
χ2 = m2/M are the two mass fractions. Note that the pN
order is labelled by the exponent on x inside the square
brackets, which is why these terms are referred to as 5pN
and 6pN corrections. Since the 5pN and 6pN tidal cor-
rection coefficients multiply x5 and x6 respectively, these
effects will be insignificant at low frequencies and increas-
ingly more significant at higher frequencies (x ∼ f2/3

orb ), as
anticipated. Appendix A derives each tidally corrected
pN waveform family from Equations 2 and 3.

The point-particle energy and flux are only known to
3.5pN order [12]. However, we add tidal corrections to
the energy and flux that appear at 5pN and 6pN orders
without knowing the higher order point-particle terms.
The justification for including the tidal corrections has
typically been that they are always associated with the
large coefficient λn/(GM)5 ∼ [c2Rn/(GM)]5 ∼ 105 [24].

Therefore, although they appear at high pN orders, the
effect of the tidal terms on the binary’s orbit are compa-
rable to the effects of the 3pN and 3.5pN point-particle
terms. However, we show in Section V A that not know-
ing the higher order pN point-particle terms leads to sig-
nificant systematic error when recovering tidal parame-
ters. Yagi and Yunes in [22] and Favata in in [23] also
discuss the importance of these unknown point-particle
terms.

B. Reparameterization of tidal parameters

It becomes convenient to reparameterize the tidal pa-
rameters (λ1, λ2) in terms of purely dimensionless pa-
rameters, which we call (Λ̃, δΛ̃) [23]. Inspired by the λ̃
from [9], Λ̃ = 32c10λ̃/(GM)5 is essentially the entire 5pN
tidal correction in all of the pN waveform families, while
the 6pN tidal correction is a linear combination of Λ̃ and
δΛ̃. For example, the tidal corrections to the Taylor F2
phase later derived in Equation A29 of Appendix A can
equivalently be expressed as follows:

δψtidal =
3

128ηx2.5
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where
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The dimensionless parameters λ̂1 = c10λ1/(Gm1)5 and
λ̂2 = c10λ2/(Gm2)5, and we have assumed that m1 >
m2. Though we choose to express Equations 5 and 6 in
terms of dimensionless parameters, they can be equiva-
lently expressed more compactly in terms of dimensionful
parameters. The parameters (Λ̃, δΛ̃) were chosen such
that they have the following convenient properties:

Λ̃(η = 1/4, λ̂1 = λ̂2 = λ̂) = λ̂ (7)

δΛ̃(η = 1/4, λ̂1 = λ̂2 = λ̂) = 0. (8)

Setting η = 1/4 implies that m1 = m2. Since all NSs
have the same EOS, NSs with the same mass will also
have the same value for λ̂. We have over-specified Equa-
tions 7 and 8 for clarity. We refer to Λ̃ as the tidal de-
formability of a BNS system throughout this work. For
more details regarding this reparameterization, see [23].

III. MEASURABILITY OF TIDAL INFLUENCE

In this work, we use lalinference_mcmc to run full
Bayesian simulations for our parameter estimation in-
vestigation into the measurability of tidal deformability.
lalinference_mcmc uses an MCMC sampling algorithm
to calculate the posterior probability density function
(PDF) of a detected CBC signal. The algorithm is de-
signed to efficiently explore a multi-dimensional param-
eter space in such a way that the density of parameter
samples is a good approximation to the underlying pos-
terior distribution. In this section, we briefly outline the
algorithm used by lalinference_mcmc. For a more com-
prehensive, we refer the reader to the following sources
[6–8].

A. MCMC overview

A true GW signal will be buried in detector noise. As-
suming a detection pipeline has found a data stream seg-
ment containing a GW signal, the segment d(t) will have
the following form in the time-domain:

d(t) = h(t) + n(t). (9)

The detector noise is denoted n(t) while the pure GW sig-
nal is denoted h(t). Since no GWs have yet been detected
by ground-based interferometers, our studies require sim-
ulated signals. It is therefore customary to inject a mod-
eled signal with chosen parameters into synthetic noise.

To determine the physical properties of a CBC system,
we seek to map out the functional form of the posterior
probability distribution (posterior for short) of its param-

eters. Bayes’s theorem relates the posterior p(~θ|d,m) for
a set of parameters ~θ given a model m and data stream
segment d(t) to the prior probability distribution (prior
for short) and the likelihood:

p(~θ|d,m) =
p(~θ|m)p(d|~θ,m)

p(d|m)
(10)

∝ p(~θ|m)L(d|~θ,m). (11)

The posterior is the probability that the GW source mod-
eled by m that produced the data stream segment d(t)
has the physical properties ~θ. The prior p(~θ|m) is the
a priori probability that the system modeled by m has
the physical properties ~θ. The prior reflects everything
that we know about the physical properties of any CBC
system before attempting to determine the parameters
of a specific source. The evidence p(d|m) is the probabil-
ity of observing the data stream segment d(t) with the
model m. The evidence is a normalization factor that
can be used to compare how well different models would
produce the data. The likelihood L(d|~θ,m) = p(d|~θ,m)
is the probability of observing the data stream segment
d(t) assuming the system that produced it is modeled
by m and has the physical properties ~θ. The likelihood
is a measure of how well the model m with parameters
~θ matches the data stream segment d(t). Assuming the
noise is stationary and Gaussian, the functional form of
the likelihood when using a single detector is [25]

Ldet(d|~θ,m) ∝ exp

−2
∫ ∞

0

∣∣∣d̃det(f)− m̃(f, ~θ)
∣∣∣2

Sdet(f)
df

 .
(12)

Sdet(f) is the one-sided noise power spectral density
(PSD), d̃det(f) is the detector data stream segment,
m̃(f, ~θ) is a model for the waveform, and a tilde indicates
that a function has been transformed into the frequency
domain. When using a network of GW detectors, the
posterior probability becomes

p(~θ|d,m) ∝ p(~θ|m)
∏
det

Ldet(d|~θ,m). (13)

Our parameter estimation pipeline draws samples from
the underlying posterior distribution p(~θ|d,m). More
samples are drawn from regions in the parameter space
that have high probability, and less samples are drawn
from regions with low probability. The samples can
be binned to produce histograms for the full multi-
dimensional posterior distribution. Histograms of fewer
dimensions are produced by marginalizing the posterior
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over parameters that are not of interest. For example, a
1-dimensional PDF for the tidal deformability Λ̃ is pro-
duced by integrating the posterior over all the other pa-
rameters:

p(Λ̃|d,m) =
∫
~θother

p(~θ|d,m)d~θother, (14)

where ~θother are all the parameters in the set ~θ except Λ̃.
Various aspects of this algorithm have been fine-

tuned to optimize speed and robustness. For instance,
lalinference_mcmc uses parallel tempering in its explo-
ration of the multi-dimensional parameter space of CBC
waveforms. This section is meant to merely provide an
adequate overview of the parameter estimation pipeline
used in this work. We refer the interested reader to the
following sources for more details [6–8].

B. Models, Parameters, and Priors

Equation 11 is used to calculate the posterior p(~θ|d,m),
which is the quantity of interest, from the prior p(~θ|m)
and likelihood L(d|~θ,m). It depends on a model m, the
model source parameters ~θ, and the prior distribution of
each parameter. The waveform models used in this work
are the following tidally corrected pN waveform families,
which we outline in Appendix A: TaylorT1, TaylorT2,
TaylorT3, TaylorT4, and TaylorF2. To focus on purely
EOS effects, we consider non-spinning BNS systems with
no amplitude corrections. (Parameter estimation can be
just as easily performed with spinning waveforms.) These
assumptions lead to the following 11-dimensional param-
eter space:

~θ = {Mc, q, Λ̃, δΛ̃, D, ι, α, δ, φref , tref , ψ}. (15)

These parameters are: the chirp mass Mc = η3/5M , the
mass ratio q = m2/m1 where m1 > m2, the distance to
the binary D, the angle between the line of sight and the
orbital axis ι, the right ascension and declination of the
binary α and δ, the GW’s polarization ψ, and the arbi-
trary reference phase and time φref and tref . It is known
that Λ̃ is comparatively more measurable than λ̂1 and λ̂2

[9, 10], which is why we choose to parameterize in terms
of Λ̃ and δΛ̃. We use a uniform prior distribution in com-
ponent masses between 1 M� < m1,2 < 30 M�, a uni-
form prior distribution in Λ̃ between 0 < Λ̃ < 3000, a uni-
form prior distribution in δΛ̃ between −500 < δΛ̃ < 500,
a uniform prior distribution in volume to D < 200 Mpc,
an isotropic prior distribution in sky location (α, δ) and
emission direction (φref , ι), a uniform prior distribution
in polarization angle ψ, and a uniform prior distribution
in tref over the data stream segment.

Since we are concerned only with measuring EOS ef-
fects on BNS signals, we fixed all the injected signals
to have the exact same sky position (α = 0.648522 and

δ = 0.5747465), orientation (ι = 0.7240786), and po-
larization (ψ = 2.228162) for comparison purposes. We
vary the strength of injected signals by adjusting D. We
also use a 3-detector advanced LIGO/Virgo network. We
use advanced PSDs with the zero-detuned high power
(ZDHP) configuration [26] for each detector. Injection
and template waveforms all have a low frequency cut-
off at flow = 30 Hz and end when the system reaches
fhigh = fISCO, where fISCO is the frequency of the bi-
nary when it reaches the inner-most stable circular orbit
(ISCO).

C. Measurability of Tidal Deformability

In order to simulate the parameter estimation of a GW
signal, one typically injects a model waveform into a data
stream segment consisting of simulated detector noise.
The strength of the injected signal relative to the detector
noise is characterized by the SNR. The SNR ρdet of an
injection into a single GW detector is

ρdet =

√
4
∫ ∞

0

|m̃(f, ~θ)|2
Sdet(f)

df, (16)

where m̃(f, ~θ) is the injected waveform model in the
frequency domain, ñdet(f) is the detector’s noise, and
Sdet(f) is the detector’s one-sided noise PSD. For a col-
lection of detectors, the network SNR ρnet is

ρnet =
√∑

det

ρ2
det. (17)

We report on the optimal measurability of tidal influ-
ences in BNS systems assuming a 3-detector LIGO/Virgo
network. We follow a similar procedure to the one used
in [27], which details the statistical uncertainties in the
mass parameters and sky location parameters of BNS
systems that are expected to be achieved with advanced
detectors. While one typically injects a signal into syn-
thetic noise, we sometimes choose not to add synthetic
noise to our injected signal, which essentially means that
we set n(t) = 0 in Equation 9. However, we still cal-
culate the likelihood and the network SNR by dividing
by the detector noise PSD. In this way, we incorporate
the overall effect of noise, which broadens the posterior,
without dealing with the statistical fluctuations of in-
dividual noise realizations. We refer to this procedure
as “injecting into zero-noise”. While this may seem like
an unrealistic approach, it is shown in [28] that the av-
erage posterior PDF, or the posterior distribution aver-
aged over noise realizations, is recovered by setting the
noise to zero. Therefore, we can get reliable estimates
for the mean measurement uncertainty of tidal param-
eters recovered from a signal injected into many differ-
ent noise realizations by simply injecting that signal into
zero-noise.
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In Figure 1, we present the 1D and 2D posterior PDFs
for Λ̃ and δΛ̃. The true BNS signal was injected with
ρnet = 32.4. We use tidally corrected Taylor F2 wave-
forms for the injected waveform as well as for the recov-
ery template waveforms. The injection has the following
properties: m1 = m2 = 1.35 M�, Λ̃ = 590.944, and
δΛ̃ = 0, which is consistent with the MPA1 EOS model1
[29]. We find that the injected value of Λ̃ is well recov-
ered. However, advanced detectors are not able to discern
δΛ̃ contributions to the waveform even at a network SNR
of 32.4.

In Table I we outline the measurement uncertainties
for the tidal deformability parameter Λ̃ for several equal
mass and unequal mass BNS systems. We compute the
1σ and 2σ measurement uncertainty interval by deter-
mining the smallest interval in Λ̃ that contains 68% and
95% of the total marginalized posterior probability. We
then report the lower and upper bound on this confidence
interval. The 1σ confidence interval for a 1.35 M�:1.35
M� BNS system consistent with the MPA1 EOS model is
[838.7,1194] for ρnet = 30. We find that the measurability
of the other parameters are not noticeably affected.

We additionally report the measurement uncertainty of
a 1.35 M�:1.35 M� BNS system using just a single detec-
tor with ρdet = 30. We find that the standard deviation
σΛ̃ = 129, where the injected Λ̃ = 607.3 is consistent
with H EOS model [13]. This result is consistent with
the FM estimate

σΛ̃ =
Λ̃H − Λ̃B

||hH − hB||
= 104 (18)

from [13] where Read et al. use full hybrid waveforms
with ρdet = 33.78.

IV. CONSTRAINING NS EOS

The NS EOS is an equation that describes the struc-
ture of all NSs in equilibrium by relating NS state
variables, such as pressure and density. Simultaneous
NS mass-radius measurements, or equivalently mass-λ
measurements, can highly constrain the NS EOS [30–
32]. While many accurate NS mass measurements have
been made, corresponding radius measurements are still
needed [33].

While λ̂1 ∼ R5/m5
1 and λ̂2 ∼ R5/m5

2 are poorly mea-
sured by advanced GW detectors due to their strong
correlation, the tidal deformability parameter Λ̃, which
is a linear combination of (λ̂1, λ̂2), is better measured.

1 We actually use the parameterized EOS presented in [29] that
matches the theoretical MPA1 EOS, as well as many other the-
oretical EOSs, to a few percent. This approximation is used
throughout this work for our convenience. Since the EOS is only
used to estimate injected Λ̃ values, our results will not be affected
by this approximation.

Ground-based interferometers are most adept at measur-
ing a system’s chirp mass Mc. In the same way that a
binary’s chirp mass is a mass-like parameter that con-
tains information about the mass of both components,
the fifth root of the tidal deformability parameter Λ̃1/5

can be thought of as a dimensionless radius-like param-
eter that contains information about the radius of both
components. While GW detectors may not be able to
simultaneously constrain the mass and radius of individ-
ual NS’s, we showed that they can simultaneously con-
strain the mass-like and radius-like parameters describing
the binary system as a whole. To further this analogy,
we chose to define a dimensionful radius-like parameter
Rc = 2GMcΛ̃1/5/c2, which we call the binary’s chirp
radius. Therefore, making a Mc–Rc measurement of a
CBC system is analogous to making a mass–radius mea-
surement of a single NS star. Note that the component
masses and radii are entangled in the former case and
are only determined in combination. The question then
becomes: “Does measuring the chirp mass and the chirp
radius as opposed to the individual mass and individual
radius contain enough information to constrain the NS
EOS?”

In Figure 2, we take a mass-radius plot with multiple
theoretical EOS curves [29] (upper left) and transform
it into a Mc–Rc plot with the same EOS curves, now
smeared out due to the extra degrees of freedom from
not specifying individual masses and radii (upper right).
The three horizontal, black lines are the 1σ confidence
regions of three recovered injections. Because chirp mass
is so well measured, these confidence regions appear to
be lines due to the aspect ratio of this plot. The three
bottom plots in Figure 2 are zoomed-in plots of each
recovered injection. From left to right, the important
parameters for each injection are: m1 = m2 = 1.50 M�
and Λ̃ = λ̂1 = λ̂2 = 318.786, m1 = m2 = 1.35 M� and
Λ̃ = λ̂1 = λ̂2 = 590.944, and m1 = m2 = 1.20 M� and
Λ̃ = λ̂1 = λ̂2 = 1135.63. The injections all correspond
to the EOS MPA1 [29] and have ρnet = 30. Figure 2
demonstrates that simultaneous Mc–Rc measurements
can indeed constrain the NS EOS. However, because cer-
tain regions of parameter space can be described by over-
lapping EOS curves, BNS observations with varying val-
ues for chirp mass will likely need to be observed before
tight constraints on the NS EOS can be made with this
approach.

Other studies in constraining the NS EOS with future
GW observations include work by Del Pozzo et al., in
which Bayesian simulations are used to incorporate infor-
mation from tens of detections to discriminate between
hard, moderate, and soft EOSs [21], and work by Lind-
blom and Indik which suggests that just two or three high
quality measurements of NS masses and tidal deforma-
bility can determine the NS EOS to just a few percent
[32].

While Del Pozzo et al. showed that tens of BNS sources
can constrain λ for a 1.4 M� NS, which can then be used
to constrain the NS EOS, it might even be possible to



7

0 1000 2000 3000
Λ̃

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
P

ro
b

ab
ili

ty
d

en
si

ty
m1 = 1.35 M�, m2 = 1.35 M�

−400 −200 0 200 400
δΛ̃

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

P
ro

b
ab

ili
ty

d
en

si
ty

m1 = 1.35 M�, m2 = 1.35 M�

0 1000 2000 3000
Λ̃

−400

−200

0

200

400

δΛ̃

m1 = 1.35 M�, m2 = 1.35 M�

0

4

8

12

16

20

24

28

FIG. 1: Marginalized 1D (left and middle) and 2D (right) posterior probability density functions for Λ̃ and δΛ̃ of a 1.35 M�:1.35 M�
BNS system with ρnet = 32.4. The shaded regions in the 1D PDFs enclose 2σ (95%) confidence regions. The injected values for Λ̃ and

δΛ̃ are consistent with the MPA1 EOS model [29] and are marked with straight dashed lines. These plots are PDFs smoothed with a

Gaussian kernel density estimator. For these results, we injected into zero-noise (see Section III C).

TABLE I: The 1σ (68%) and 2σ (95%) confidence intervals [min,max] for Λ̃. The BNS systems considered are labeled by their injected

masses and tidal deformability Λ̃. Both equal mass and unequal mass systems ranging from mmin = 1.20 M� to mmax = 2.10 M� are

considered. The injected values for Λ̃ are consistent with the MPA1 EOS model [29]. We report confidence intervals for systems with a

network SNR of both 20 and 30. For these results, we injected into zero-noise (see Section III C).

ρnet = 20 ρnet = 30
1σ 2σ 1σ 2σ

System min max min max min max min max

1.20 M�:1.20 M�, Λ̃ = 1135.63 553.8 1258 134.6 1700 838.7 1194 516.6 1359
1.35 M�:1.35 M�, Λ̃ = 590.944 251.3 690.2 60.73 963.0 382.0 636.7 182.3 750.8
1.50 M�:1.50 M�, Λ̃ = 318.786 113.2 398.9 22.94 576.8 162.1 357.4 63.88 447.7
1.65 M�:1.65 M�, Λ̃ = 175.963 54.46 250.2 9.576 377.2 63.53 213.9 14.03 290.8
1.80 M�:1.80 M�, Λ̃ = 98.1908 29.23 176.8 4.872 274.9 28.93 136.1 5.001 196.8
1.95 M�:1.95 M�, Λ̃ = 54.6697 20.06 132.5 3.510 214.4 16.63 96.11 2.621 148.2
2.10 M�:2.10 M�, Λ̃ = 29.8435 14.78 104.8 2.126 174.4 11.65 73.95 1.942 118.6
1.35 M�:1.20 M�, Λ̃ = 820.610 433.7 1018 102.7 1382 612.9 941.3 340.7 1095
1.35 M�:1.50 M�, Λ̃ = 435.585 200.0 574.9 44.39 814.5 282.5 518.0 125.5 626.1
1.35 M�:1.65 M�, Λ̃ = 328.177 196.1 570.5 45.45 834.6 221.3 495.9 85.49 619.1
1.35 M�:1.80 M�, Λ̃ = 252.398 155.1 593.1 33.02 907.0 155.9 433.5 45.51 598.6
1.35 M�:1.95 M�, Λ̃ = 197.899 119.0 546.9 21.51 922.6 107.3 348.2 24.65 489.1
1.35 M�:2.10 M�, Λ̃ = 157.974 90.67 445.4 15.78 819.9 79.27 296.8 16.17 424.9

constrain the full form of the NS EOS over all masses.
Read et al. have presented a parameterized EOS that
matches an extensive set of theoretical EOSs to a few
percent [29]. The four free parameters of this polytropic
fit can replace the tidal parameters in our MCMC simula-
tions. Since all NSs have the same EOS, the information
from multiple detections can be combined to put tighter
constraints on these EOS parameters. In this way, pa-
rameter estimation of multiple BNS sources can be used
to constrain the overall form of the NS EOS as opposed
to just a single point in mass-radius space. While this is
still work in preparation to be submitted for future publi-
cation, preliminary FM results by Lackey have been very
promising.

V. SOURCES OF ERROR

Sources of error in estimating the parameters of a CBC
system given its gravitational signal can be categorized
as statistical and/or systematic. Statistical error is due
to the presence of random detector noise. The kind of
systematic error that we are studying arises because our
template waveforms only approximate true signals. Sta-
tistical error is SNR-dependent, since it depends on the
relative strength of the signal to the detector noise, while
systematic error is SNR-independent, because our wave-
forms do not attempt to model noise. In this section,
we present the effects of both statistical error and sys-
tematic error on the ability of advanced ground-based
interferometers to measure tidal deformability.
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FIG. 2: Typical NS mass-radius plot for several theoretical EOS models [29] (top left). The Mc–Rc plot (top right), where Rc is defined

in Section IV, depicts the same EOSs as the mass-radius plot now smeared out due to the extra degrees of freedom from not specifying

individual masses and radii. NSs with masses less than 1 M� are not considered. The three horizontal, black lines are the 1σ (68%)

confidence regions of three recovered injections. The three bottom plots are zoomed-in to show these recovered injections more clearly.

The injected values forMc and Rc are consistent with the MPA1 EOS model and are marked with straight dashed lines. For these results,

we injected into zero-noise (see Section III C).

A. Systematic Error

The pN approximation to the energy and flux of a
CBC system is an expansion of the equations of motion
about small characteristic velocities, or small frequencies
(v ∼ f

1/3
gw ). Currently, the point-particle corrections to

the CBC energy and flux are known to 3.5pN order [12].
While pN waveforms match a true GW signal at small
frequencies, they are unreliable at high frequencies. Since
tidal influences become significant at high frequencies, it
is expected that the systematic error from having unreli-
able waveforms at high frequencies will bias the recovery
of tidal parameters. The question is: “By how much?”

We expect that the deviation of pN waveform families
away from the true CBC waveform will be comparable
to the amount that they deviate away from each other.
For this reason, we test systematic bias by injecting one
pN waveform family and recovering with another. In
this way, we can get an order of magnitude estimate of
the systematic bias that results from using waveforms
that are unreliable at high frequencies to estimate tidal
parameters whose effects arise at high frequencies.

In Figure 3, we present example 1D posterior PDFs for
Λ̃. We inject signals from each of the five pN waveform
families derived in Appendix A but only recover with
Taylor F2 templates. Since injected waveforms are only
generated once while template waveforms are generated
millions of times during an MCMC run, we only use Tay-
lor F2 templates, because they are generated much faster
than the other pN waveform families. The injected com-
ponent masses are labeled in each figure’s title, while the
injected value of Λ̃, which is consistent with the EOS la-
beled in the legend, is marked by a dashed, vertical line.
Each injection has a network SNR of 32.4 and was in-
jected into zero-noise in order to isolate systematic error
from statistical error. (Remember that the effects of noise
are not completely ignored by injecting into zero-noise.
An averaged PSD is still used to calculate likelihood and
network SNR.) While we only present three mass com-
binations and one EOS model in Figure 3, we also find
similar results when considering several other equal and
unequal mass combinations and EOS models.

We find that systematic error can be significant in each
of the mass combinations and EOSs considered. In par-
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FIG. 3: Marginalized 1D posterior probability density functions for Λ̃ of three BNS systems (labelled by the masses in the title) each with

ρnet = 32.4. The shaded regions in the 1D PDFs enclose 2σ (95%) confidence regions. The injected Λ̃ values are consistent with the MPA1

EOS model [29] and are marked with straight dashed lines. These plots are PDFs smoothed with a Gaussian kernel density estimator.

To generate a single plot, we inject BNS signals modeled by each of the five pN waveform families derived in Appendix A. Though the

waveform family for each signal is different, the injected waveform parameters are identical. The five PDFs, which are labelled by the

injected waveform family, are all recovered using Taylor F2 waveform templates. The deviation of each peak away from the injected value

is due to the systematic error in the pN waveform approximants. For these results, we injected into zero-noise (see Section III C).

ticular, the Taylor T4 waveform family has been found
to be remarkably similar to equal mass numerical rel-
ativity (NR) waveforms [34]. Therefore, for a typical
m1 = m2 = 1.35 M� BNS system with a moderate EOS,
say MPA1, systematic error will likely bias the maximum
likelihood recovery of Λ̃ by ∼ 50%.

It is also interesting to note that the Taylor T3 injected
waveforms are all recovered with little to no tidal contri-
bution with Taylor F2 templates. We suspect that this
is due to the peculiar termination conditions associated
with the Taylor T3 waveform family, which is outlined in
[12].

B. Statistical Error

Statistical error is due to random fluctuations in detec-
tor noise and can affect the recovery of tidal parameters.
In the previous sections, all signals have been injected
into zero-noise, which gives the posterior averaged over
noise realizations [28]. However, to get an understand-
ing of how much a particular instance of noise can bias
parameter recovery, we inject the same signal into ten dif-
ferent synthetic noise realizations (Figure 4). Here, both
the injected waveform model and the recovery waveform
model is Taylor F2. Each injection has ρnet = 32.4.

We find that the measurability of Λ̃ can vary dramat-
ically from one instance of noise to the next. A few out
of the ten PDFs plotted in Figure 4 have significantly
broadened peaks, and some even inherit strange multi-
modal behavior. Therefore, even though the true param-
eter value still lies within the 90% confidence interval
90% of the time (as expected [17]), statistical error occa-
sionally acts to significantly reduce the measurability of
Λ̃. Unfortunately some BNS detections may provide un-
informative tidal deformability estimates due to random
detector noise. Multiple detections will likely need to be

averaged together to overcome the effects of noise, which
was successfully shown in [21].

VI. CONCLUSION/DISCUSSION

In Section III C, we have shown with full Bayesian sim-
ulations that tidal deformability in BNS systems is mea-
surable with the Advanced LIGO/Virgo Network (see
Table I). This is in general agreement with FM stud-
ies [13] and compliments the Bayesian results shown in
[21]. For a canonical 1.35 M�:1.35 M� BNS system with
the moderate EOS MPA1 recovered using the advanced
LIGO/Virgo network, we find that the standard devia-
tion in Λ̃ will likely be roughly σΛ̃ = 225 for ρnet = 20
and σΛ̃ = 137 for ρnet = 30.

Both statistical error and systematic error have been
shown to significantly affect the measurement of tidal de-
formability. Statistical error, which can severely broaden
the peaks of the marginalized Λ̃ posteriors, is overcome
by combining information from multiple sources to av-
erage out the effects of noise. Stacking sources to over-
come statistical error requires many (∼ 20) BNS detec-
tions [21], instead of just two or three loud signals [32].
Both optimistic and realistic estimates for the BNS de-
tection rate predict that it will take less than a year after
reaching design sensitivity (∼ 2019) to constrain the NS
EOS with GW signals. However, according to pessimistic
estimates, this may take considerably longer [2]. System-
atic error, which can significantly bias the recovered pa-
rameters, is overcome by improving current waveforms.
Higher order point-particle terms would be required in
order to trust pN waveform families at frequencies suf-
ficiently high to recover tidal deformability. However
hybrid waveforms, which are pN waveforms at low fre-
quencies stitched to NR waveforms at high frequency, or
phenomenological waveforms, which are waveforms fitted



10

0 200 400 600 800 1000
Λ̃

0.000

0.001

0.002

0.003

0.004

0.005

0.006

P
ro

b
ab

ili
ty

d
en

si
ty

m1 = 1.50 M�, m2 = 1.50 M�

0 200 400 600 800 1000
Λ̃

0.000

0.001

0.002

0.003

0.004

0.005

P
ro

b
ab

ili
ty

d
en

si
ty

m1 = 1.35 M�, m2 = 1.35 M�

0 500 1000 1500 2000
Λ̃

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

P
ro

b
ab

ili
ty

d
en

si
ty

m1 = 1.20 M�, m2 = 1.20 M�

FIG. 4: Marginalized 1D posterior probability density functions for Λ̃ of three BNS systems (labelled by the masses in the title) each

with ρnet = 32.4. The shaded regions in the 1D PDFs enclose 2σ (95%) confidence regions. The injected Λ̃ values are consistent with

the MPA1 EOS model [29] and are marked with straight dashed lines. These plots are PDFs smoothed with a Gaussian kernel density

estimator. To generate a single plot, we inject the same BNS signal into ten different noise realizations. The deviation of each peak away

from the injected value is due to the statistical error from the presence of random detector noise.

to NR, will likely be required to reliably capture high
frequency effects, such as tidal deformability. We hope
that these results motivate the importance of prioritiz-
ing waveform development that incorporates NS matter
effects.
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Appendix A: Tidally corrected pN waveform
derivations

We now choose to adopt units where G = c = 1. The
equations that describe the CBC orbital phase evolution
are the following:

dφ

dt
=

v3

M
(A1)

dv

dt
=

dv

dE

dE

dt
=

Ė

E′
, (A2)

where φ is the binary’s orbital phase, t is time, the dot
represents a derivative with respect to t, and the prime
represents a derivative with respect to v. Integrating
Equations A1 and A2 give the alternate form:

t(v) = tref −
∫ vref

v

E′(u)
Ė(u)

du (A3)

φ(v) = φref −
∫ vref

v

ν3

M

E′(u)
Ė(u)

du, (A4)

where tref = t(vref), φref = φ(vref), and vref is an arbi-
trary reference velocity, following [12]. Solutions for φ(t)
and v(t) fully determine a non-spinning CBC waveform
with polarizations that go like

h+(t) ∝ v2 cos 2φ (A5)
h×(t) ∝ v2 sin 2φ. (A6)

Because there are several ways to solve for the or-
bital phase starting with the same energy and flux in-
puts, there are several different pN waveform families.
These pN families are equivalent up to unknown trunca-
tion terms at the next pN order. We briefly outline each
waveform family below and point out how tidal correc-
tions are incorporated in their derivation. See [12] for the
point-particle terms for each waveform family and details
regarding initial conditions.

1. Taylor T1

The Taylor T1 approximant is achieved by numerically
solving Equations A1 and A2 for φ(t) and v(t). Tidal
corrections enter through the energy derivative E′ and
the flux Ė:

E(v) = Epp + δEtidal (A7)
E′(v) = E′pp + δE′tidal (A8)

Ė(v) = Ėpp + δĖtidal, (A9)

where δEtidal and δĖtidal come from Equations 2 and 3
respectively.

2. Taylor T2

The Taylor T2 approximant is achieved by solving
Equations A3 and A4. First, the ratio E′/Ė is expanded
about v = 0 to consistent pN order, then the result is
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analytically integrated to find t(v) and φ(v). Tidal cor-
rections enter through the energy derivative E′ and the

flux Ė and appear at 5pN and 6pN order in t(v) and
φ(v):

δφtidal(v) = − 1
32ηx2.5

{(
72
χ1
− 66

)
λ1

M5
x5 +

[
−14975

56
− 2255

14
η +

(
15895

56
+

2595
14

η

)
1
χ1

(A10)

+
3985
28

χ1 −
965
7
χ2

1

]
λ1

M5
x6 + (1←→ 2)

}
(A11)

δttidal(v) = − 5M
256ηx4

{(
288
χ1
− 264

)
λ1

M5
x5 +

[
−2995

4
− 451η +

(
3179

4
+ 519η

)
1
χ1

(A12)

+
797
2
χ1 − 386χ2

1

]
λ1

M5
x6 + (1←→ 2)

}
. (A13)

Here, x = v2 = (πMfgw)2/3 is the PN expansion pa-
rameter. The tidal corrections add linearly to the point-
particle terms:

φ(v) = φpp(v) + δφtidal(v) (A14)
t(v) = tpp(v) + δttidal(v). (A15)

These parametric equations are then solved numerically
to obtain φ(t) and v(t).

3. Taylor T3

The Taylor T3 approximant starts by following the
Taylor T2 approach. After t(v) and φ(v) are found, the

following reparameterization is used:

θ(t) =
[
tref − t(v)

5M
η

]−1/8

. (A16)

Next, v(θ) is found to consistent pN order via reversion
of the power series. The characteristic velocity v(θ) can
then be used to find the 5pN and 6pN tidal corrections
to the phase φ(θ) = φ(v(θ)) as well as the 5pN and 6pN
tidal corrections to the GW frequency fgw = v3/(πM):

δφtidal(θ) = − 1
ηθ5

{(
9

128χ1
− 33

512

)
λ1

M5
θ10 +

[
− 130715

1376256
− 8745

114688
η +

(
23325
229376

+
4905
57344

η

)
1
χ1

(A17)

+
3985

114688
χ1 −

965
28672

χ2
1

]
λ1

M5
θ12 + (1←→ 2)

}
(A18)

δfgw,tidal(θ) =
θ3

8πM

{(
27

256χ1
− 99

1024

)
λ1

M5
θ10 +

[
− 8579

65536
− 1947

16384
η +

(
18453
131072

+
4329
32768

η

)
1
χ1

(A19)

+
2391
65536

χ1 −
579

16384
χ2

1

]
λ1

M5
θ12 + (1←→ 2)

}
. (A20)

The tidal corrections add linearly to the point-particle
terms:

φ(θ) = φpp(θ) + δφtidal(θ) (A21)
fgw(θ) = fgw,pp(θ) + δfgw,tidal(θ). (A22)

These equations are essentially the equations for φ(t) =
φ(θ(t)) and v(t) = [πMfgw(θ(t))]1/3.

4. Taylor T4

The Taylor T4 approximant is achieved by numerically
solving Equations A1 and A2 for φ(t) and v(t) after first
expanding the ratio E′/Ė about v = 0 to consistent pN
order. The 5pN and 6pN tidal corrections are:
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δv̇tidal = −32η
5M

x4.5

{(
72
χ1
− 66

)
λ1

M5
x5 +

[
−4619

56
+

275
2
η +

(
4421
56
− 273

2
η

)
1
χ1

(A23)

+
797
4
χ1 − 193χ2

1

]
λ1

M5
x6 + (1←→ 2)

}
. (A24)

The tidal corrections add linearly to the point-particle
terms:

v̇(v) = v̇pp(v) + δv̇tidal(v). (A25)

5. Taylor F2

The CBC gravitational waveform can also be derived
in the frequency domain using the stationary phase ap-
proximation. The waveform takes the form

h̃(fgw) = A(fgw) exp [iψ(fgw)] , (A26)

where ψ(fgw) = 2πfgwt(v) − 2φ(v) − π/4. Substituting
Equations A3 and A4 for t and φ into ψ yields:

ψ(fgw) = 2πfgwtref − 2φref − 2
∫ vref

v

v3 − u3

M

E′(u)
Ė(u)

du.

(A27)

The tidal corrections are found by expanding the ratio
E′/Ė about v = 0 to consistent pN order and integrating
the expression in Equation A27. By choosing to neglect
amplitude corrections, the waveform becomes:

h̃(f) = Af−7/6
gw exp [iψ(fgw)] , (A28)

where A ∝ M5/6/D. The chirp mass Mc = η3/5M ,
and D is the distance between the GW detector and the
binary. The 5pN and 6pN tidal corrections are:

δψtidal =
3

128ηx2.5

[
24(1 + 11χ2)

χ1

λ1

M5
x5 +

5(3179− 919χ1 − 2286χ2
1 + 260χ3

1)
28χ1

λ1

M5
x6 + (1←→ 2)

]
. (A29)

The tidal corrections add linearly to the point-particle
terms:

ψ(v) = ψpp(v) + δψtidal(v). (A30)

The Taylor F2 waveform is one of the most utilized
CBC waveforms because its fully analytic frequency-

domain form makes it the fastest pN waveform to gener-
ate.
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