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Abstract

LIGO is the most sensitive gravitational wave detector ever built.
With the Advanced LIGO detectors we hope to decrease uncertainty in
the measurements of the response function within the detector control
mechanism. We propose instituting a real time “front end” time-domain
calibration system in order to better track the changes to the response
function in real time. Development of such a calibration system will oc-
cur at the Caltech 40m interferometer.

1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a network
of three detectors built to detect local perturbations in the space-time metric
known as strain from astrophysical sources. The anticipated size of these per-
turbations is 10−20m, less than one ten-thousandth of the diameter of a proton.
[4] Extreme care is taken to shield the detectors from noise, but not all noise
can be prevented. This means true gravitational wave strain is difficult to dis-
cern due to low signal-to-noise ratio. Calibration allows us to measure how the
detector will respond to an incident gravitational wave strain and noise.

1.1 LIGO Detectors

At the heart of the Advanced LIGO detectors resides a power-recycled Fabry-
Perot Michelson interferometer. A Michelson interferometer consists of a single
laser firing a powerful beam into a beam splitter, allowing half of the laser
light straight through and deflecting the other half 90 degrees. The light in the
interferometer is phase modulated to produce Radio Frequency (RF) sidebands
at ωm ≈ 2π × 25 MHz. The original frequency of light, called the carrier
frequency, is tuned for constructive interference within the Fabry-Perot cavities.
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Figure 1: Advanced LIGO Michelson Interferometer diagram. The ETM and
ITM form the Fabry Perot cavities, while the three PRM and two ITM form the
power recycling cavity. If both arms are an integral number of wavelengths of
laser light, then all light in the Signal Recycling AS port destructively interferes
and the interferometer is said to be ”on resonance”. Image from [4]

The sideband frequencies are not tuned to resonate in the Fabry-Perot cavities,
and instead reside largely in the Power Recycling Cavity and Signal Recycling
Cavity to aid in signal extraction.

The carrier light travels in perpendicular arms of the same length until it
hits a reflecting mirror. This reflected light carries back with it a phase dif-
ference based on the microscopic difference in length the light has traveled.
This difference in the arm lengths is known as the differential arm length, or
DARM. When there is no phase difference in the light, the DARM is zero, and
by destructive interference no carrier band light enters the photodiode at the
Antisymmetric (AS) port. When there exists a phase difference in the light, we
can detect the optics’ movement by detecting carrier band light beating with
the sideband light frequencies in the AS port. [5] This change in the DARM
length includes both noise and astrophysical strain signal.
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1.2 Frequency Domain Calibration

A feedback loop keeps the interferometer in its resonance condition. Resonance
condition is when the distance between the mirrors of the interferometer is an
integer value of the wavelength of laser light in the interferometer. When this
occurs, the reflected light constructively interferes in the power recycling cavity
and destructively interferes in the signal recycling cavity, or the AS port. This
resonance condition is maintained by a servo actuator that responds to a digital
error signal eD(f). eD(f) is proportional to the DARM length change ∆Lext(f)
and feedback actuation length ∆LA(f). The error signal eD(f) is the result of
the digitization of the analog signal registered by the interferometer, and, most
important, it has a linear relationship when in resonance condition:

∆Lext = RL(f)eD(f) (1)

where RL(f) is the response function. In the long wavelength approximation,
∆Lext is linearly related to gravitational wave strain h(f):

h(f) =
∆Lext

L
(2)

where L is the measured length of the arm cavities. Finding this linear response
function is a process known as frequency-domain calibration. [1] [3]

1.3 Feedback Control Loop

We want to preserve the linear relation between eD(f) and gravitational strain
h(f), so feedback control loops are used to keep DARM close to zero. The open
loop gain GL(f) is separated into three components: GL(f) = CL(f)D(f)A(f).

CL(f), the sensing function, captures the analog ∆Lext(f) and converts it
into a digital signal eD(f). A photodiode detects how much carrier light reaches
the AS port, which determines ∆extL(f), then runs this analog signal through
the sensing function CL(f), here approximated to a single cavity pole transfer
function:

CL(f) ≈ 1

1 + i f
fc

(3)

where fc is the cavity pole frequency and i is the imaginary unit. [4] [1] D(f),
the digital filter, converts eD(f) into a digital control signal sD(f) to be sent
back to the detector mirror. A(f), the actuation function, converts sD(f) into
an analog signal that physically moves the mirrors. In Initial LIGO, the mirrors
that reflect the laser light are pendulums, and the pendulums’ natural frequency
response yields a good approximation for the complete actuation function:

A(f) ≈ 1

f2p − f2 + i
fpf
Q

(4)

where fp is the natural frequency of the pendulum and Q is the quality damping
factor. [4] [1] The response function RL(f, t) depends on the sensing function,
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Figure 2: Response Function Bode Plot. The response function RL(f) plotted
with respect to frequency. In the linear resonance condition, we multiply this
function by eD(f) to get h(f), the GW strain in the frequency domain. This
plot created with parameters from Hanford interferometer H1 in S5. [1]

digital filters, and actuation function in the following relationship:

RL(f, t) ≡ 1 + γ(t)GL(f)

γ(t)CL(f)
(5)

where γ(t) is the slow time dependence of the sensing function’s CL(f) and
GL(f) = CL(f)D(f)A(f) is the open loop gain.

RL(f) is important because the convolution kernel RL(t− t′) can be repro-
duced from it, and this convolution kernel is used to reconstruct the gravitational
strain h(t) in the equation:

h(t) =
1

L

∫
RL(t− t′)eD(t′)dt′ (6)

1.4 Time Domain Calibration

However, there are ways to calculate h(t) directly from the frequency domain
response. For Advanced LIGO we want to track the system changes in real
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Figure 3: Visualization of the Feedback Control System Loop. The interferom-
eter senses a change in the DARM length ∆Lext and receives feedback input
∆LA, producing a digital error signal eD(f). The digital filters D(f) produce a
digital control signal sD(f). Finally, the actuation function A(f) determines the
motion necessary to keep the interferometer in its resonance condiction, sending
a new actuation ∆LA.

time more closely. In order to do this we want to implement a time-domain
calibration system in conjunction with the frequency-domain system described
above. We must first check if the time-domain system can give us a better
calibration and quantify the errors in its calculation. If the time-domain system
proves to be useful, it can potentially reduce our uncertainty in the gravitational
wave strain h(t). [2]

In the case of an interferometer, we want to convert counts into meters rep-
resenting the DARM displacement. For a time domain calibrator, we will run
the inverse of the linear response function R−1(f) on the error signal eD(f),
producing the strain signal h(t). But the response function is changing in real
time, so we must measure how R(f)and R−1(f) are changing and adjust them
accordingly. To do this in real time, calibration lines are input into the interfer-
ometer at specified frequencies of known magnitude and phase. The calibrator
will demodulate at the calibration line frequencies and analyze how the signal
has changed due to the response function. From this information, we should
be able to construct the ever-important inverse response function R−1(f) as it
changes in time!

2 Objectives

Instead of performing “downstream” calibrations, we hope to implement the
calibration system within the digital control system, and thereby track the time
changes of the component response functions more effectively. The calibration
system will be built as a component of the control system at the Caltech 40m
interferometer. By the end of the project, we hope to use the Caltech 40m
interferometer to generate data, use the new subsystem to calibrate it, and
compare the calibrated signal to what we expect the measurement to be. To
calibrate the detectors, calibration lines are injected into the system at known
frequencies. The calibration lines’ response to the control loop are tracked,
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Figure 4: Reimagined 40m Interferometer Feedback Control System. The in-
verse response function R−1(f) immediately takes the error signal eD(f) and
converts it to the strain signal h(t) sensed by the interferometer in the time
domain. This occurs before on the “Front End”, before the digital filters D(f)
alter the signal.

giving an idea of how noise and GW strain respond to the control loop. Using
this new method of calibration, we aim to accurately track the real-time changes
in the detector response function, thus generating a faster, more reliable way of
calculating gravitational wave strain.

3 Approach

The calibration code will be written in MATLAB and Simulink, using tools for
linear time domain filtering to sort signal from noise. The goal is to calibrate
the signals generated by all the interferometer degrees of freedom. We will begin
by implementing the traditional calibration method in MATLAB at the Caltech
40m interferometer. Then, we will start calibrating the signals from the more
simple interferometer configurations and quantifying the errors involved with
our new method. Next, we will move on to the more complex interferometer
signals to get a complete picture of all interferometer signals. Finally, we hope
to piece together all of the parts into a actual real-time control system for the
interferometer.

4 Project Schedule

For the first two weeks, I will become intimately acquainted with the Caltech
40m interferometer different function modes while understanding a traditional
frequency model in MATLAB. In the next two weeks, we will finish the tra-
ditional calibration while starting to implement the time-domain calibrator on
the more simple interferometer modes. In weeks five and six, we will continue
working on the time-domain calibrator by moving on to more advanced interfer-
ometer modes. In weeks seven and eight, we hope to complete the time-domain
calibrator for the Caltech 40m by integrating all the separate mode signals into
a single calibration. In weeks nine and ten, I will complete my final proposal and
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presentation in addition to traveling to Livingston to see the aLIGO detectors.

5 Progress

Since at Caltech, I have been working to gain the necessary skills to write a front
end time domain calibration system. I have gone through Simulink, Feedback
Control Systems, and Signal Processing tutorials for MATLAB to understand
the tools required for my project. Additionally, I have been working toward
completely understanding the frequency domain calibration model for Initial
LIGO so I can soon begin writing a calibration model myself using MATLAB
and Simulink. I hope to spend most of the next month writing parts of code for
the time domain calibrator and testing them thoroughly with the help of my
mentors.

The most challenging part of this project is completely understanding and
correctly modeling the entire complex LIGO control system. Every part of
the control system is vital if a worthwhile model is to be created. My next
immediate task is to understand signal whitening and aliasing and how those
affect the component transfer functions of the open loop gain GL(f). I hope to
have begun actual code on the time domain calibration by the end of this week.
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