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Abstract

The Advanced LIGO gravitational wave detectors are currently un-
der construction along with new, more precise calibration control sys-
tems. Our goal is to understand the Advanced LIGO detectors response
to incident gravitational waves. During detector operation, parameters
characterizing the detector can change in real time, altering the detectors
response to gravitational waves. These changes in the detector response
must be tracked and taken into consideration when calibrating gravita-
tional wave strain. We propose instituting a real time front-end time-
domain calibration system in order to better track the changes of the
detector response during science runs. Development of such a calibration
system is underway at the Caltech 40m interferometer.

1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a network
of three detectors built to detect local perturbations in the space-time metric
known as strain from astrophysical sources. The anticipated size of these per-
turbations is 10−23m, less than one ten-thousandth of the diameter of a proton.
[?] Extreme care is taken to shield the detectors from noise, but not all noise
can be prevented. This means true gravitational wave strain is difficult to dis-
cern due to low signal-to-noise ratio. Calibration allows us to measure how the
detector will respond to an incident gravitational wave strain.

1.1 Advanced LIGO Detectors

At the heart of the Advanced LIGO detectors resides a dual-recycled Fabry-
Perot Michelson interferometer. A Michelson interferometer consists of a laser
beam fired into a beam splitter, allowing half of the laser light straight through
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Figure 1: Advanced LIGO Michelson Interferometer diagram. The ETM and
ITM form the Fabry Perot cavities, while the three PRM and two ITM form
the power recycling cavity. If both arms are an integral number of wavelengths
of laser light, then all carrier light in the Signal Recycling AS port destructively
interferes and the interferometer is said to be “on resonance”. Image from [?]
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and deflecting the other half 90 degrees. The light in the interferometer is phase
modulated to produce Radio Frequency (RF) sidebands at ωm ≈ 2π× 25 MHz.
The original frequency of light, called the carrier frequency, is tuned for con-
structive interference within the Fabry-Perot cavities. The sideband frequencies
are not tuned to resonate in the Fabry-Perot cavities, and instead reside largely
in the Power Recycling Cavity and Signal Recycling Cavity to aid in signal
extraction.

The carrier light travels in perpendicular arms of nearly the exact same
length until it hits a reflecting mirror. This reflected light carries back with it
a phase difference based on the microscopic difference in length of each arm.
This difference in the arm lengths is known as the differential arm length, or
DARM. When the DARM is zero, there is no phase difference in the light, and
by destructive interference no carrier band light enters the photodiode at the
Antisymmetric (AS) port. When there exists a phase difference in the light, we
can detect the optics’ movement by detecting carrier band light beating with
the sideband light frequencies in the AS port. [?] This change in the DARM
length includes both noise and astrophysical strain signal.

1.2 Feedback Control Loop

A feedback loop keeps the interferometer in its resonance condition. Resonance
condition is when the distance between the mirrors of the interferometer is an
integer value of the wavelength of laser light in the interferometer. When this
occurs, the reflected light constructively interferes in the power recycling cavity
and destructively interferes in the signal recycling cavity, or the AS port. This
resonance condition is maintained by a servo actuator that responds to a digital
error signal eD(f). eD(f) is proportional to the DARM length change ∆Lext(f)
and feedback actuation length ∆LA(f). The error signal eD(f) is the result of
the digitization of the analog signal registered by the interferometer, and, most
important, it has a linear relationship when in resonance condition:

∆Lext = RL(f)eD(f) (1)

where RL(f) is the response function. In the long wavelength approximation,
∆Lext is linearly related to gravitational wave strain h(f):

h(f) =
∆Lext

L
(2)

where L is the measured length of the arm cavities. Finding this linear response
function is a process known as frequency-domain calibration. [?] [?]

We want to preserve the linear relation between eD(f) and gravitational
strain h(f), so feedback control loops are used to keep DARM close to zero. In
this linear domain we must measure the response function RL(f, t) accurately
to get an accurate strain signal.
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Figure 2: Visualization of the Feedback Control System Loop. The interferom-
eter senses a change in the DARM length ∆Lext and receives feedback input
∆LA, producing a digital error signal eD(f). The digital filters D(f) produce a
digital control signal sD(f). Finally, the actuation function A(f) determines the
motion necessary to keep the interferometer in its resonance condiction, sending
a new actuation ∆LA.

The response function RL(f, t) depends on the sensing function CL(f), dig-
ital filters D(f), and actuation function A(f) in the following relationship:

RL(f, t) ≡ 1 + γ(t)GL(f)

γ(t)CL(f)
(3)

where γ(t) is the slow time dependence of the sensing function’s CL(f) and
GL(f) = CL(f)D(f)A(f) is the open loop gain.

RL(f) is important because the convolution kernel RL(t− t′) can be repro-
duced from it, and this convolution kernel is used to reconstruct the gravitational
strain h(t) in the equation:

h(t) =
1

L

∫
RL(t− t′)eD(t′)dt′ (4)

The open loop gain GL(f) is separated into three components: GL(f) =
CL(f)D(f)A(f). Each of these three components is crucial to the overall re-
sponse function of the detector. CL(f), the sensing function, captures the analog
∆Lext(f) and converts it into a digital signal eD(f). A photodiode detects how
much carrier light reaches the AS port, which determines ∆extL(f), then runs
this analog signal through the sensing function CL(f), here approximated to a
single cavity pole transfer function:

CL(f) ≈ 1

1 + i f
fc

(5)

where fc is the cavity pole frequency and i is the imaginary unit. [?] [?] D(f),
the digital filter, converts eD(f) into a digital control signal sD(f) to be sent
back to the detector mirror. A(f), the actuation function, converts sD(f) into
an analog signal that physically moves the mirrors. In Initial LIGO, the mirrors
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Figure 3: Response Function Bode Plot. The response function RL(f) plotted
with respect to frequency. In the linear resonance condition, we multiply this
function by eD(f) to get h(f), the GW strain in the frequency domain. This
plot created with parameters from Hanford interferometer H1 in S5. [?]
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that reflect the laser light are pendulums, and the pendulums’ natural frequency
response yields a good approximation for the complete actuation function:

A(f) ≈ 1

f2p − f2 + i
fpf
Q

(6)

where fp is the natural frequency of the pendulum and Q is the quality damping
factor. [?] [?]

From Figure 3, we see two different signals can be used to reconstruct ∆Lext:
the error signal eD(f) and control signal sD(f). From Equations (1) and (3),
ignoring the factor γ(t), we get

∆Lext =
1 +G

CL
eD (7)

∆Lext = A
1 +G

G
sD (8)

1.3 Method of Calibration

The properties of the open loop gain G at certain frequencies make the use
of both of these signals essential. As frequency f goes to zero, the open loop
gain G goes to infinity, causing Equation (7) to blow up at low frequencies.
Alternatively, as frequency f goes to high frequency G must goes to zero to
keep the loop stable. This causes Equation (8) to blow up. However, we can
combine the two, using the control signal at low frequencies and the error signal
at high frequencies:

∆L = ∆Lext − ∆LA

∆Lext = ∆L+ ∆LA

From Figure 2 we can see that ∆L = eD
CL

and ∆LA = sDA, giving

∆Lext =
eD
CL

+ sDA (9)

From Equation (9) we see that this method of strain reconstruction completely
avoids the digital filters D, allowing for changes to the filters to be made in real
time with no repercussions to our calibration.

1.4 Time Domain Calibration

During detector operation, parameters critical to the calibration can change in
real time. For example, the optical gain of each cavity tends to fluctuate while
the detector is taking data. For Advanced LIGO we want to track the system
changes in real time more closely. In order to do this we want to implement
a time-domain calibration system at the front end, so changes in the detector
response are immediately found and accounted for. We must first check if the
time-domain system can give us a better calibration and quantify the errors in
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Figure 4: Reconstruction of Strain in the Frequency Domain from the Error
and Control Signals. The strain magnitude levels at zero decibles, giving near
perfect signal reconstruction capabilities from this method. [?]

7



γ(t)CL(f)

D(f)A(f)

R−1(f)h(t)
∆L

sD(f)

−
∆LA

eD(f)

h(t)

Figure 5: Reimagined 40m Interferometer Feedback Control System. The in-
verse response function R−1(f) immediately takes the error signal eD(f) and
converts it to the strain signal h(t) sensed by the interferometer in the time
domain. This occurs before on the “Front End”, before the digital filters D(f)
alter the signal.

its calculation. If the time-domain system proves to be useful, it can potentially
reduce our uncertainty in the gravitational wave strain h(t). [?]

In the case of an interferometer, we want to convert counts into meters rep-
resenting the DARM displacement. For a time domain calibrator, we will run
the inverse of the linear response function R−1(f) on the error signal eD(f),
producing the strain signal h(t). But the response function is changing in real
time, so we must measure how R(f)and R−1(f) are changing and adjust them
accordingly. To do this in real time, calibration lines are input into the interfer-
ometer at specified frequencies of known magnitude and phase. The calibrator
will demodulate at the calibration line frequencies and analyze how the signal
has changed due to changes in the response function. From this information, we
should be able to construct the inverse response function R−1(f) as it changes
in time.

The calibration code was written in MATLAB and Simulink, using tools for
linear time domain filtering. Our model focused only on the DARM interferom-
eter configuration which is sensitive to gravitation waves.

2 Progress

I worked on understanding the aLIGO control system Simulink models made
by Jeff Kissel and Rana Adhikari. I attempted to implement Equation (9) in
a Simulink block subsystem within Adhikari’s model to replicate strain in the
frequency domain. However, inverting the sensing function CL is very difficult
in Simulink due to instabilities. Simulink will only simulate physical, causal
systems: In particular, Simulink does not allow systems with more zeros than
poles in their transfer functions to be implemented.

To combat this problem, we have introduced artificial poles at 8 kHz to the
inverse sensing function in order to create a stable system that Simulink accepts.
These additional poles cause a downturn in the response around 8 kHz, but are
necessary to create a physical control system.
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Figure 6: Control System Model created by Rana Adhikari. [?]

However, even with this stable system, any input into the inverted sensing
function will exponentially blow up to infinity. This is due to the time delay
within the sensing function. When inverted, the delay becomes a time advance,
which is unphysical. The time advance creates poles with positive real parts.

Positive real poles are a problem because of the following equation:

y(t) =

n∑
i=1

Cie
pit (10)

where pi is a pole in the Laplace s-plane. From this equation we see that the
imaginary part of the pole determines the frequency of a response, and the real
part determines the exponential growth. If the real part of a pole is positive,
then the time response y(t) will blow up exponentially. This is what happened
with our Simulink model.

To stop the exponential growth of the system, I simply removed the poles
with positive real parts. This means my new inverse sensing function is now only
an approximation. Figure 7 and 8 show the comparison between the calculated
and physical models. For both, we have good agreement up until 1 kHz, where
the downturn from the extra poles added at 8 kHz begin to take effect.

After these alterations to the inverse sensing function, we were finally able
to reconstruct our input gravitational wave strain using Adhikari’s model. [?]
Figure 9 shows the comparison between the calculated and physical model’s re-
construction at different frequencies. We wanted unity reconstruction, but found
a gain in response surrounding 200 Hz and the dropoff due to the additional
poles beginning at 1 kHz.

Potential solutions to these inconsistencies include adding in the poles at
higher frequency and not removing the time advance poles. If we upsample the
model prior to adding in the stablity poles, we can add them at any frequency
we want, as long as it is below the sampling frequency. If we add them at 16
kHz rather than 8 kHz, this could reduce the effect on the frequency response
within the LIGO range.

For the unphysical time advance, rather than removing those poles and sig-
nificantly altering our model, we might simply add in a delay that compensates
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Figure 7: Inverse Sensing Function Calculated (Blue) and Physical (Green)

Figure 8: Inverse Sensing Function plus Error Signal Calculated (Blue) and
Physical (Green)
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Figure 9: Calculated Strain Reconstuction (Blue) and Physical Strain Recon-
struction (Red)

for the advance. This delay would make the positive real poles disappear in a
way we can track and compensate for later in the frequency response.

3 Future Objectives

Instead of performing “downstream” calibrations, we hope to implement the
calibration system within the digital control system, and thereby track the time
changes of the component response functions more effectively. The calibration
system will be built as a component of the control system at the Caltech 40m
interferometer. To calibrate the detectors, calibration lines are injected into the
system at known frequencies. The calibration lines’ response to the control loop
are tracked, giving an idea of how noise and GW strain respond to the control
loop in real time. Using this new method of calibration, we aim to accurately
track the real-time changes in the detector response function, thus generating a
faster, more reliable way of calculating gravitational wave strain.

The next step is to implement the calibration system to the Caltech 40m
interferometer control system for testing. We will use the RCG (Real-time
Code Generator) to take Simulink and MATLAB code and make C code from
it. The ultimate goal is to implement the calibrator at the sites at Hanford and
Livingston, tracking the parameters of the interferometers in real time.
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