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Abstract

Future advanced gravitational-wave detectors, such as Advanced LIGO, Advanced
VIRGO, and KAGRA will be limited by noise due to quantum fluctuations in the light,
around the most sensitive detection band 100Hz. There are two different approaches
for improving the sensitivity: squeezing or canceling the noise by properly designing the
input or output optics of the detector, and increasing the response to the gravitational-
wave signal by modifying the test mass dynamics. In this project we take advantage
of frequency-dependence of the optical spring to enhance the mechanical response in a
broad frequency band.
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1 Introduction
1.1 Standard Quantum Limit

Contemporary so-called second-generation gravitational-wave detectors, such as Ad-
vanced LIGO [1, 2], Advanced VIRGO [3], and KARGA [4], which are under construc-
tion now, will be quantum noise limited over the detection frequency band. At low
frequencies, the radiation pressure noise dominates which is due to quantum fluctu-
ation in the amplitude of the optical field; while at high frequencies, the shot noise
dominates which arises from the phase fluctuation [5]. There is a trade-off between
these two noises that is called the Standard Quantum Limit (SQL) [6]. For the linear
position meter (the gravitational-wave interferometer is special case of it) the shot noise
corresponds to the measurement noise and radiation pressure noise to the back-action
noise.

The SQL is not an ultimate limit for measurement precision, there are two main
approaches to overcoming the SQL: quantum noise cancellation and enhancement of
the response of the test mass on the external force. The first one, Back-Action Evad-
ing (BAE) measurements, takes advantage of the correlation between the measurement
noise and the back-action noise to evade the back action [7, 8, 9, 10, 11, 12]. Unfor-
tunately any additional noise caused by optical losses in the system can destroy this
correlation and eliminate the effect [13]. The second approach is based on the amplifi-
cation of the gravitational wave signal by modifying test mass dynamics, and therefore
it is more robust to the optical losses. This approach uses the dependence of the SQL
on the response function of the test mass χ(ω)[14]:

SSQL
F (ω) = 2~|χ−1(ω)|, (1)

where ω is frequency of the signal and mechanical response is given by the ratio between
mechanical displacement and the force χ(ω) = x(ω)/F (ω). For the GW detector
mirrors have resonant frequency around 1Hz, while the GW signal frequency is around
100Hz, so the test mass can be treated as free mass on these frequencies. The SQL for
the free mass is:

SSQL
F (ω) = 2~mω2 (2)

This SQL can be surpassed by modifying the mechanical response (see Eq.(1)).
The purpose of this work is to investigate such modification of the response func-

tion using multiple optical springs. The outline of the report is the following: in the
introductory part we explain the concept of optical spring in the section 1.2; review
the study of negative optical inertia in section 1.3; discuss the idea of this research in
section 1.4. Then we explain in details the nature of optical rigidity in the part 2 and
finally describe a numerical approach to the problem in section 3.1.

1.2 Optical spring effect

As we mentioned above, the free mass SQL can be surpassed by modifying the me-
chanical response of the test mass. An example of such modification is transformation
of a free mass to the oscillator by adding a spring. As shown in Fig. 1 (left) this mod-
ification enables to surpass the free mass SQL in the small region near the resonance.

Nevertheless according to the fluctuation-dissipation theorem losses in the mechan-
ical spring cause the thermal noise, which is usually high at room temperature, so
people are interested in other approaches for modifying the test-mass dynamics with
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Figure 1: (left) SQL for the force in different systems: free mass (red) and oscillator with
resonant frequency ωm = 2π × 50 Hz (blue); (right) optical resonator with movable mirror
which motion is being measured by laser.

low additional noise. We consider the optical spring effect that appears in the detuned
optical cavity. We draw a classical analogy to explain the effect here while the rigorous
derivation will be provided in the section 2. It is well-known that each photon colliding
with a surface transfers a part of the momentum to it. Therefore a light beam creates
an additional force on the surface which is proportional to the power of the beam. In
the optical cavity the circulating power depends on the cavity detuning: if the cavity is
tuned losses are minimal, but even small detuning creates significant reduction in the
power (see Fig. 2). When the mirror displacement is small the power is proportional
to it:

Frp =
I

c
= −Kx.

In other words, the detuning causes the appearance of the additional force, which is
similar to the classical rigidity, and that is why this phenomenon is called optical spring
[15, 16, 17].

As we show in the section 2 the optical rigidity term depends on the frequency:

K(ω) =
mJδ

(γ − iω)2 + δ2
,

where δ = ωc − ω0 is detuning, ω0 is laser frequency, ωc is cavity resonant frequency,
m is the mirror mass, γ is half-bandwidth, and renormalized power J is:

J =
4ω0Ic
mcL

, (3)

where L – cavity length, Ic - circulating power. The response function in this case

χeff(ω) =
[
−mω2 +K(ω)

]−1
. (4)

This response function is similar to the oscillator one, so optical spring can modify
dynamics in the same way as mechanical spring, but it with less technical noise, because
there is no more thermal noise caused by losses in the solid-state spring.
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Figure 2: Dependence of the circulating power on the mirror position.

1.3 Double optical springs: negative inertia

In Ref.[18], Khalili et al. propose to use the frequency dependence of the optical spring
to compensate the inertia term, and therefore to surpass the force SQL of the original
test mass. When the frequency of interest is much smaller than detuning, we can
expand the optical rigidity in Taylor series:

K ≈ K̄ − iΓoptω −moptω
2 +O(ω3), (5)

where

K̄ =
mJδ

δ2 + γ2
, Γopt = − 2mJγδ

(γ2 + δ2)2
, mopt = −mJδ(δ

2 − 3γ2)

(δ2 + γ2)3
. (6)

Since K̄,Γopt,mopt depend only on cavity bandwidth, cavity detuning and renor-
malized optical power, we can tune the mopt in such a way to compensate the positive
inertia of the test mass. By combining two optical springs we can cancel the constant
K̄1,2 and inertia terms:

K̄1 + K̄2 = 0, m+mopt,1 +mopt,2 = 0. (7)

This cancellation significantly reduces the force SQL compared to the free mass one
(Eqs. (1),(4),(5)):

[SSQL
F ]modified

[SSQL
F ]free mass

=

∣∣∣∣ [χ(ω)modified]

mω2

∣∣∣∣ ≈ ∣∣∣∣ |mopt| −m
m

∣∣∣∣ . (8)

By tuning |mopt| → m, we can make the ratio much smaller than unity.
This approach works at low frequencies and breaks down at high frequencies because

we have to take into account higher-order terms in the Taylor series (5) and that limits
us in achieving better sensitivity a broad frequency band.

1.4 Multiple optical springs

The idea of the negative inertia can be generalized: more optical springs may provide
more significant modification of the dynamics, even cancel the significant part of the
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mechanical inertia in a broad frequency range. The goal is to obtain the independence
of the inverse response function on the frequency in some frequency range:

χ−1
eff (ω) = −mω2 +

N∑
i=1

Ki(ω) ≈ const. (9)

We need this term to be some nonzero constant, because otherwise the response would
be infinite, and any small fluctuation around zero in the inverse response function would
create a huge noise in the response. Making the constant to be small, but nonzero will
relive us from this issue.

When the test mass response is frequency dependent we can only touch the SQL
on one frequency with given power. Unlike that if the response is constant the SQL
will be constant in the range as well, and we will be able to reach it without changing
the power in any point over this frequency range.

In order to understand the approach to the solution we provide a more quantitative
description of the optical spring in the next section.

2 Optical rigidity
The interaction Hamiltonian of a cavity with one movable mirror and an input laser:

Ĥ =
1

2
mω2

mx̂
2 +

p̂2

2m
+ ~ωcĉ†ĉ+ ~G0x̂ĉ

†ĉ+ i~
√

2γ
(
âĉ†e−iω0t − â†ĉe−iω0t

)
. (10)

The first term is free Hamiltonian for the mechanical mode ([x̂, p̂] = i~). The second
one describes the cavity mode with annihilation operator ĉ and commutator [ĉ, ĉ†] = 1.
The third is interaction between the oscillator and light with optomechanical coupling
constant G0 = ω0/L. The last term describes interaction of the pump â with the field
in the cavity with half-bandwidth γ.

This Hamiltonian can be linearized if we assume the pump has a large amplitude
so we can apply unitary transformation to have ĉ referring to the vacuum state:

ĉ→ c̄+ ĉ, ĉ� c̄.

Then in the rotating frame of laser frequency we get linearized Hamiltonian:

Ĥ =
1

2
mω2

mx̂
2 +

p̂2

2m
+ ~δĉ†ĉ+ ~G0x̂(ĉ†c̄+ c̄∗ĉ) + i~

√
2γ
(
âĉ† − â†ĉ

)
, (11)

where δ = ωc − ω0 is detuning. We can always choose a phase for the c̄ to be a real
value, so we simplify the equation by the substitution g = G0c̄.

The Heisenberg equation is [19]:

˙̂c = − i
~

[ĉ, Ĥ]− γĉ. (12)

We find:
˙̂c+ (γ + iδ)ĉ = −igx̂+

√
2γâ, (13)

For the output signal we have [19]:

b̂ = −â+
√

2γĉ. (14)
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We can derive the equation of motion the mechanical mode:

˙̂x =
p̂

m
˙̂p+ γmp̂ = −mω2

mx̂+ ~g(ĉ† + ĉ) + ζ̂th

(15)

where ζ̂th is Brownian thermal force with correlation function

〈ζ̂th(t)ζ̂th(t′)〉 = 2mγmkBTδ(t− t′).

Equations (13) and (15) can be solved in the frequency domain, which gives

ĉ(ω) =
gx̂(ω) + i

√
2γâ(ω)

ω − δ + iγ
(16)

x̂(ω) =
~g(ĉ† + ĉ) + ζ̂th

m(ω2
m − ω2 − iγmωm)

(17)

The radiation pressure term here is:

Frp = ~g(ĉ† + ĉ) = ~g2x̂(ω)

(
1

ω − δ + iγ
− 1

ω + δ + iγ

)
+

+ ~gi
√

2γ

(
â†

ω + δ + iγ
+

â

ω − δ + iγ

)
. (18)

The second term is noise, and the first one linearly depends on the mechanical dis-
placement:

Frp = −K(ω)x̂(ω) + F̂n(ω). (19)

Here K(ω) is optical rigidity:

K(ω) =
2~g2δ(ω)

(ω − δ + iγ)(ω + δ + iγ)
. (20)

Recalling the definition of the renormalized power (3), relation of the circulating power
to the total energy stored in the cavity

E = ~ω0c̄
2 =

2L

c
Ic

and coupling constant g = c̄ω0/L, we can put this term in the form we introduced it
before:

K(ω) =
mJδ

(γ − iω)2 + δ2
. (21)

The radiation pressure noise term Fn describes the quantum fluctuations of the optical
field:

Fn = 2~g
√
γ

â1(γ − iω) + δâ2

(ω − δ + iγ)(ω + δ + iγ)
, (22)

with two quadratures

â1 =
â+ â†√

2
, â2 =

â− â†

i
√

2
.

We can evade this noise by properly combining the outputs from carrier measuring the
noise, and auxiliary sensing beam measuring the signal [20].
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The optical rigidity term can be considered as a part of new effective response
function:

χ−1
eff (ω) = −mω2 +K(ω). (23)

Then the dynamics of the oscillator can be described by:

x̂(ω) = χeff(ω)[F̂n + ζ̂th] (24)

Following the logic of the first section, we can now investigate a way of combining
multiple springs to modify the dynamics in the desired way.

3 Multiple Optical Springs
3.1 Vector fitting

Each optical spring term is nonlinear function of the frequency and other parameters:
power, detuning and half-bandwidth. The analytical solution of the equation (9) is
complicated (if possible at all). Nevertheless this problem can be treated in a different
way - as data fitting problem. Then we can find numerically the parameters of this
fitting. However, nonlinear fitting requires a lot of computing resources and good
optimization algorithm, so it is important to choose appropriate procedure.

The optical spring term has the same shape as commonly used in physics response
function. We can use this feature and implement special procedure, called vector
fitting (VF) [21, 22]. Usually the response function has several poles, so the procedure
estimates these poles ai and residues ci:

f(s) =

N∑
i=1

ci
s− ai

+ d+ sh, (25)

where s = iω; d and h are constants; ci, ai are either real or complex conjugate pairs.
The procedure iteratively runs two steps: relocates poles on the new place and estimates
residues. This algorithm was created for power system transients modeling, but it can
be used in our task as well, because the shape of the optical rigidity term is similar to
the one VF requires. It becomes more clear if we represent the optical spring term as

K(s) =
mJδ

(γ − s)2 + δ2
=

mJδ

(γ + iδ − s)(γ − iδ − s)
=
m

2

(
−iJ

s− (γ + iδ)
+

iJ

s− (γ − iδ)

)
. (26)

By setting

ai = γ − iδ, ai+1 = a∗i , ci = iJ, ci+1 = c∗i = −iJ, h = 0, d = 0, (27)

and assuming data to be f(s) = ms2 + const (see Eq.(9)) we can use VF algorithm
with some modifications, which we discuss below.

3.1.1 Original algorithm

Originally algorithm identifies the the parameters of the response (25). This method
works recursively, each iteration includes two steps: in the first step it estimates poles
of the function and in the second step it uses least squares (LSQ) method to fit linear
function of residuals to the data. More precisely, first we choose some random set of
starting poles āi and multiply f(s) on some unknown function with same poles āi:

σ(s) =
N∑
i=1

c̃i
s− āi

+ 1, (28)
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and thus get an approximation to the rescaled function σ(s)f(s) with same poles as
these two:

(σf)(s) =
N∑
i=1

c̃i
s− āi

+ d+ sh. (29)

Combining two equations (28), (29), we get:

N∑
i=1

ci
s− āi

+ d+ sh ≈ (
N∑
i=1

c̃i
s− āi

+ 1)f(s), (30)

where unknowns are ci, c̃i, d, h. Parameters are complex conjugated pairs:

ci = c′ + ic′′, ci+1 = c′ − ic′′, ai = a′ + ia′′, ai+1 = a′ − ia′′.

Taking it into account, we can write down the overdetermined linear problem Ax = b
where x is vector of unknown parameters and

Akx = bk, bk = f(sk),

Ak =
[
. . . 1

sk−ai + 1
sk−a∗i

i
sk−ai −

i
sk−a∗i

. . . 1 sk
−f(s)
sk−ai + −f(s)

sk−a∗i
−if(s)
sk−ai −

−if(s)
sk−a∗i

,
]

(31)

x =
[
. . . c′ c′′ . . . d h . . . c̃′ c̃′′ . . . .

]T
(32)

This problem can be solved via the method of least squares and then we can use these
residues for finding new poles. If we rewrite our functions in the following form:

(σf)(s) = h

N+1∏
i=1

(s− zi)

N∏
i=1

(s− āi)
, σ(s) =

N∏
i=1

(s− z̃i)

N∏
i=1

(s− āi)
, (33)

f(s) =
(σf)(s)

σ(s)
= h

N+1∏
i=1

(s− zi)

N∏
i=1

(s− z̃i)
. (34)

Thus zeros of σ are poles of f(s). Zeros ai are eigenvalues of the matrix A−bcT , where
A is a diagonal matrix of initial poles, b is column vector of ones and c is vector of
residues c̃i.

If the initial poles are correct then the new poles (zeros of σ(s)) become equal to
the initial poles and that σ(s) = 1. Therefore if we use new poles as starting poles for
the new iteration the procedure will converge.

3.1.2 Modified algorithm

In our case we have to modify the algorithm to fit our requirements. The differences
to the original algorithm are:

• we should restrict our parameters ci to be pure imaginary, which is equivalent to
setting c′i = 0 in the algorithm;

• to make parameters ai to have both real and imaginary part we can throw away
real poles;
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Figure 3: (left) Modified response (red) compared to that of the free mass (blue) for 6
springs; (right) contribution of each spring to the response.

P ,W 8.8× 105 1.2× 105 5.1× 105 1.7× 105 1.4× 105 2.56112× 106

δ, Hz 304.8 −251.3 192.2 121.5 37.9 −299.4
γ, Hz 40.4 58.1 121.8 160.9 178.6 254.7

Table 1: Parameters of the optical springs

• the power cannot be negative, so when we get negative values in LSQ we should
change both signs of detuning and power;

• the total circulating power should have some reasonable value, so we can argue
that it should be rather close to the one advanced LIGO has (800kW ). That
means 10MW is fine, but 100MW is too much. In order to bound its value we
can implement bounded value least squares (BVLS)[23, 24]

This modified algorithm gives almost flat response function in a broad band from
1Hz to 20Hz. As an example oin Fig. 3 we show such a response achieved by 6 optical
springs with total power of 4.4MW and reasonable parameters (see Table 1). The fact
that the curve is not flat in the region of the interest we refer to the poor convergence
of the algorithm. As stated in [22] the original algorithm [21] that we use in our work
has some convergence issues - in some cases the poles cannot be relocated on a long
distance. However increasing the number of springs it is possible to achieve a line in
a region from 1Hz to 20Hz with 7 springs (see left part of Fig.4) or even in a broader
region from 1Hz to 100Hz with 15 springs (see right part of Fig.4).

4 Discussion and future plans
In the work we achieve the constant response function in a broad frequency band from
1Hz to 20Hz. We show that we can use several (6 and 7 in examples) optical springs
of total power less than 10MW to have this effect. One can also broaden the range
by adding more springs. This response function will give us the flat SQL, which can
be achieved in any point with the same power (if we sense the effective response by
another probe beam).

Nevertheless, this result requires detailed investigation and we have the following
objectives for the future research:

page 9



LIGO-T1300633–v1

1 2 5 10 20 50 100 200

0.1

1

10

100

1000

È Χtot
-1È� M

H 2Π f L 2

´ 103

f , Hz

ÈΧ-
1

HfLÈ�
M

,H
z2

1 10 100 1000 104

0.1

10

1000

105
È Χtot

-1È
H 2Πf L 2

´ 103

f , Hz

ÈΧ-
1

HfLÈ

Figure 4: Modified response (red) comparing to the free mass (blue): 7 optical springs in
the region (1 to 20)Hz (left) ; 15 optical springs in the region (1 to 100)Hz (right)

• The next objective is to implement an improved version of the algorithm to
achieve better convergence and improve the pole relocation properties [22].

• Though we increase the response, it is not clear how multiple optical springs will
affect the output spectral density (see derivation of spectral density in Appendix
A). There are two ways of obtaining the information about the force: we can
either combine carriers creating these springs in an optimal way (see Appendix
B)) and get the information directly from them, or add one measurement beam,
leaving the springs to be only for dynamics modification. The second approach
can be preferable, because we can read information about noises from output of
carrier light as well and then subtract it from measured data (perform partial
back-action evasion [20]).

• The other interesting issue to investigate is general analytical description of the
task. In the limit of infinite amount of springs it can be possible to consider
not the sum of springs, but integral over parameter space, and find poles on the
complex plane using Cauchy integral theorem and investigate their properties (in
Appendix C we give an outline and some examples).
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A Spectral density
In this section we derive the output spectral density of the system with one carrier. In
the following analysis we introduce the classical force G acting on the system. From
Eqs.(14),(16) we can derive the two-photon output quadratures:

b̂(ω) = Râ(ω) + 2
√
γLX̂(ω), (35)

where

L =
1

D(ω)
,

[
γ − iω −δ
δ γ − iω

]
, (36)

D(ω) = (γ − iω)2 + δ2, (37)

X̂(ω) = c̄
k0x̂(ω)√

τ

[
0
1

]
, k0 = ω0/c, τ = L/c, (38)

R = 2γL− I. (39)

and c̄ is amplitude of the classical field in the cavity. In the single-mode approximation
the field in the cavity is:

ĉ(ω) =
L(ω)√
τ

(√
γâ+ X̂(ω)

)
. (40)

Thus the back-action force is:

FBA =
2~k0c̄√

τ
ĉ(ω)

[
1
0

]T
= Fn −K(ω)x̂(ω), (41)

where

Fn =
2~k0c̄

√
γ

√
τ

L(ω)

[
1
0

]T
, (42)

K(ω) =
mJδ

D(ω)
, J =

4ω0Ic
mcL

=
4~k2

0 c̄
2

mτ
, (43)

which is exactly what we get in the equation (18). As we mentioned before, the
optical spring term K can be treated as part of the effective response function, thus
the dynamics of the system is:

x̂(ω) = χeff
xx(ω)

[
F̂n +G(ω)

]
, (44)

where G is external classical force and effective susceptibility is:

χeff
xx
−1

= χ−1
xx +K(ω) = −m(ω2 + iγmω − ω2

m) +K(ω). (45)

In general the system can be described by the system:
Ô(ω) = Ô(0)(ω) + χOF (ω)x̂(ω)

F̂ (ω) = F̂ (0)(ω) + χFF x̂(ω)

x̂(ω) = χeff
xx(F̂n(ω) +G(ω))

(46)
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where Ô is output from the measurement system and F̂ is the radiation pressure force
(back-action). The measurement result we get by applying measurement operator H
to the output b̂. In case of the homodyne detection:

Ô(ω) = HTb̂(ω) =

[
cos ζ
sin ζ

]T [
b̂c
b̂s

]
= b̂c cos ζ + b̂s sin ζ. (47)

The parameters of the general description derived above in our case are:

χOF (ω) = 2
k0
√
γ

√
τ

HTL(ω)c̄

[
0
1

]
, (48)

Ô(0) = HTRâ, (49)

χFF (ω) = −K(ω), (50)

F̂ (0) =
2~k0c̄

√
γ

√
τ

[
1
0

]T
L(ω)â. (51)

The system (46) can be resolved:

Ô(ω) = Ô(0)(ω) +
χeff
xxχOF

1− χeff
xxχFF

[
G(ω) + F̂ (0)

]
. (52)

This equation can be renormalized to the more convenient form. In particular, we can
consider the signal as sum of the classical force and some noise:

ÔF (ω) = N̂F +G(ω) =
X̂

χeff
xx(ω)

+ F̂(ω) +G(ω), (53)

where

X̂ (ω) =
Ô(0)(ω)

χOF (ω)
=

√
~

γmJ

D(ω)

HTD
HTRâ, (54)

D(ω) = D(ω)L(ω)

[
0
1

]
=

[
−δ

γ − iω

]
, (55)

F̂(ω) = F̂n =
√
mJ~γ

[
1
0

]T

L(ω)â. (56)

The spectral density of the output is:

SF (ω) =
SXX
|χeff
xx|2

+ SFF + 2R

{
SXF
χeff
xx

}
, (57)

with corresponding spectral densities:

SXX =
~

4γmJ

|D(ω)2|
HTDD†H

HTRR†H =
~

4γmJ

1∣∣∣∣HTL
[
1
0

]∣∣∣∣2
, (58)

SFF = γm~J
[
1
0

]T

LL†
[
1
0

]
, (59)

SXF =
~
2

D(ω)

HTD
HTRL†

[
1
0

]
=

~
2

HTL
[
1
0

]
HTL

[
0
1

] . (60)
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It is useful to have these spectral densities in different normalizations. The connection
between them is:

Sx = SF |χeff
xx|2, (61)

Sh = SF
(

2

mLω2

)2

. (62)

B Optimal spectral density
As we know from the appendix A, renormalized output for one pump is:

ÔF (ω) =
X̂

χeff
xx(ω)

+ F̂(ω) +G(ω). (63)

Thus total output for n pumps can be combined optimally with filtering functions Ki:

ÔF (ω) =

n∑
i=1

KiÔF , (64)

where
n∑
i=1

Ki = 1. (65)

Resulting spectral density is:

SF =
n∑

i,j=1

KiK
∗
j Sij , (66)

where spectral densities are:

Sij =
SijXX
|χeff
xx|2

+ SFF +
SiXF
χeff
xx

+
Sj,∗XF

χeff,∗xx

, (67)

and

SijXX = δi,j
~

4γmJi

1∣∣∣∣HT
i Li

[
1
0

]∣∣∣∣2
, (68)

SFF =
n∑
i=1

γim~Ji
[
1
0

]T

LiL†i

[
1
0

]
, (69)

SiXF =
~
2

HTLi
[
1
0

]
HTLi

[
0
1

] . (70)

To find optimal filtering function we have to equal all partial derivatives to zero (taking
into account normalization (65)):

∂SF

∂Ki
=

n−1∑
j=0

K∗j (Sij − Sni − Sin + Snn) + Sin − Snn = 0. (71)

Solution of this linear system gives us n optimal filtering functions that minimize the
total spectral density.
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C Analysis of the response function
Function K has complex poles that are complexly conjugated:

K(ω) =
MJδ

(γ − iω)2 + δ2
=
M

2

(
iJ

iω − (γ − iδ)
− iJ

iω − (γ + iδ)

)
. (72)

In other words, we have sum of two terms with complexly conjugated pole y = γ − iδ
and pure imaginary residuals g = iJM/2 (as long as the power should be real):

K(s) =
g

s− a
+

g∗

s− y∗
. (73)

Let’s consider the general case: for the infinite number of springs we have contin-
uum of poles in complex plane, thus we can assume that each poles depends on some
parameter θ and instead of summation over springs we should write the integral:

Ktotal =

2π∫
0

ig(θ)

s− y(θ)
dθ. (74)

Now we should make some restrictions on this integral:

• g(θ) is real because it is a power,

• y(θ) = −y(θ)∗ because complex poles are complexly conjugated pairs,

• g(θ) = −g(π − θ) because residuals are complexly conjugated pairs as well

The other assumption is that y forms closed contour in the complex plane. Then
integration over parameter can be changed to the integration over this contour

Ktotal =

∮
ig(y)

dy/dθ

dy

s− y
. (75)

As we know from Cauchy integral formula for any holomorphic function f that
projects open subset U on the complex plain {f : U → C}:

f(a) =
1

2πi

∮
C

f(z)

z − a
dz (76)

for every a ∈ D, where D ⊂ U and C = ∂D.
Our aim is to achieve Ktotal(s) = p(s) where p(s) is a real polynomial function of

s in general. Let’s first consider particular case when p(s) = As2 + B. Using Cauchy
equation:

Ay2 +B =
−2πg(y)

dy/dθ
. (77)

Now write two equations for real and imaginary part y = a+ ib:

(Aa2 −Ab2 + 2Aiab+B)da+ i(Aa2 −Ab2 + 2Aiab+B)db = iεdθ. (78)

Let’s say for simplicityA = 1, B = 1{
(1 + a2 − b2)da− 2abdb = 0,

2abda+ (a2 − b2 + 1)db = g(θ)dθ.
(79)
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Figure 5: Poles trajectories on the complex plane

First equation gives us:

d(a+
1

3
a3)− (b2da+ adb2) = 0 ⇒ a+

a3

3
− ab2 = C ≡ const. (80)

Or, in other words, the complex part depends on the real one as:

b = ±
√

1± C

a
+
a2

3
. (81)

which gives us the trajectories shown in Fig. 5.
Obviously this contour is not closed, but it can be shown that if we artificially close

the loop the error will converge to zero. Let’s prove it for the second order polynomial
and then in general. Distance between two branches b1,2 is

ρ = |b1−b2|2 = 1+
C

a
+
a2

3
+1−C

a
+
a2

3
−2

√
(1 +

a2

3
)2 − C2

a2
= 2

(
1 +

a2

3
−
√

(1 +
a2

3
)2 − C2

a2

)
.

(82)
Solving minimization problem:

∂ρ

∂a
= 2

4a

3
− 1

2

2(1 + a2/3)2a/3 + 2C2/a3√
(1 + a2

3 )2 − C2

a2

 ≈ (1 +
a2

3
)

C2

a2(1 + a2

3 )2
=

C2

a2(1 + a2

3 )
.

(83)
Though it is never equals to zero, it approaches zero as fast as 4th order of a that
proves initial assumption.
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