

Studying the effects of tidal corrections on parameter estimation

Leslie Wade (UWM), Jolien Creighton (UWM), Evan Ochsner (UWM), Benjamin Lackey (Princeton)

Background:

• Neutron star (NS) tidal deformability

- A NS in a binary will become tidally deformed because the gravitational field from its companion is not constant over its finite diameter
- The NS's tidal deformability λ , which depends on its equation of state (EOS), parameterizes how much it will deform

Compact binary coalescence (CBC) gravitational waveform

- The inspiral portion of a CBC event is approximated using post-Newtonian (PN) theory and assumes each body is a point-particle
- Tidal effects cause NS binaries to depart from the point-particle approximation during the late inspiral portion of a CBC event

Motivation:

UWM

- Extracting tidal deformability with gravitational-waves
 - It has been shown [1-3] that a NS's tidal deformability may be measurable using ground-based gravitational-wave detectors
 - This work uses full Bayesian parameter estimation simulations of single, binary NS (BNS) sources to study the effects of tidal interactions in order to learn more about NS structure

• Systematic biases from using different waveform families

- In approximating the true CBC gravitational waveform, slightly different perturbative techniques lead to gravitational waveform families that differ by a next-order truncation error It is essential to understand the resulting systematic biases in our parameter estimation methods if we seek to extract EOS information from a gravitational-wave (GW) detection
- The leading order tidal corrections to the point-particle approximation emerge at 5PN order [1,2]

Preliminary Results:

What's plotted:

- This work uses the following PN waveform families from lalsimulation with leading order (5PN) and next-to-leading order (6PN) tidal corrections: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2
- This work also uses lalinference to perform full Bayesian Markov Chain Monte Carlo (MCMC) parameter estimation simulations on BNS systems
- In all presented figures, we use: 3 detector network (Advance LIGO and Virgo) with a zero detuning high power PSD and a network SNR of 32.4, $f_{\min} = 30 \text{ Hz}$, and injected values of $\hat{\lambda}_1 = \hat{\lambda}_2 = 607$ and $m_1 = m_2 = 1.35 \text{ M}_{\odot}$
- Can we measure individual NS tidal deformability?
 - We find that a NS's tidal deformability ($142 \leq \hat{\lambda}_{1.35M_{\odot}} \leq 2324$, [4])

$$\hat{\lambda}_i = \frac{\lambda}{m_i^5} = \frac{2}{3}k_2\left(\frac{R_i}{m_i}\right)^5,$$

where k_2 is the Love number, is not well measured

Can GWs help constrain the NS EOS?

To visualize how a GW detection might constrain the NS EOS, we plot a 2D PDF from a single source on mass-radius-like curves

What *can* we measure?

If we re-parameterize according to [5,1]

$$\tilde{\Lambda} = 5 \text{PN Correction} = \frac{32}{M^5} \tilde{\lambda}$$

$$= \frac{8}{13} \left[\left(1 + 7\eta - 31\eta^2 \right) \left(\hat{\lambda}_1 + \hat{\lambda}_2 \right) + \sqrt{1 - 4\eta} \left(1 + 9\eta - 11\eta^2 \right) \left(\hat{\lambda}_1 - \hat{\lambda}_2 \right) \right]$$

$$\tilde{\lambda} = 6 \text{PN} - 5 \text{PN Correction}$$

we find that we can measure $\tilde{\Lambda}$, though $\delta \tilde{\Lambda}$ is too small

Below are 2D marginalized posterior density functions (PDFs) as computed by our MCMC pipeline

Systematic bias?

- To study systematic biases, we used different waveform families for the injection and the templates
- The systematic bias can be significant between

any two waveform families

Conclusions:

• Systematic bias

• Measurability

- While λ_1 and λ_2 are not well measured, Λ is!
 - Since chirp mass is so well measured, several BNS observations with varying chirp masses can lead to very tight constraints on the NS EOS

There may be significant bias in the measured tidal parameter between different PN waveform families

Therefore, phenom/hybrid/NR waveforms will likely be needed for parameter estimation to capture the proper physics of the late inspiral (such as tidal disruption and/or hypermassive NS oscillations)

References:

- [1] É. É. Flanagan and T. Hinderer. Phys. Rev. D, 77:021502, Jan 2008
- [2] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read. Phys. Rev. D, 81:123016, Jun 2010.
- [3] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E. Creighton, and J. L. Friedman. Phys. Rev. D, 79:124033, Jun 2009.
- [4] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and J. L. Friedman. Phys. Rev. D, 85:044061, Feb 2012.

[5] M. Favata, in preparation, March 2013.