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Abstract 

This document provides a brief overview of the calculation of the displacement 
noise observed at the test mass of an aLIGO quadruple pendulum suspension 
caused by excitation of the maraging steel blade springs.  
There are two sources of this displacement noise. The first is from the undamped 
seismic excitation of the suspension which is a motion of the entire payload  this 
excites the internal modes of the blade springs and this can then be transmitted 
to the test mass. The other noise source of interest here is the thermal excitation 
of the internal resonances of the cantilever blade springs on the upper 
intermediate mass which can then be transmitted to the test mass. 

Introduction 

This document is an update to earlier calculations of seismic and thermal noise 
from the aLIGO quad which can be expected to be transmitted to the test mass, 
DCC T050046[1] the calculations from which are included in Appendix A. An 
estimate for the seismic noise is calculated by using ANSYS FEA software to 
model the full quad pendulum consisting of 3 levels of metal blade spring/ wires 
and 1 monolithic silica stage. The transmissibility of this is used to estimate how 
much noise is transmitted. 
The thermal noise originating from the cantilever springs on the upper 
intermediate mass of the quad pendulum is then modelled independently. Three 
different approaches are taken which give comparable thermal noise 
performance. A suitable transmissibility is calculated and the thermal noise due 
to excitation of the lower blades is calculated. 
 

1 Seismic noise 

The calculation of the seismic noise transmitted to the test mass required 
modeling of the full aLIGO quad suspension. The residual noise at the top of the 
chain is filtered by successive pendulum stages   
The aLIGO quad model, D0901346, was stripped back to just the blades and 
immediate supporting structure as shown below in Fig1. 
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Figure 1 aLIGO quad structure stripped down for analysis 

 
The model has flat profile blades modeled as real solids but without a pre-stress. 
The metal wires and glass fibers were replaced with appropriately dimensioned 
stiff beams to remove the large number of violin like modes that occur due to the 
lack of tension. The structural modes were calculated and then a harmonic 
analysis performed to get the motion of the blades and test mass at the 
resonances of the 3 blades. The motion of the system at each of the three 
resonances are shown in Figures 2-4. The loss values used for the harmonic 
analysis are shown in Table 1. 
 
Table 1 loss angle for materials used in the simulation 

Material Loss angle φ 
Silica (test mass) 3.8x10-8 

Silica (fibre) 1.6 x10-9 [2] 

Maraging steel 1x10-4 

Stainless steel 1x10-3 
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Figure 2 Motion of top blades at 68 Hz resonance 

 

 
Figure 3  Motion of middle blades at 93 Hz resonance 
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Figure 4 Motion of bottom blades at 113 Hz resonance 

 
The combined transmissibility has been plotted in Figure 5 below. Around the 
resonance the values go in 1 mHz steps to improve resolution. The 
transmissibility measured here is for a vertical excitation applied to the support 
structure of the upper blades and the vertical motion is observed at the test 
mass. 

 
Figure 5 Transmissibility of full quad suspension. The upper stage is vertically excited and the 
motion is measured at the test mass. Inset shows close up of peaks. 
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The transmissibility measured for each of the three resonances is 1.44 x10-5 at 
68.014 Hz (top blade resonance)  9.66 x10-7at  93.357 Hz (middle blade 
resonance) and 1.78 x10-5 at 113.780 Hz (lower blade resonance)  Using this  to 
calculate the residual seismic noise gives the results in Table 2. The longitudinal 
noise per test mass, col. 6, is given by multiplying cols. 3-5 together. The seismic 
residual noise in column 5 is a requirement of the seismic isolation system as 
detailed in LIGO E990303[3] 
 
 
Table 2 Residual seismic noise at each of the three resonances calculated from the transmissibility of 
a full quadruple suspension with unstressed blades and rigid wires. 

    seismic  
longitudinal 
noise target strain 

target 
sensitivity factor  

  transmissibility 
cross-
coupling residual  test mass  sensitivity  per test mass below  

Blade 1st int (Hz) at resonance  (m/rtHz) (m/rtHz) (1/rtHz)  (m/rtHz) target 

Top 68.014 1.44E-05 1.00E-03 3.00E-14 4.32E-22 4.00E-24 8.00E-21 1.85E+01 

Middle 93.357 9.66E-07 1.00E-03 3.00E-14 2.90E-23 3.00E-24 6.00E-21 2.07E+02 

Bottom 113.78 1.78E-05 1.00E-03 3.00E-14 5.34E-22 2.50E-24 5.00E-21 9.36E+00 

 
The excess seismic noise transmitted to the test mass at the first internal modes 
of each of the 3 stages of blade springs has been calculated to have a minimum 
factor of safety of 9 below the target sensitivity. This compares well with the 
desired noise levels given in T010075-01[4] which recommends that technical 
noise sources are a factor 10 below the desired sensitivity. 
The transmitted noise observed here is lower than that reported in T050046 this 
can be explained by a number of factors. The original work used a transmissibility 
for each single blade, having a simple trapezoidal shape, and multiplied to get 
the combined transmissibility of the three stages, see T040061[6]. This current 
work uses the blade shapes for the aLIGO production blades, as an example the 
lowest blade, D060327 is shown in Figure 6, and is modelling a full suspension 
system of 3 metal stages and 1 monolithic stage. This allows for coupling 
between the modes of the suspended components. It should also be noted that 
the original work used a Q of 2 x104 for the maraging steel blades rather than the 
104 used in the current work.  
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Figure 3 D060327 Lower blade for aLIGO quad suspension 

The low level of transmitted noise means that it should not be necessary to apply 
damping to the blades due seismic excitation of the resonant modes of the 
maraging steel blade springs. 
 
 

2 Thermal noise 
 

Thermal noise can be transmitted to the ITM/ ETM due to excitation of the 
internal modes of the lowest set of metal blade springs. There are 3 
methods used to calculate the possible levels of the thermal noise and 
each require a different analysis of the transmissibility of the lower stages 
of the quad suspension. 

 

2.1  RMS displacement 

This approach follows the derivation outlined in Ref [1], where it is 
assumed that the rms displacement is related to the thermal energy via 

Tkxxm B=         (1) 

with m as the mass of the oscillating spring, and xx,  are the acceleration and 
displacement respectively. Assuming a harmonic response, gives an rms 
displacement 

2
0

2
2

4 mf
Tkx B

π
=     (2) 
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If it is assumed that the Quality factor is φ/1=Q  with resonant frequency f0, then 

the bandwidth can be written as 
Q
ff 0=∆ , which gives an amplitude spectral 

density of  

3
0

24 fm
TQkx B

π
=    (3) 

For the 1st internal mode of an aLIGO upper intermediate mass 
410=Q , kgm 36.0= , Hzf 78.1130 = , which results in a spectral density of 

Hzmx /104.1 12−×=  at resonance. 

2.2 Fluctuation dissipation theorem (FTD) 

The amplitude spectral density as a function of frequency can be obtained 
via direct application of the fluctuation dissipation theorem. The amplitude 
spectral density is related to the real part of the admittance, Y, via 

[ ]Y
f
Tkx B ℜ= 22

2

4
4
π

    (4) 

which can be written as 
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For the 1st internal mode of an aLIGO upper intermediate mass spring, 
410/1 −== Qφ , kgm 36.0= , Hzf 78.1130 = , and this results in an amplitude spectral 

density of Hzmx /102.1 12−×=  at resonance. Figure 7 shows the amplitude 
spectral density as a function of frequency. The green dot at the resonance is the 
value obtained from the rms approach described above. 



LIGO LIGO-T1300595 

 9 

 
Figure 4 Comparison of the three methods to calculate the amplitude spectral density of the 
cantilever spring thermal noise. 

2.3 Levin’s direct approach 

The final method which can be applied to calculate the thermal noise is the 
approach of Levin[5]. In this case a notional force (1N in this case) is applied at 
the centre of a blade spring fixed at both ends to mimic the motion of the internal 
mode to derive the strain energy when the blade undergoes oscillations in the 1st 
internal mode.  The deformation of the blade is shown in Figure 8. 

 
Figure 5 Deformation of lower blade caused by a 1N force acting on the centre of motion. 
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The dissipated power is given by 

φεπfWdiss 2=      (6) 

with strain energy ε which is readily derived from the FEA model. For the case of 
the aLIGO upper intermediate mass spring 6107.2 −×=ε  for a 1N force applied at 
the blade spring centre. The off resonance amplitude spectral density is then  

0

2 2
F

W
fm
Tkx dissB

π
=     (7) 

with a notional force F0. Figure 7 above also shows a plot of the frequency 
dependence of the amplitude spectral density. It is important to note that this 
approach does not predict the on-resonance thermal noise. This is consistent 
with previous applications of the Levin method e.g the thermal noise of a finite 
size mirror well below the internal resonant modes. 
 
The FDT method and Levin’s method give identical off-resonance thermal noise 
estimates. Furthermore, the rms approach and the fluctuation dissipation 
theorem give on resonance amplitude spectral densities which are similar to 
10%. Levin’s method only provides an estimate for the thermal noise at 
frequencies below the resonance of the mode which is being modelled as it does 
not have a mechanism for including the resonance of the blades. This is identical 
to the approach taken with the finite size LIGO mirrors and mirror thermal noise 
terms due to the operation frequency being several kHz below the resonant 
modes of the test mass 
 
 

2.4 Transmissibility of blades 

 
In order to calculate the thermal noise sensed at the test mass it is essential to 
have the correct transmissibility of the system. The RMS and FTD methods both 
take into consideration that the system is at resonance as shown in Figure 7 
above while the Levin method does not, so this requires two different methods to 
calculate the transmissibility. 
 
2.4.1 Transmissibility for RMS/ FTD Approaches 
 
The transmissibility for these methods relies on treating the blade springs as rigid 
bodies. This means that the blade response spectrum is treated as if the internal 
mode resonance does not exist. To get the approximate transmissibility of a rigid 
blade the first stage is to model a single blade with a realistic metal wire with a 
19.6 kg load attached to simulate half of a PUM. The blue curve in Figure 9 
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shows the transmissibility of this system. The blade is vertically excited at the 
root and the motion measured at the end of the wire. The peak at ~330 Hz is 
associated with the wire.  
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Figure 6 Response spectrum from single lower blade with 19.6 Kg on end of a real wire. The blade is 
excited at the root and the motion is measured at the end of the wire 

 
The curve is then fitted using a combination of 1/(1-(f/fo)2) curves for the first and 
third resonances to remove the resonance at 113 Hz. This is shown by the red 
curve in Figure 9. This is used to make an estimate of the transmissibility at the 
resonant frequency. In Figure 9 it is 0.00106. The displacement spectrum is also 
measured for the monolithic section of the suspension at the resonant frequency. 
These are then combined to give the transmissibility for the whole lower section 
of the system. 
The combined system of the blade with wire/ monolithic structure has a combined 
transmissibility of 2.9 x10-6. Using the thermal noise value calculated above for 
the single blade thermal noise at the resonance of 113 Hz the thermal noise 
transmitted to the test mass is given by  
 

2×××= factorcouplingcrosstransxx combinedblademasstest   (8)    

    
Where the cross coupling factor is 1x10-3 and the √2 is because of the two 
blades. This gives a thermal noise of 5.7 x10-21 m/√Hz. This is approximately 
equal to the target sensitivity per test mass at 100 Hz in aLIGO[2] and is an 
improvement by ~ factor of three over previous estimates[1], again this is caused 
by the change in the shape of the blades. However, this noise level is still a factor 
of ~10 above the desired value of ~5 x10-22 m/√Hz. 
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2.4.2 Transmissibility of blades for Levin’s method 
 
As noted above, Levin’s method provides a good estimate for the off-resonance 
case but fails to correctly predict the increase in thermal noise at resonance as 
seen in the RMS and FDT cases. This method, if used with the same 
transmissibility value as above would result in a much lower value of the thermal 
noise than may be expected. In this instance the transmissibility of the lower 
stages of the quad suspension were modelled independently and the 
transmissibility for the combined system used to calculate the thermal noise 
transmitted to the test mass from thermal excitation of the lower blades. Figure 
10 shows the UIM+ Monolithic subsystem to be modelled. 
 

 
Figure 7 UIM and monolithic section of aLIGO quad. Blades are flat profile, wires and fibres are 
realistic elements. 



LIGO LIGO-T1300595 

 13 

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

-10 10 30 50 70 90 110 130

Tr
an

sm
iss

ib
ili

ty

F (Hz)

1.00E-04

1.00E-03

1.00E-02

113.60 113.75 113.90

 
Figure 8 Response spectrum measured at the test mass when the UIM is excited vertically. Insert 
shows two peaks; one for each blade separated by 0.2 Hz. 

 
The transmissibility curve, shown in Figure 11, for this system was taken from the 
vertical movement of the test mass, giving a value of 0.015 at the resonance 
frequency of ~113 Hz. The thermal noise transmitted to the test mass can then 
be calculated using Eq. 8. This gives a thermal noise value of 2.3 x10-21 m/√Hz at 
the test mass. This value is still ~5 times greater than the desired level but is 
lower than that calculated using the RMS and FDT methods. The comparison 
between the different methods is shown in Table 3. 
 
Table 1 Comparison of transmitted thermal noise measured at the test mass calculated using three 
different methods  

Method Thermal noise per 
blade(xblade) (m/√Hz) 

Transmissibilit
y (transcombined) 

Thermal noise at test 
mass (xtestmass) (m/√Hz) 

FDT 1.2 x10-12 2.9 x10-6 5.7 x10-21 

RMS 1.4 x10-12 2.9 x10-6 5.7 x10-21 

Levin 1.1 x10-16 0.015 2.3 x10-21 
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Figure 11 also shows that there are separate peaks for each blade. The peaks at 
the blade resonances here are very narrow with a total width for the two 
resonances of ~ 0.3Hz. Each individual peak has a width of less than 0.1 Hz. 
This offsetting is due to minor differences in the mesh of the two blades leading 
to very small differences in the mass distribution. By careful matching of the 
blades so that the resonances are the same this problem would be alleviated. 
The blade matching documented in T1000068-v2 suggests a difference in loaded 
height between pairs of blades of 0.2mm or less. This equates to a 0.125% 
difference in blade stiffness and would suggest a frequency separation between 
pairs of blades of at most 0.04 Hz at the 113Hz resonance. However, to take into 
consideration any inconsistencies in the assembly of the blade subsystems a 
width of 0.3 Hz seems a reasonable conservative estimate. 
This suggests that the use of damping may not be necessary if the detector 
readout can be filtered in a 0.3 Hz bandwidth at the resonant frequency of the 
blades. Assuming the distribution shown in Figure 11 the transmissibility has 
dropped by at least a factor 3 at 50mHz from the peak, this would lead to a 
thermal noise level three times lower which is approaching the desired level of 
sensitivity of ~5 x10-22 m/√Hz 
 

Effect of notching the detector signal 
 
The narrow bandwidth of the thermal noise signal means that it should be 
possible to apply a notch filter to the detector signal at the resonant frequency of 
the blades. To estimate how much this filter would degrade a potential detectable 
signal from a NS binary system a 1.4M-1.4M mass binary system was modelled 
at a variety of distances. Figure 12 shows the aLIGO target sensitivity and the 
expected signals. 
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Figure 9 Interaction of aLIGO target sensitivity curve with expected signal levels for NS-NS systems 
at varying distances 

To test a worst case scenario, the ratio of the signal with a ±1Hz data analysis 
filter applied to the un-filtered signal is shown in Table 3. This size of filter is 
much larger than would be required but it may be easier to setup a single filter 
which will cover a large range of possible blade resonances where frequency 
shifts may be expected due to minor inconsistencies in blade manufacture and 
assembly procedures. 
 
Table 2 Ratio of signal power with a notch filter to power without a notch filter for NS binaries over 
the aLIGO band. 

Distance (Mpc) Signal power ratio (with filter/without 
filter) 

20 0.9978 

60 0.99857 

100 1 

140 1 

180 NaN 
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This calculation shows that for the close binary systems, despite simulating the 
effect of  data analysis methods weighting out a 2Hz window at ~113 Hz, there is 
plenty of potential power available elsewhere. This in turn means that the 
chances of detection are not reduced by any significant amount. For the more 
distant binaries; either the signal is not detected at 113 Hz, so the filter will have 
no effect hence the ratio of 1 above,  or the furthest away sources are below the 
target sensitivity altogether. This calculation was performed for a single detector 
looking in one direction, other configurations may have slight variations but 
overall the effect would appear to be very small. 
 

Conclusions  

The transmission of noise to the ITM/ ETM from excitation of the blades by 
residual undamped seismic activity appears to be well within acceptable limits. At 
the 113 Hz resonance of the lowest set of blades the seismic noise transmitted to 
the test mass is ~9 times lower than the target sensitivity. This gives noise levels 
of ~ 5.3 x10-22 m/√Hz which is comparable with the desired upper level for an 
individual technical noise source[3]. This suggests that the seismic noise is not a 
cause for concern and that damping is not necessary to deal with it. 
 
For thermal noise the differences in the 3 analytical approaches requires different 
modelling for the transmissibility of the lower stages. When this is taken into 
consideration the results for the RMS/FDT method and Levin’s method are within 
~ a factor of 2 of each other. However, even the lower value of thermal noise 
calculated using Levin’s method is still above the desired noise level. However, 
Table 3 above shows that using a noise filtering algorithm around the resonance 
frequency of the lower blades would have an extremely small effect on the 
potential for detection of NS binaries.  
 
In conclusion, due to the low level of noise power present in the 
detection band we propose that it is acceptable to operate the detector 
without  replacing the magnetic damping system. We also note that adding 
a non-magnetic damping system such as a tuned mass damper is non trivial 
due to lack of space and suitable attachment points 
 
 
 
 

 
 
 
Appendix A 
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Seismic and thermal noise calculations taken from T050046-01 
 
The longitudinal noise at the test mass (column 7) is calculated by multiplying the 
entries in columns 3, 4, 5 and 6, where the residual noise level on the seismic 
platform (column 6) is taken from the Seismic Design Requirements Document 
(E990303-03-D). The target sensitivity per test mass (column 9) is given by target 
sensitivity (column 8) *2000. The final column is the ratio column9/column7. 

 

Blade 
freq of 
mode peak height   transmissibility  X-coupling factor platform residual  long. noise  target  target  factor below 

  fm (Hz) (transmissibility of final stage (vert. to long.) vert. noise at test mass sensitivity* sensitivity target s'tivity 

    of blade stages) (fo/fm)^2   (m/rtHz) (m/rtHz) h (1/rtHz) per mass   

                (m/rtHz)   

                    

top 69.4 6.45E-03 7.73E-03 1.00E-03 3.00E-14 1.50E-21 4.00E-24 8.00E-21 5.35 

middle 96.6 9.32E-03 3.99E-03 1.00E-03 3.00E-14 1.12E-21 3.00E-24 6.00E-21 5.38 

bottom 113.6 5.23E-03 2.88E-03 1.00E-03 3.00E-14 4.52E-22 2.50E-24 5.00E-21 11.07 

 
 
The most important blades for thermal noise considerations are the lowest set, nearest to the 
test mass, since noise associated with the blades further up the chain is better isolated at the 
test mass. For this blade, we have m = 0.31 kg, and ω = 2πfb where fb = 114 Hz. To calculate 
the amplitude spectral density we divide by the root of the bandwidth Δf where Δf = fb /Q, and 

hence find, with Q = 10
4
, (this has changed to 2x104) 

x = 1.5 x 10
-12 

m/√ Hz  

The resulting displacement at the test mass is given multiplying by the vertical 
transmissibility of that stage* (the transmissibility treating the blade as a rigid body), the 
vertical transmissibility of the final stage on its silica suspension and the cross-coupling 
factor between vertical and horizontal, giving  

xfrom one blade= 1.5 x 10
-12 

x 3x10
-3 

x (6.1/114)
2 
x 10

-3 
= 1.3 x 10

-20 
m/√ Hz  

We should further multiply by √2 to take account of the two blades at the lowest stage, giving  

xtest mass = 1.8 x 10
-20 

m/√ Hz at 114 Hz  

This should be compared with a level 10 times lower than the target sensitivity per test mass 

at that frequency, namely ~ 5x 10
-22 

m/√ Hz. 
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