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Abstract

Thermal noise is one of the fundamental noise sources that limits frequency stabi-

lization of lasers using an external cavity. This thermal noise comes from the mirror

substrate and multi-layered re�ection coatings. The use of re�ective coatings, and

hence noise from them, can be eliminated by the technique of Total Internal Re�ection

(TIR). This can be used in the building stabler optical cavities, a necessity in the �eld

of gravitational wave detection. The project aims to search for an optimal design and

substrate material for the cavity using TIR and reduction in thermal noise.

Part I

Motivation

Laser can be used as a precise timing clock source and also to measure lengths precisely
as is the case with Gravitational Wave(GW) detectors. Therefore, any �uctuation in laser
frequency amounts to reduction in precision. In general, a laser is stabilized using frequency
reference like an atomic line or using modes of an optical cavity. In the case of a cavity, the
length is not constant but �uctuates due to long-term drifts in temperature and pressure
and also due to short-term �uctuations like acoustic vibrations that alter the cavity length.
Fluctuations may also arise from the fact that changes in pressure and temperature change
the refractive index of the medium which in turn changes the optical length of the cavity
[5]. Sophisticated measurements like gravitational wave detection require laser noise to be
strongly reduced. To achieve this, active stabilization of the laser cavity is needed. The
reason behind the study of thermal noise in resonator cavities is that it sets a limit on the
frequency stability of optical cavities, and thus on their performance too. In case of Fabry
Perot resonators, the noise comes from the mirror coating and the substrate. Although the
use of multilayer coating allows one to obtain high re�ectivities ' 1 − 10−6, the Brownian
Thermal noise due to the large mechanical loss becomes a hindrance [3]. Therefore, the use
of coating-less resonator cavities, based on the principle of Total Internal Re�ection (TIR),
can be used to eliminate the noise from the coating completely.

Previous attempts of using coating-less TIR cavities have been proposed by V. B. Braginsky
and S. P. Vyatchanin [4] where corner re�ecting prisms were used. However, there were losses
from the discontinuity in the prism shape i.e. the corners and also from the anti-re�ection
coating used on the front surfaces of the prism. Another technique called Frustrated Total
internal re�ection (FTIR) has been used by Schiller et. al [2] as shown in Fig.(1). Design
and characterization of a highly re�ective mirror without coatings using the principle of TIR
has also been shown in [18].

The project aims to focus on developing methods of calculating Thermal noise in the TIR
optical cavity, work towards achieving frequency stabilization and ultimately search for an
optimal design and material for the TIR reference cavity for the Thermal noise reduction
using simulations constructed using COMSOL and MATLAB software packages.
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Figure 1: Rough diagram of a Schiller TIR cavity. The laser is injected into cavity (B) using
prism (A). The beam is forced to stay within the cavity due to TIR.

TIR Cavity

The coating noise from the mirrors of laser resonator cavities can be eliminated if the coating
itself is not present. The idea is implemented using TIR which gives no loss during re�ection
unlike any coated mirror which will have a �nite transmission coe�cient. However, to be used
a resonator, light must allowed to enter and leave the cavity. For this purpose, evanescent
coupling is used. Every TIR has an associated evanescent wave that travels out of the
cavity and decays in amplitude exponentially. The half-value of decay is of the order of
the wavelength λ (see Chapter 7 of [17]). Hence, if another transparent surface with higher
optical density is brought close enough to the half-value, the wave will leak into this material.
This is called Frustrated Total Internal Re�ection (FTIR). The construction of the cavity is
such that, the leaked beam is trapped inside the cavity and a resonator is formed as shown
in Fig.(1). The refractive index n1 is lower than n2 or n3 to allow TIR and the separation
between the two materials is of the order of the wavelength λ as shown in the diagram. This
project aims to simulate a TIR cavity similar to that proposed by Schiller et. al [2] and
optimize the cavity con�guration in order to minimize the other sources thermal noise.

Part II

Thermal Noise and FDT

The study of noise becomes important in the study of gravitational waves because of the
magnitude of the signal due to a gravitational wave is small enough to be of the same
order as the noise due to several factors: mechanical disturbances, thermal �uctuations in
shape, change in physical properties like refractive index and so on. Once the acoustic or
seismic disturbances are taken care of by the use of mechanical-�lters, the other noises in
a microscopic scale are to be addressed. In case of LIGO (a snap of a reference cavity is
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Figure 2: Photograph of a reference cavity used by LIGO for frequency stabilization. Cour-
tesy: Erica Chan

shown in Fig.(2)) these microscopic noises come from the mirror substrate and coating of
the resonator cavity which can be calculated with the aid of the Fluctuation Dissipation
Theorem (FDT).

Fluctuation Dissipation Theorem

A system in equilibrium is not absolutely at rest. There are �uctuations that occur in the
quantities about the equilibrium value. Considering the case of a Brownian particle (like a
pollen grain in water): the incessant motion of the surrounding molecules colliding with the
Brownian particle result in �uctuation of the position of the particle [1]. In his theory of
Brownian motion, Einstein showed that this �uctuation is related to the di�usivity of the
medium which in turn is related to the viscosity [1]. Hence, the �uctuations in the quantity
at equilibrium is related to the dissipative mechanism. This is the a special case of the
Fluctuation Dissipation Theorem (FDT) which is a more generalized relationship between
the random force and the frictional constant. It is a way to relate the dissipative mechanism
to the �uctuations in a thermodynamic quantity. It presents us a theoretical approach to
quantify �noise� in a system by looking at the dissipative mechanism associated with the
quantity of interest.

A particular case of electrical noise was identi�ed by Nyquist [6] prior to the work of Callen
and Welton and the noise spectrum was found to follow:

E2dν = 4kBTRdν (1)

where E is the random voltage developed across the end of an electrical conductor, R is the
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Figure 3: Spectral density in case of velocity damping

resistance, T is the temperature and kB the Boltzmann constant.

In the paper by Callen and Welton [7], a relationship is formulated between the general
impedance of a system and the �uctuations caused due to the forces. According to them,
if a system has densely populated energy levels, it can absorb energy when acted upon by
a periodic force. The �uctuations have been considered as sinusoidal perturbation to the
Hamiltonian of the unperturbed system following which time-dependent perturbation theory
is used to obtain the expression for the power loss as a function of the angular frequency of
the perturbations ω. The generalization of the Nyquist relation as obtained by Callen and
Welton goes as:

〈V 〉2 w 2

π

∞̂

ω=0

R (ω)E (ω, T ) dω (2)

where E (ω, T ) is the energy at a particular frequency ω and R (ω) is the resistance. At high
temperatures, E (ω, T ) w kBT which gives the result obtained by Nyquist. The generalized
resistance that appears in the expression arises out of dissipation of the system.

An example of Mechanical noise

Peter Saulson, in his work [11], has shown the use of FDT to evaluate the thermal noise in
case of dissipative simple harmonic motion. He has shown two separate cases of damping -
that due to velocity damping i.e. by a dissipative force of the form Fdiss = −fv and that
due to internal damping which is modelled by a complex spring constant after the anelastic
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Figure 4: Spectral density in case of internal damping. The results are for constant loss
factor φ

model of Zener [13]. In the case of velocity damping, the equation of motion is given as:

mẍ+ fẋ+ kx = Fth (3)

where x is the displacement, f is the damping coe�cient, k is the sti�ness constant and
Fth = 4kBTf . Going over to the frequency domain, it follows from Eq.(3) that:

| x (ω) |2= 4kBTf

(k −mω2)2 + (fω)2
(4)

Fig.(3) shows the variation of the power spectral density for a pendulum of length 1m and
mass 1kg for di�erent Q factors. The Q factor is a measure of the rate of energy loss from
an oscillator due to damping. It is the ratio of the natural frequency to the half-power
bandwidth. Under heavy damping, the Q factor is low and vice versa. One can also think of
the Q factor as measure of how sharply peaked is the frequency response of the oscillator near
the natural frequency. With high values of the Q factor, the system shows strong response
at resonance with a small bandwidth and vice versa. In the case of internal damping, the
dissipation is considered through a complex spring constant. The Hooke's law in this case
is:

F = −k {1 + iφ (ω)}x (5)
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where φ (ω) is the lag between the response of the system x to a force oscillating a frequency
ω. The equation of motion in this case is:

mẍ+ k {1 + iφ (ω)} (x− xg) = Fth (6)

Here, x
xg

is the vibration transfer function. The damping coe�cient gets replaced by the

quantity kφ
ω
and the amplitude associated with ω is:

| x (ω) |2= 4kBTkφ

ω
[
(k −mω2)2 + (kφ)2

] (7)

The model of calculating the quantity φ is taken from the anelastic model by Zener [1] where:

φ = ∆
ωτ

1 + (ωτ)2
(8)

there τ is a frequency at which damping shows a maximum. The quantity ∆ is the relaxation
strength which in the case of a two spring and a dashpot model is the ratio k2

k1
where k2 is

the spring constant of the spring attached to the dashpot. This ratio is usually� 1. Fig.(4)
shows the variation of power spectral density with the frequency for a pendulum of length
1m and of mass 1kg for constant loss factor φ (i.e. φ is independent of ω) for each of Q
factors.

The technique of applying the FDT directly to the noise calculation in the LIGO test masses
was put forward by Levin [8]. The Levin approach uses the FDT directly to evaluate the
noises where the only term to be calculated computationally is the power loss due to dissi-
pation.

Levin's Approach and Brownian Thermal Noise

In his approach towards calculating the Brownian Thermal noise in the LIGO test masses,
Levin [8] considered �uctuations in LIGO's readout variable x (t) to be the phase shift in
the light re�ected from the surface. He considered the quantity mathematically as:

x (t) =

ˆ
f (r) y (r, t) d2r (9)

where f is the form factor proportional to the intensity pro�le of the laser beam, normalized
such that

´
f (r) d2r = 1 and y(r, t) is the displacement of the mirror face in the direction

of the beam. In case of gaussian beam, f is a gaussian that mimics the laser's intensity. An
oscillating pressure P (r, t), scaled according to the form factor, acts on the test mass surface
which perturbs the system from equilibrium.

P (r, t) = F (t) f (r) = F0 cos (ωt) f (r) (10)

Here F0 is the amplitude of the applied force. The Hamiltonian that would result in this
force term, therefore, becomes Hint = −F (t)x. Using Eq.(9), the Hamiltonian takes the
form:

Hint = −
ˆ
P (r, t) y (r, t) d2r (11)
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This Hamiltonian is the generator of the time evolution of x (t). Using the expression complex
impedance which goes as:

Z (ν) =
2πiνx (ν)

F (ν)
(12)

where x (ν) and F (ν) are the Fourier transforms of the readout and the force F (t), the real
part of Eq.(12) gives the relation with the power dissipated Wdiss:

| < {Z (f)} |= 2Wdiss

F 2
0

(13)

Using this relation in the expression relating the impedance to the dissipation due to Callen
and Welton, the �nal expression of the spectral density, as obtained by Levin [8], is:

Sx (ν) =
2kBTWdiss

π2ν2F 2
0

(14)

where F0 is the amplitude of the oscillating force applied, ν is the frequency and Wdiss is
the time averaged power dissipation due to internal stresses developed due to the applied
pressure. For other sources of thermal noise such as the Thermoelastic and Thermorefrac-
tive noise, the calculation of Wdiss in Eq.(14) turns out to be di�erent depending on the
mechanism of the dissipation.

In the case of the Brownian noise, the dissipative mechanism is assumed to be the mechanical
loss of the material of the test mass. The idea is the fact that the molecules of the substrate
material vibrate about the mean position which causes an overall change in shape of the
substrate. The idea is similar to the dissipation of energy of a Brownian particle. The
di�erence being the fact that due to a mechanical loss factor, the material will get compressed
and extended in time. This results in elastic potential energy being developed inside which
can be calculated from elastic theory [8]. The expression for Wdiss follows:

Wdiss = 2πνUmaxφ (ν) (15)

Thermoelastic (TE) noise

The TE noise is a result of the �uctuations in the face of the mirror on which the light
beam is incident. Although Brownian noise results in the same behaviour, the mechanism
which causes the face to �uctuate is di�erent for the two cases. In case of the TE noise,
it is the random thermal expansion of the material while in the case of Brownian Thermal
noise, it is the stochastic Brownian motion of the particles of the material that results in
the �uctuation. Details about the TE noise for the case of the laser beam getting re�ected
o� the mirror face has been evaluated by Liu and Thorne [14]. In order to calculate the
spectral density of these �uctuations, the approach taken is that of Levin [8]. One applies
a time-varying sinusoidal pressure at the frequency of interest to the face of the substrate
where the beam is being re�ected, scaled according to gaussian intensity pro�le of the light
beam:

P = F0
e
− r2

r20

πr20
cos(ωt) (16)
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where F0 is the force amplitude, r0 is the beam radius and ω is the frequency of interest.
This time varying pressure will in turn generate stresses, which are solved by means of the
equation of stress balance [15], in the test mass which in turn result in the generation of a
temperature gradient. The heat �ow results in dissipation which is time averaged to give
the quantity Wdiss (as calculated in [15]),

Wdiss =

〈
TdS

dt

〉
=

〈ˆ
V

κ

T
(∇T )2 dV

〉
(17)

which in turn is related to the spectral density according to the Fluctuation Dissipation
Theorem [7, 8] according to Eq.(18). In the above expression T , S and κ correspond to the
temperature, entropy and the thermal conductivity respectively.

S(ω) =
8kBTWdiss

F 2
0ω

2
(18)

It should be noted that according to the approach considered by Liu and Thorne, the TE
noise is generated only at the face of the mirror where there is phase shift due to the
�uctuation of the position of the face where light is re�ected. The following is the expression
of the spectral density in the case of an in�nite test mass [14]:

SITMq (ω) =
8(1 + σ)2κα2

l kBT
2

√
2πC2

V ρ
2r30ω

2
(19)

where αl is the linear expansion coe�cient, σ is the Poisson ratio, CV is the speci�c heat at
constant volume and ρ is the density of the material.

Thermorefractive (TR) Noise

While the reason for TE noise and the Brownian noise is the �uctuation in the position of the
mirror face, the reason for TR noise is the random �uctuation in the index of refraction, n
with the temperature. The optical path that light travels in the substrate is going to change
if n changes. This adds an extra random phase to the light as it travels through the material.
Heinert's work [10] on TR noise presents a comprehensive calculation of the TR noise in �nite
sized test masses. The approach taken is once again that due to Levin [8] and is similar to
one followed by Liu and Thorne [14]. In this case, one uses an oscillating heat source at
the desired frequency directly unlike in TE noise calculation where one indirectly develops
temperature gradient through an oscillating pressure. This is because in the case of the
TR noise, the extra random phase is added due to the change in the refractive index which
occurs throughout the entire beam path inside the material. The change in the refractive
index is caused due to the �uctuating temperature. Thus, to calculate the �uctuation in
the temperature, the heat source is applied. Note that the heat source given by Eq.(20) is
independent of z, the direction of propagation, which imples that we consider the heat source
to be present all through the beam path. This is however an approximation. In general, the
thermal gradient along the z direction should also be considered. This is because in reality
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the beam radius changes with z and therefore the virtual heat source should also have a z
dependence.

q(~r, T ) =
β

πr20
T0F0e

− r2

r20 cos(ωt) (20)

The parameter β = ∂n
∂T

is the thermorefractive parameter. The heat injection, or in other
words entropy injection, results in a temperature �eld that evolves in time following the
inhomogenous Heat equation. The dissipated work is calculated as given in Eq.(17) and the
spectral density follows from Eq.(18) and is given by:

Sz (ω) =
16

π
kBT

2
0

HR2κβ2

r40C
2
P

×
∞∑
n=1

k2n
[J0 (an)]2

K2
n

ω2 + κ2

C2
P
k4n

(21)

where Kn =
´ 1

0
J0 (anρ) e−((R/r0)ρ)

2
ρdρ, J0 (x) is the zeroth order Bessel function, an is the

nth root of J1 (x), the �rst order Bessel function and kn = an
R
. The details of the calculation

along with the expression for Sz(ω) is provided in [10].

Part III

Finite Element Analysis(FEA)

At this point, it is worthwhile to recall that the aim of the project is to look into the
noise in the TIR cavity as shown in Fig.(1). Owing to the geometry of the TIR cavity,
analytic calculation of the noise maybe di�cult and hence the FEA approach. To realize the
above aim, a Finite Element Model to compute the various noise sources using COMSOL
with MATLAB was used. However, the �rst step towards building a successful model is a
sanity check with the already known results for Thermoelastic and Thermorefractive noise
calculation for the relatively simpler case of cylindrical test masses [16, 10, 14]. In certain
cases of the analytic calculations, the cylindrical test mass was assumed to be much larger in
dimensions compared to the beam spot size and was approximated by an in�nite half space.
In our case, we always model �nite sized test masses and check for an asymptotic match
with the analytic results when the dimensions of the cylinder is made larger.

Using COMSOL with MATLAB

Here we have calculated the Thermoelastic and Thermorefractive noise pro�les for cylindrical
test masses only. The TE and TR noises are calculated separately in two di�erent COMSOL
models. The algorithm for building up the model followed from the works of Heinert [10]
and Liu and Thorne [14]. To summarize, the components of the model were as follows:

• A cylinder with insulated walls (see Appendix for an explanation) is built out of the
material desired - typically Silicon, Sapphire, Fused Silica etc.
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Figure 5: TR noise spectrum for Sapphire at 10K. The solid lines represent the analytic
solutions for the �nite(red) and in�nite(blue) cases. The blue circles is the result of the FE
model.

• The Solid Mechanics and Heat Transfer in Solids modules of COMSOL were used for
the calculation of the TE noise since we look into the thermal gradients generated due
to application of a pressure on one of the faces of the cylinder (see [14]).

• The Heat Transfer in Solids module of COMSOL was used for the calculation of the
TR noise spectrum since the thermal gradients were to be studied due to the presence
of a virtual heat source (see [10]).

• A Time Dependent Study was used and Fourier analysis on the signal was performed
in MATLAB to extract the response due to only the perturbing term amongst the
transient solution and numerical error made by COMSOL.

Results

As mentioned earlier, the geometry chosen was cylindrical. The dimensions of the cylinder
considered here is taken from the paper by Heinert et. al. [10]: the mirror radius 25cm
the beam radius 9cm and the mirror height 46cm. The TR noise spectrum as calculated
by the model for the case of Sapphire at 10K is shown in Fig.(5). A comparison is made
with the analytic calculations by Heinert [10]. The relative error between the FEA and the
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Figure 6: TE noise spectrum for Silicon at 30K. Solid green line is the analytic solution while
black asterisk represent the result of FEA.

analytic results is less than 5% in this case. One interesting feature to note about this plot
is the deviation of the TR noise from the in�nite case and becoming a �at line for lower
frequencies. The reason being the themal di�usivity (i.e. the quantity given by κ

Cp
; κ is

the thermal conductivity in W/mK and Cp is the speci�c heat per unit mass at constant
pressure in J/kgK) for Sapphire at 30K has a high value (∼ 105 kg/ms [10]). The di�usivity
detemines how quickly heat is carried away in a material. As a result at low frequencies, the
temperature gradients developed are not steep since heat di�uses away quickly within the
time of the pressure cycle. Therefore, the dissipation, which depends on the temperature
gradient as given in Eq.(17), is low. For materials with lower di�usivity, this is not the
case and the plot is almost a straight line like the in�nite test mass case shown in Fig.(5).
Interestingly, the same material Sapphire shows a much lower di�usivity at 300K [10]. In
which case the plot is di�erent as mentioned above.

The TE noise spectrum as calculated for Silicon at 30K is shown in Fig.(6). The analytic
calculation is taken from the paper by Cerdonio et. al. [16]. The calculation is however
performed for a cylindrical test mass with an in�nite radius. The di�erence between the
simulated and analytic results become apparent at the low frequency regions where the
�niteness of the geometry becomes important. One may also notice the plot deviates from
that of a straight line in the low frequencies. The reason is expected to be the same as cited
for the TR case.

Once the simulated results matched fairly with the analytic results, the two mechanisms were
put together to check for any cancellation e�ects. The idea behind thinking of cancellation
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Figure 7: TE and TR noise spectrum for Silicon at 30K. The solid lines represent the
analytic results for the TE(blue) and TR(red) noise. The circles correspond to the results
of the TE(black) and TR(blue) from Finite Element model.

e�ects is that both the TE and TR noise arise from thermal �uctuations and are therefore
coherent. The TE noise depends on the coe�cient of thermal expansion α of the substrate
material while the TR noise depends on the thermo-optic coe�cient, β. It was suspected
that using a material with an α and β with opposite signs might lead to an overall reduction
in the total noise spectrum. Using Silicon at temperatures around 30K is an example of
such a material where α is negative while β is positive. This reduction would, however, be
apparent only for those materials for which the TE and TR noise amplitudes are similar. It
is to be emphasized at this point that the noise cancellation e�ects in substrate material has
not been previously explored.

Shown in Fig.(7) is a plot of the spectrum of the TE and TR noise for Silicon at 30K. As
is clearly evident from the plot, this material doesn't look favourable for compensating TE
with TR noise since the TR noise is almost 2 orders of magnitude greater than the TE noise.
The cancellation, if it does occur, will not be apparent in this case.

It was noted that the TE and TR noise in the case of Sapphire at 300K was fairly close to each
other (see Fig.(8)). We tried a hypothetical material which has all the physical properties
of Sapphire at 300K apart from the thermal expansion coe�cient which was taken to be the
negative of the true value i.e. −5.4 × 10−6K−1 instead of 5.4 × 10−6K−1. When the TE
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Figure 8: Suspected noise compensation for hypothetical Sapphire at 300K with the linear
thermal expansion coe�cient, αl made negative from its usual value. The green solid line
with crosses represents the TR noise calculated separately. The black solid line with crosses
represents the TE noise calculated separately. The green solid line with circles is the total
noise when the two mechanism where put together.

and TR mechanism are considered together in this model, we do notice a certain amount
of reduction in the total noise. The results are shown in Fig.(8). It can be seen that the
total noise which is plotted in blue is lower than the TR noise calculated individually which
is plotted in green. Due to time constraints, further quantitative analysis on the relative
reduction and correlation between the noises could not be done during the term of the
project.

We can, however, draw certain qualitative conclusions from Fig.(8). Whether the noises
are correlated can be determined from the correlated sum which is the algebraic sum of
the quantities and the uncorrelated sum which is the square root of the sum of the squares
of the two noises. The uncorrelated sum is always greater than each individual summand.
The correlated sum can, however, be lower than some of the summands, since the addition
is performed taking the relative signs into account. The fact that in this case the total
noise, when the two mechanism are put together, is less than the greater of the noise sources
suggests that some compensating mechanism exists: the noises are somewhat correlated.
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Part IV

Conclusion and Future Work

Remarks on the results

Based on the fact that the results given by our COMSOL model agrees with the analytic
results for the special case of the cylindrical test mass, we may conclude that for other
complicated geometries like the TIR cavity, this model should su�ce. The result shown
in Fig.(8) suggests there may be some compensating mechanism for the TE and TR noise.
Although the results are for a hypothetical material, a parametric study of the physical
constants required for the problem might lead us to such values for which a material exists.
It is worth mentioning once again that Silicon is a promising material due to its negative
expansion coe�ecient at low temperatures.

Future Work

The entire exercise of noise calculation hinges on the correct usage of the Fluctuation-
Dissipation Theorem (FDT). According to the FDT, we can calculate the �uctuation of
a variable by perturbing the system from equilibrium by applying the conjugate 'general-
ized' force. To be applied to the case of the TIR cavity, the perturbation that is to be added
to the Hamiltonian is still under consideration. We expect that the present FEA model will
give us the correct calculation of the dissipation from the response of the system once this
perturbation is applied.

Another task related to the cancellation of the TE and TR noise would be to search for a
realistic material for which the TE and the TR noise are close and the material also has a
negative thermal expansion coe�cient α and a positive thermorefractive coe�cient β. Due
to the absence of extensive literature on cancellation, it is also worthwhile to develop further
theoretical models.

In the TIR cavities, it is suggested that signi�cant loss occurs due to scattering from the TIR
faces [18]. In fact, this is the main source of power loss in the design suggested by Schiller
et. al. [2] as mentioned in [18]. However, it is also suggested that using super polished
mirrors might give high re�ectivity ' 99.9999% [18].

Part V

Appendix
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Discussion related to the dissipation

The Fluctuation Dissipation Theorem, as the name suggests, relates the �uctuations of a
system from equilibrium and the dissipation mechanism. The expression that contains the
content of the above statement is Eq.(18) given as:

S (ω) =
8kBT

F 2
0ω

2
Wdiss

The manner in which Wdiss is calculated speaks of the dissipative mechanisms present in the
system. The expression of the same as used in [14, 10] is given by Eq.(17):

Wdiss =

〈
TdS

dt

〉
=

〈ˆ
κ

T
(∇T )2 d3r

〉
This equation is derivable from the Heat equation itself. Consider the inhomogenous Heat
equation with a heat source pumping heat energy:

CV
∂T (~r, t)

∂t
− κ∇2T (~r, t) = q̇ (~r, t) (22)

where T ( ~r, t) is the temperature �eld. If one multiplies the above equation with the temper-
ture �eld T , one gets:

CV T
∂T

∂t
− κT∇2T = T q̇ (23)

Consider the �rst identity due to Green which says if one has two scalar �eld Φ and Ψ then
the following holds: ˆ

V

(
Φ∇2Ψ +∇Φ.∇Ψ

)
d3r =

ˆ

S

Φ∇Ψ. ~dS

where V denotes the volume integral over any volume while S is the surface that closes that
volume. Now consider both Φ = Ψ = T with the assumption that∇T at the surface vanishes.
This is the case that is considered in most references (adiabatic boundary conditions). This
implies:

ˆ

V

(
T∇2T +∇T.∇T

)
d3r = 0

⇒
ˆ

V

T∇2T d3r = −
ˆ

V

(∇T )2 d3r (24)

Now consider the time average of the Eq.(23). The system being in equilibrium, the change
in T with time i.e. ∂T

∂t
will be small and will also average to zero since the temperature

�uctuations are random. Thus
〈
T ∂T

∂t

〉
goes to zero. By applying Eq.(24) and integrating

over the volume, Eq.(23) changes as:〈ˆ
V

κ (∇T )2 d3r

〉
= T

〈
dQ

dt

〉
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where Q =
´
q d3r. Since dQ = TdS from thermodynamics, the above equation becomes:〈ˆ

V

κ

T
(∇T )2 d3r

〉
=

〈
TdS

dt

〉
= Wdiss

where T has been moved inside the integral since it hardly changes and is regarded a constant.
This is Eq.(17) as used in the references.

A few points of discussion are as follows

• Liu and Thorne never considered the Heat equation but have used Eq.(17) for the
dissipation, which is derived entirely by considering the Heat equation. This is because
the stresses generated due to the external pressure applied on the test mass resulted
in heat generation which was to be calculated.

• Important to note is the fact that the above formula would not be true if ∇T 6= 0 at
the surface. This is what Heinert explicitly mentiones thorugh the adiabatic boundary
conditions.

• It is evident that a heat source is to be used if Eq.(17) is to be used. Liu and Thorne
had to see the surface e�ects - the way noise is added when beam re�ects o� the surface.
So they applied pressure on the face so that the situation is correctly described and
also one avoids injecting heat directly. In their paper they relate the stresses to the
temperature gradient which allows them to use the above expression.

Basics on Waves and Signals

A wave is a function of the parameter (x− vt) in one dimension, x being the displacement, v
the velocity and t the time. A simple case considers the harmonic waves which are periodic
in t. The travelling waves are those that are periodic in both x and t. Examples include
electromagnetic waves like light and all radiation that �ll the EM spectrum. Any periodic
time signal, and in general any periodic function, can be written as a sum over the values of
its conjugate varible, in this case frequency. This is the Fourier series and is mathematically
expressed as:

f (t) =
∑
n

cne
iωnt (25)

where the set {ωn = nω0} forms the set of frequencies present in the signal. The value of ω0

is the fundamental frequency and is given by 2π
T
, with T being the period of the function.

The coe�cients cn, called the Fourier coe�cients, give a weight factor to each frequency
that is present and is known as the amplitude associated with that frequency. Usually, the
coe�cients decrease in magnitude with the increase in the frequency simply because of the
fact that a smooth signal cannot have a component that vibrates very rapidly. In case there
is just one frequency in the entire summation, the signal is said to be monochromatic.

When averaging over time signals that are periodic, one gets the result as zero unless the
averaging time is faster than the time period 2π

ω
of the wave. This is expected since each
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component in the sum of Eq.(25) would contribute equally in both positive and negative
halves of the cycle. Thus, for periodic signals the Root Mean Squared (rms) value is consid-
ered in place of the average value. The expression follows the name itself: square the signal,
take the mean and then take the square root.

frms =

√√√√ 1

T

ˆ

T

{f (t)}2 dt (26)

In case of real-valued monochromatic signals, the rms amplitude is 1√
2
times the amplitude

of the signal. The rms quantity is of practical interest because it is a non-zero quantity that
stays constant in time and can be measured. The peak to peak de�nition follows as being
twice the amplitude or 2

√
2 times the rms - from the lower peak to the higher peak. The

intensity or the power per unit area goes as the square of the signal. Hence, when integrated
over a time period, it will be proportional to the rms value of the signal.

To do away with the fact that the time signal is periodic, the Fourier transform is used. This
tool gives a continuous function of the conjugate variable and the value of the function gives
the contribution of that component. In case of a time signal x (t), the fourier transform is
given by x̃ (ω) as follows:

x̃ (ω) =

∞̂

−∞

x (t) e−iωtdt (27)

x (t) =
1

2π

∞̂

−∞

x̃ (ω) eiωtdω (28)

The power carried by the wave is propotional to | x (t) |2. Thus by integrating | x (t) |2
over a time period, one get the power provided by the signal. Alternatively, one can obtain
the power also by integrating the fourier transform over the all the frequency range. This is
known as the Parseval's theorem. So that for any small enough interval ω to ω + ∆ω, the
quantity | x̃ (ω) |2 ∆ω is proportional to the power due to the frequency ω. This way power
can be also calculated from the frequency spectrum of the signal. Hence| x̃ (ω) |2 is taken to
be the power spectral density.

In case of stochastic processes, signals are not described by a single function but by a family
of functions called its sample functions [1]. The sample functions are not generally periodic
nor do they vanish as t → ±∞. Therefore, to handle them, one de�nes �clipped functions�
as follows:

xT =

{
x (t) −T

2
≤ t ≤ T

2

0 otherwise
(29)

The techniques of Fourier series can be applied to this function. This way, one gets the
de�nition of power spectral density as:

lim
T→∞

| AT (ω) |2

T
= G (ω) (30)
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where,

AT (ω) =

T/2ˆ

−T/2

x (t) e−iωtdt (31)

which are the usual fourier coe�cients of the clipped function xT (t).
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