T1300421 Ghost Beam Scatter in Signal Recycling Cavity 8/24/11

BRDF of porcelainized steel, sr^-1	$\mathrm{BRDF}_{\mathrm{bd}}:=0.05$	
BRDF of chamber wall, sr^{\wedge}-1	$\mathrm{BRDF}_{\text {wall }}:=0.1$	
Motion of HEPI @ $200 \mathrm{~Hz}, \mathrm{~m} / \mathrm{rt} \mathrm{Hz}$	$\mathrm{x}_{\text {hepi }}:=2 \cdot 10^{-10}$	
Motion of HAM table @ $100 \mathrm{~Hz}, \mathrm{~m} / \mathrm{rt} \mathrm{Hz}$	$\mathrm{x}_{\text {ham }}:=3.7 \cdot 10^{-14}$	
Motion of HAM flange @ $100 \mathrm{~Hz}, \mathrm{~m} / \mathrm{rt} \mathrm{Hz}$	$\mathrm{x}_{\text {hamflange }}:=1.7 \cdot 10^{-11}$	
laser wavelength, m	$\lambda:=1.06410^{-6}$	
wave number, m^{\wedge}-1	$\mathrm{k}:=2 \cdot \frac{\pi}{\lambda}$	$k=5.905 \times 10^{6}$
IFO waist size, m	$\mathrm{w}_{\text {ifo }}:=0.012$	
solid angle of IFO mode, sr	$\Delta_{\mathrm{ifo}}:=\pi \cdot\left(\frac{\lambda}{\pi \cdot \mathrm{w}_{\mathrm{ifo}}}\right)^{2}$	$\Delta_{\text {ifo }}=2.502 \times 10^{-9}$
Transfer function @ 100 Hz , ITM AR	$\mathrm{TF}_{\text {itmar }}:=3.1610^{-11}$	
Transfer function @ 100 Hz , BS from SR	$\mathrm{TF}_{\text {srbs }}:=4.4610^{-11}$	
Transfer function @ 100 Hz, SRM	$\mathrm{TF}_{\text {srm }}:=4.22 \cdot 10^{-10}$	

Ref. T070247

transmissivity of SRM HR	$\mathrm{T}_{\text {Srmhr }}:=0.2$
Transmissivity of ITM HR	$\mathrm{T}_{\mathrm{itmhr}}:=0.014$
Reflectivity of ITM HR	$\mathrm{R}_{\mathrm{itmhr}}:=1-\mathrm{T}_{\mathrm{itmhr}} \quad \mathrm{R}_{\mathrm{itmhr}}=0.986$
Transmissivity of ETM HR	$\mathrm{T}_{\mathrm{etm}}:=5 \cdot 10^{-6}$

ETM transmitted power, W
input laser power, W
arm cavity gain
arm cavity power, W

Ref. Hiro e-mail 8/29/11

power in power recycling cavity both arms, W

Gaussian power parameter in recycling cavity arm

Power recycling cavity gain
refl port signal ratio
as port signal ratio
output signal power, W
power in signal recycling cavity, W

Asymmetry coefficient for common mode field rejection

Gaussian irradiance parameter from ITM
reflectivity of BS HR

$$
\mathrm{P}_{\mathrm{psl}}:=125
$$

$$
\mathrm{G}_{\mathrm{ac}}:=13000
$$

$$
\mathrm{P}_{\mathrm{a}}:=\frac{\mathrm{P}_{\mathrm{psl}}}{2} \cdot \mathrm{G}_{\mathrm{ac}}
$$

$$
\mathrm{P}_{\mathrm{a}}=8.125 \times 10^{5}
$$

$$
\mathrm{P}_{\mathrm{rc}}:=\frac{2 \mathrm{P}_{\mathrm{a}} \cdot \mathrm{~T}_{\mathrm{itmhr}}}{4} \quad \mathrm{P}_{\mathrm{rc}}=5.688 \times 10^{3}
$$

$$
\mathrm{P}_{0 \mathrm{rc}}:=\frac{\mathrm{P}_{\mathrm{rc}}}{2}
$$

$$
\mathrm{P}_{0 \mathrm{rc}}=2.844 \times 10^{3}
$$

$$
\mathrm{G}_{\mathrm{rc}}:=\frac{\mathrm{P}_{\mathrm{rc}}}{\mathrm{P}_{\mathrm{psl}}}
$$

$$
\mathrm{G}_{\mathrm{rc}}=45.5
$$

$$
\mathrm{G}_{\mathrm{refl}}:=0.001
$$

$\mathrm{G}_{\mathrm{as}}:=0.00108$

$$
\mathrm{P}_{\mathrm{srm}}:=\mathrm{P}_{\mathrm{psl}} \cdot \mathrm{G}_{\mathrm{as}}
$$

$$
\mathrm{P}_{\mathrm{srm}}=0.135
$$

$\mathrm{P}_{\text {src }}:=\frac{\mathrm{P}_{\text {srm }}}{\mathrm{T}_{\text {srmhr }}}$

$$
P_{\text {src }}=0.675
$$

$\mathrm{C}_{\mathrm{assy}}:=\sqrt{\frac{\mathrm{P}_{\mathrm{src}}}{\mathrm{P}_{\mathrm{rc}}}}$
$C_{\text {assy }}=0.0109$
$\mathrm{P}_{0 \mathrm{itm}}:=2 \cdot \mathrm{P}_{0 \mathrm{rc}}$
$\mathrm{P}_{0 \mathrm{itm}}=5.688 \times 10^{3}$
$\mathrm{R}_{\mathrm{bshr}}:=0.5$

reflectivity of BS AR	$\mathrm{R}_{\text {bsar }}:=50 \cdot 10^{-6}$	
Reflectivity of ITM HR	$\mathrm{R}_{\text {intmant }}:=1-\mathrm{T}_{\mathrm{itmhr}}$	$\mathrm{R}_{\mathrm{itmhr}}=0.986$
Reflectivity of ITM AR	$\mathrm{R}_{\mathrm{itmar}}:=50 \cdot 10^{-6}$	
Reflectivity of CP AR	$\mathrm{R}_{\text {cpar }}:=50 \cdot 10^{-6}$	
reflectivity of AS septum port	$\mathrm{R}_{\mathrm{sp}}:=0.0025$	
reflectivity of SRM HR	$\mathrm{R}_{\text {Srmhr }}:=1-\mathrm{T}_{\text {srmhr }}$	$\mathrm{R}_{\text {srmhr }}=0.8$
reflectivity of SRM AR	$\mathrm{R}_{\text {srmar }}:=50 \cdot 10^{-6}$	
transmissivity of SRM AR	$\mathrm{T}_{\text {srmar }}:=1-\mathrm{R}_{\text {srmar }}$	$\mathrm{T}_{\text {srmar }}=1$
reflectivity of PR2 HR	$\mathrm{R}_{\text {pr2hr }}:=0.9999$	
transmissivity of PR2 HR	$\mathrm{T}_{\mathrm{pr} 2 \mathrm{hr}}:=1-\mathrm{R}_{\mathrm{pr} 2 \mathrm{hr}}$	$\mathrm{T}_{\text {pr2hr }}=10 \times 10^{-5}$
reflectivity of PR2 AR	$\mathrm{R}_{\mathrm{pr2ar}}:=50 \cdot 10^{-6}$	
transmissivity of PR2 AR	$\mathrm{T}_{\text {pr2ar }}:=1-\mathrm{R}_{\text {pr2ar }}$	$\mathrm{T}_{\text {pr2ar }}=1$
reflectivity of SR2 HR	$\mathrm{R}_{\text {sr2hr }}:=\mathrm{R}_{\mathrm{pr} 2 \mathrm{hr}}$	$\mathrm{R}_{\text {sr2hr }}=1$
reflectivity of SR2 AR	$\mathrm{R}_{\text {sr2ar }}:=\mathrm{R}_{\text {pr2ar }}$	$\mathrm{R}_{\text {sr2ar }}=5 \times 10^{-5}$
transmissivity of SR2 HR	$\mathrm{T}_{\text {sr2hr }}:=\mathrm{T}_{\mathrm{pr} 2 \mathrm{hr}}$	$\mathrm{T}_{\text {Sr2hr }}=10 \times 10^{-5}$
transmissivity of SR2 AR	$\mathrm{T}_{\text {sr2ar }}:=\mathrm{T}_{\text {pr2ar }}$	$\mathrm{T}_{\text {sr2ar }}=0.99995$
reflectivity of PR3 HR	$\mathrm{R}_{\mathrm{pr3hr}}:=0.9999$	
transmissivity of PR3 HR	$\mathrm{T}_{\text {pr3hr }}:=1-\mathrm{R}_{\mathrm{pr} 3 \mathrm{hr}}$	$\mathrm{T}_{\text {pr3hr }}=10 \times 10^{-5}$
reflectivity of PR3 AR	$\mathrm{R}_{\text {pr3ar }}:=50 \cdot 10^{-6}$	

transmissivity of PR3 AR	$\mathrm{T}_{\text {pr3ar }}:=1-\mathrm{R}_{\text {pr3ar }}$	$\mathrm{T}_{\text {pr3ar }}=1$
reflectivity of SR3 HR	$\mathrm{R}_{\text {sr3hr }}:=\mathrm{R}_{\text {pr3hr }}$	$\mathrm{R}_{\text {sr3hr }}=1$
reflectivity of SR3 AR	$\mathrm{R}_{\text {sr3ar }}:=\mathrm{R}_{\text {pr3ar }}$	$\mathrm{R}_{\text {sr3ar }}=5 \times 10^{-5}$
transmissivity of SR3 HR	$\mathrm{T}_{\text {sr3hr }}:=\mathrm{T}_{\text {pr3hr }}$	$\mathrm{T}_{\text {sr3hr }}=10 \times 10^{-5}$
transmissivity of SR3 AR	$\mathrm{T}_{\text {sr3ar }}:=\mathrm{T}_{\text {pr3ar }}$	$\mathrm{T}_{\text {sr3ar }}=1$
reflectivity of FM HR	$\mathrm{R}_{\mathrm{FMhr}}:=\mathrm{R}_{\mathrm{pr} 3 \mathrm{hr}}$	$\mathrm{R}_{\mathrm{FMhr}}=1$
reflectivity of Hartmann dichroic bs	$\mathrm{R}_{\text {hartbs }}:=0.0025$	
reflectivity of BS AR	$\mathrm{R}_{\text {bsar }}=5 \times 10^{-5}$	
Reflectivity of SR3	$\mathrm{R}_{\text {SR } 3}:=1$	
Reflectivity of dichroic HWSY M1	$\mathrm{R}_{\text {HWSYM1 }}:=0.01$	
Reflectivity of dichroic HWSY M2	$\mathrm{R}_{\text {HWSYM2 }}:=0.01$	
Reflectivity of HPY-F1	$\mathrm{R}_{\text {HPYF1 }}:=1$	
Reflectivity of HWSY M3	$\mathrm{R}_{\text {HWSYM3 }}:=1$	
Reflectivity of HWSY M4	$\mathrm{R}_{\text {HWSYM4 }}:=1$	
Reflectivity of HWSY M5	$\mathrm{R}_{\text {HWSYM5 }}:=1$	
Reflectivity of viewport	$\mathrm{R}_{\mathrm{vp}}:=0.0025$	
Reflectivity of dichroic HWSX M1	$\mathrm{R}_{\text {HWSXM1 }}:=0.01$	
Reflectivity of dichroic HWSX M2	$\mathrm{R}_{\text {HWSXM2 }}:=0.01$	
Reflectivity of HWSX M3	$\mathrm{R}_{\text {HWSXM3 }}:=1$	

Reflectivity of HWSX M4	$\mathrm{R}_{\text {HWSXM4 }}:=1$
Reflectivity of HWSX M5	$\mathrm{R}_{\text {HWSXM5 }}:=1$
Reflectivity of HPX-F1	$\mathrm{R}_{\text {HPXF1 }}:=1$
transmissivity of SR2 HR	$\mathrm{T}_{\text {sr2hr }}=10 \times 10^{-5}$
BRDF of HPY-F1 @ 3 deg, sr^-1	BRDF $_{\text {hartm }}:=0.01$
BRDF of viewport	$\mathrm{BRDF}_{\mathrm{vp}}:=0.005$
BRDF of HPX-F1 @ 3 deg, sr^-1	$\mathrm{w}_{\text {sr30 }}:=0.000114$
Beam Waist after SR3	$\mathrm{w}_{\text {Sr20 }}:=0.000094$
Beam waist after SR2	$\mathrm{w}_{\text {Srm0 }}:=0.000841$
Beam waist after SRM	$\mathrm{w}_{\text {hpyf10 }}:=0.0000850$
Beam Waist after HPYF1	$\mathrm{w}_{\text {hpxf10 }}:=0.0000650$

ITM Ghost Beams

ITM_GBAR1_BD H1

Power incident on SR2 Scraper Baffle from both arms, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{itmar} 1 \mathrm{bd}}:=\mathrm{P}_{\mathrm{rc}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmar}} \\
& \mathrm{P}_{\mathrm{itmar} 1 \mathrm{bd}}=0.142
\end{aligned}
$$

both ITM AR1 BD scattered power into BS
from SR2 Scraper baffle, W

$$
\mathrm{P}_{\mathrm{itmar} 1 \mathrm{bds}}:=\mathrm{P}_{\mathrm{itmar} 1 \mathrm{bd}} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmar}}
$$

$$
\mathrm{P}_{\text {itmar1bds }}=9.857 \times 10^{-12}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\mathrm{itmar} 1 \mathrm{bd}}:=\mathrm{TF}_{\mathrm{srbs}} \cdot\left(\frac{\mathrm{P}_{\mathrm{itmar} 1 \mathrm{bds}}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\mathrm{itmar} 1 \mathrm{bd}}=5.473 \times 10^{-24}
\end{aligned}
$$

ITM_GBAR3_BD H1

power incident on SR2 Scraper
Baffle from both arms, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{itmar} 3 \mathrm{bd}}:=\mathrm{P}_{\mathrm{rc}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmhr}} \cdot{ }^{2} \cdot \mathrm{R}_{\mathrm{itmar}} \cdot\left(1-\mathrm{R}_{\mathrm{itmar}}\right)^{2} \\
& \mathrm{P}_{\mathrm{itmar} 3 \mathrm{bd}}=0.1382
\end{aligned}
$$

power scattered from SR2 Scraper Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{itmar} 3 \mathrm{bds}}:=\mathrm{P}_{\mathrm{itmar} 3 \mathrm{bd}} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmhr}} \cdot{ }^{2} \mathrm{R}_{\mathrm{itmar}} \cdot\left(1-\mathrm{R}_{\mathrm{itmar}}\right)^{2} \\
& \mathrm{P}_{\text {itmar3bds }}=9.314 \times 10^{-12}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {itmar3bd }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\mathrm{itmar} 3 \mathrm{bds}}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {itmar3bd }}=5.32 \times 10^{-24}
\end{aligned}
$$

BS_GBAR3P H1

The stray light from both arms are almost anti-resonant, and the wavefronts overlap; their coherent sum is reduced by the square of the asymmetry coefficient for common mode field rejection
power incident on SR2 Scraper
Baffle from both arms, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{bsar} 3 \mathrm{sr} 2 \mathrm{baf}}:=\mathrm{P}_{\mathrm{rc}} \cdot\left[\left(1-\mathrm{R}_{\mathrm{bsar}}\right) \cdot \mathrm{R}_{\mathrm{bshr}}+\left(1-\mathrm{R}_{\mathrm{bshr}}\right) \cdot \mathrm{R}_{\mathrm{bsar}}\right] \cdot \mathrm{R}_{\mathrm{bshr}} \cdot\left(1-\mathrm{R}_{\mathrm{bsar}}\right) \cdot \mathrm{C}_{\mathrm{assy}}{ }^{2} \\
& \mathrm{P}_{\mathrm{bsar} 3 \mathrm{sr} 2 \mathrm{baf}}=0.169
\end{aligned}
$$

power scattered from SR2 Scraper Baffle, W
$\mathrm{P}_{\mathrm{bsar} 3 \mathrm{sr} 2 \mathrm{bafs}}:=\mathrm{P}_{\mathrm{bsar} 3 \mathrm{sr} 2 \mathrm{baf}} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot\left(1-\mathrm{R}_{\mathrm{bsar}}\right) \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{bsar}} \cdot\left[\left(1-\mathrm{R}_{\mathrm{bshr}}\right)+\mathrm{R}_{\mathrm{bshr}} \cdot(1-\right.$
$\mathrm{P}_{\text {bsar3sr2bafs }}=5.848 \times 10^{-12}$
displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\mathrm{bsar} 3 s r 2 b a f}:=\mathrm{TF}_{\mathrm{itmar}}\left(\frac{\mathrm{P}_{\mathrm{bsar3sr2bafs}}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\mathrm{bsar} 3 \mathrm{sr2baf}}=2.987 \times 10^{-24}
\end{aligned}
$$

CP_GBAR1

power incident on SR2 Scraper
Baffle from both arms, W

$$
\begin{aligned}
& \mathrm{P}_{\text {cpar1sr2baf }}:=\mathrm{P}_{\mathrm{rc}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\text {cpar }} \\
& \mathrm{P}_{\text {cpar1sr2baf }}=0.142
\end{aligned}
$$

power scattered from SR2 Scraper Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{CPar} 1 \mathrm{sr2bafs}}:=\mathrm{P}_{\mathrm{cpar} 1 \mathrm{sr} 2 \mathrm{baf}} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot{ }^{0} \cdot \mathrm{R}_{\mathrm{cpar}} \\
& \mathrm{P}_{\text {cpar1sr2bafs }}=9.857 \times 10^{-12} \\
& \mathrm{DN}_{\mathrm{cpar} 1 \mathrm{sr} 2 \mathrm{baf}}:=\mathrm{TF}_{\mathrm{itmar}} \cdot\left(\frac{\mathrm{P}_{\mathrm{cpar} 1 \mathrm{sr} 2 \mathrm{bafs}}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {cpar1sr2baf }}=3.878 \times 10^{-24}
\end{aligned}
$$

displacement noise @ $100 \mathrm{~Hz}, \quad \quad \mathrm{DN}_{\text {cpar1sr2baf }}:=\mathrm{TF}_{\text {itmar }} \cdot\left(\frac{\mathrm{P}_{\text {cpar1sr2bafs }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {ham }} \cdot 2 \cdot \mathrm{k}$

CP_GBAR3

power incident on SR2 Scraper
Baffle from both arms, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{cpar} 3 \mathrm{sr} 2 \mathrm{baf}}:=\mathrm{P}_{\mathrm{rc}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmhr}} \cdot \mathrm{R}_{\mathrm{cpar}} \\
& \mathrm{P}_{\text {cpar3sr2baf }}=0.14
\end{aligned}
$$

power scattered from SR2 Scraper Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{cpar} 3 s r 2 b a f s}:=\mathrm{P}_{\mathrm{cpar} 3 \mathrm{sr} 2 \mathrm{baf}} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{bshr}} \cdot \mathrm{R}_{\mathrm{itmhr}} \cdot \mathrm{R}_{\mathrm{cpar}} \\
& \mathrm{P}_{\text {cpar3sr2bafs }}=9.583 \times 10^{-12}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {cpar3sr2baf }}:=\mathrm{TF}_{\mathrm{itmar}} \cdot\left(\frac{\mathrm{P}_{\text {cpar3sr2bafs }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {cpar3sr2baf }}=3.823 \times 10^{-24}
\end{aligned}
$$

SR3 GBHR3

power incident on SR3 GBHR3
(forward and backward beams), W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbhr}}:=2 \cdot \mathrm{P}_{\mathrm{src}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \\
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbhr} 3}=6.75 \times 10^{-13}
\end{aligned}
$$

power scattered from SR3 GBHR3 toward BS, W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3gbhr3bss }}:=\frac{\mathrm{P}_{\mathrm{sr} 3 g b h r 3}}{2} \cdot \mathrm{BRDF}_{\mathrm{wall}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \\
& \mathrm{P}_{\text {sr3gbhr3bss }}=4.223 \times 10^{-35}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbhr} 3 \mathrm{sr} 2 \mathrm{~s}}:=\frac{\mathrm{P}_{\mathrm{sr} 3 \mathrm{gbhr}}}{2} \cdot \mathrm{BRDF}_{\mathrm{wall}} \cdot \Delta_{\mathrm{ifo}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot\left(\mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}}\right) \\
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbhr} 3 \mathrm{sr} 2 \mathrm{~s}}=4.679 \times 10^{-31}
\end{aligned}
$$

total power scattered from SR3 GBHR3

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3gbhr3s }}:=\mathrm{P}_{\text {sr3gbhr3bss }}+\mathrm{P}_{\text {sr3gbhr3sr2s }} \\
& \mathrm{P}_{\text {sr3gbhr3s }}=4.68 \times 10^{-31}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {sr3gbhr3 }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\text {sr3gbhr3s }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {hamflange }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {sr3gbhr3 }}=5.479 \times 10^{-31}
\end{aligned}
$$

SR3 GBAR3

power incident on GBAR3 AR Baffle
(forward and backward beams), W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbar} 3}:=2 \cdot \mathrm{P}_{\mathrm{src}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{ar}} \\
& \mathrm{P}_{\mathrm{sr} 3 \mathrm{gbar} 3}=6.749 \times 10^{-9}
\end{aligned}
$$

power scattered from SR3 AR Baffle toward BS, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 3 g b a r 3 \mathrm{bss}}:=\frac{\mathrm{P}_{\mathrm{sr} 3 \mathrm{gbar} 3}}{2} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{ar}} \\
& \mathrm{P}_{\text {sr3gbar3bss }}=2.111 \times 10^{-27}
\end{aligned}
$$

power scattered from SR3 AR Baffle toward SR2, W

$$
\mathrm{P}_{\mathrm{sr} 3 g b a r 3 s r 2 \mathrm{~s}}:=\frac{\mathrm{P}_{\mathrm{sr} 3 \mathrm{gbar}}}{2} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \Delta_{\mathrm{ifo}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{ar}} \cdot \mathrm{R}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 3 a r}
$$

$$
\mathrm{P}_{\text {sr3gbar3sr2s }}=2.339 \times 10^{-23}
$$

total power scattered from SR3 AR Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3gbar3s }}:=\mathrm{P}_{\text {sr3gbar3bss }}+\mathrm{P}_{\text {sr3gbar3sr2s }} \\
& \mathrm{P}_{\text {sr3gbar3s }}=2.339 \times 10^{-23}
\end{aligned}
$$

displacement noise @ 100 Hz , m/rtHz

$$
\begin{aligned}
& \mathrm{DN}_{\text {sr3gbar3 }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\text {sr3gbar3s }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {ham }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {sr3gbar3 }}=8.431 \times 10^{-30}
\end{aligned}
$$

SR3 AR Baffle

power incident on SR3 AR Baffle (forward and backward beams), W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3arbaf }}:=2 \mathrm{P}_{\text {src }} \cdot \mathrm{T}_{\text {sr3hr }} \cdot \mathrm{T}_{\text {sr3ar }} \\
& \mathrm{P}_{\text {sr3arbaf }}=1.35 \times 10^{-4}
\end{aligned}
$$

power scattered from SR3 AR Baffle toward BS, W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3arbafbss }}:=\frac{\mathrm{P}_{\text {sr3arbaf }}}{2} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr3hr}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{ar}} \\
& \mathrm{P}_{\text {sr3arbafbss }}=8.445 \times 10^{-19}
\end{aligned}
$$

power scattered from SR3 AR Baffle toward SR2 W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr3arbafsr2s }}:=\frac{\mathrm{P}_{\text {sr3arbaf }}}{2} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \Delta_{\mathrm{ifo}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 3 \mathrm{ar}} \\
& \mathrm{P}_{\text {sr3arbafsr2s }}=9.357 \times 10^{-15}
\end{aligned}
$$

power scattered from SR3 AR Baffle, W

$$
P_{\text {sr3arbafs }}:=P_{\text {sr3arbafbss }}+P_{\text {sr3arbafsr2s }}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {sr3arbaf }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\text {sr3arbafs }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {ham }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {sr3arbaf }}=1.686 \times 10^{-25}
\end{aligned}
$$

SRM_GBHR3

power of SRM GBHR3, W

$$
\begin{aligned}
& \mathrm{P}_{\text {srmhr3 }}:=\mathrm{P}_{\text {srm }} \cdot \mathrm{R}_{\text {srmar }} \cdot \mathrm{T}_{\text {srmhr }} \\
& \mathrm{P}_{\text {srmhr3 }}=1.35 \times 10^{-6}
\end{aligned}
$$

power scattered from SRM GBHR3 Mode
Cleaner Tube Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\text {srmhr3bafs }}:=\mathrm{P}_{\mathrm{srmhr} 3} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{srm} 0}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{srmar}} \cdot \mathrm{~T}_{\mathrm{srmhr}} \\
& \mathrm{P}_{\text {srmhr3bafs }}=3.439 \times 10^{-19}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {srmhr3bafs }}:=\mathrm{TF}_{\text {srm }} \cdot\left(\frac{\mathrm{P}_{\text {srmhr3bafs }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {ham }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {srmhr3bafs }}=9.673 \times 10^{-27}
\end{aligned}
$$

SRM_GBAR3

power incident on SRM AR Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\text {srmarbaf }}:=\mathrm{P}_{\text {srm }} \cdot \mathrm{R}_{\text {srmar }} \cdot \mathrm{R}_{\text {srmhr }} \cdot \mathrm{T}_{\text {srmar }} \\
& \mathrm{P}_{\text {srmarbaf }}=5.4 \times 10^{-6}
\end{aligned}
$$

power scattered from SRM AR Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\text {srmarbafs }}:=\mathrm{P}_{\text {srmarbaf }} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{srm0}}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{R}_{\mathrm{srmar}} \cdot \mathrm{R}_{\mathrm{srmhr}} \cdot \mathrm{~T}_{\text {srma }} \\
& \mathrm{P}_{\text {srmarbafs }}=5.502 \times 10^{-18}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {srmarbafs }}:=\mathrm{TF}_{\text {srm }} \cdot\left(\frac{\mathrm{P}_{\text {srmarbafs }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {ham }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {srmarbafs }}=3.869 \times 10^{-26}
\end{aligned}
$$

SR2 GBHR3

power incident on SR2 GBHR3
(forward and backward beams), W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3}:=2 \cdot \mathrm{P}_{\mathrm{src}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \\
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr}}=6.75 \times 10^{-13}
\end{aligned}
$$

power scattered from SR2 GBHR3 toward SR3, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3 \mathrm{sr} 3 \mathrm{~s}}:=\frac{\mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr}}}{2} \cdot \mathrm{BRDF}_{\text {wall }} \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 30}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \\
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3 \mathrm{sr} 3 \mathrm{~s}}=4.679 \times 10^{-31}
\end{aligned}
$$

power scattered from SR2 GBHR3 toward SRM, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3 \mathrm{srms}}:=\frac{\mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3}}{2} \cdot \mathrm{BRDF}_{\text {wall }} \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{srm} 0}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{ar}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \\
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbhr} 3 \mathrm{srms}}=8.598 \times 10^{-33}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {sr2gbhr3s }}:=P_{\text {sr2gbhr3sr3s }}+P_{\text {sr2gbhr3srms }} \\
& P_{\text {sr2gbhr3s }}=4.765 \times 10^{-31}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {sr2gbhr3 }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\text {sr2gbhr3s }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\text {hamflange }} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {sr2gbhr3 }}=5.529 \times 10^{-31}
\end{aligned}
$$

SR2 GBAR3

$$
\mathrm{w}_{\mathrm{sr} 20}=9.4 \times 10^{-5}
$$

power incident on SR2 GBAR3 AR Baffle (forward and backward beams), W

$$
\begin{aligned}
& \mathrm{P}_{\text {sr2gbar3 }}:=2 \cdot \mathrm{P}_{\text {src }} \cdot \mathrm{T}_{\text {sr2hr }} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{ar}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{ar}} \\
& \mathrm{P}_{\text {sr2gbar3 }}=6.749 \times 10^{-9}
\end{aligned}
$$

power scattered from SR3 AR Baffle, W

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbar3s}}:=\mathrm{P}_{\mathrm{sr} 2 \mathrm{gbar} 3} \cdot \mathrm{BRDF}_{\mathrm{bd}} \cdot \frac{\mathrm{w}_{\mathrm{ifo}}^{2}}{\mathrm{w}_{\mathrm{sr} 20}^{2}} \cdot \Delta_{\mathrm{ifo}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{ar}} \cdot \mathrm{R}_{\mathrm{sr} 2 \mathrm{hr}} \cdot \mathrm{~T}_{\mathrm{sr} 2 \mathrm{ar}} \\
& \mathrm{P}_{\mathrm{sr} 2 \mathrm{gbar} 3 \mathrm{~s}}=6.88 \times 10^{-23}
\end{aligned}
$$

displacement noise @ 100 Hz , $\mathrm{m} / \mathrm{rtHz}$

$$
\begin{aligned}
& \mathrm{DN}_{\text {sr2gbar3 }}:=\mathrm{TF}_{\text {srbs }} \cdot\left(\frac{\mathrm{P}_{\text {sr2gbar3s }}}{\mathrm{P}_{\mathrm{psl}}}\right)^{0.5} \cdot \mathrm{x}_{\mathrm{ham}} \cdot 2 \cdot \mathrm{k} \\
& \mathrm{DN}_{\text {sr2gbar3 }}=1.446 \times 10^{-29}
\end{aligned}
$$

$\left.\mathrm{R}_{\mathrm{bsar}}\right)$]

