	8	7	6	I	5	4	3	I
D	 NOTES CONTINUED: ALL MACHINING FLUIDS AND FREE OF SULFUR, SIL SCRIBE, ENGRAVE, OR M PART NUMBER, REVISION SURFACE OF PART FOLLO NUMBER. SERIAL NUMBEI CONSECUTIVELY. USE MI THE PART DICTATES SMA EXAMPLE DXXXXXX-VY APPROXIMATE WEIGHT = MACHINE ALL SURFACES REMOVAL TECHNIQUES IS NOT ALLOWED. USE O ALL PARTS SHALL BE MAI SPECIFICATION E0900364 ALL THREADED INSERTS T OF FINISHED PARTS, USE ALL HELI-COIL TAPPED HO PRODUCT CATALOG HO ALL MATERIAL IS TO BE V APPROVED IN ADVANC NO REPAIRS SHALL BE MAI BY LIGO LABORATORY. I ARE NEVER ACCEPTABLE CIRCUMSTANCES CAN E LIGO CONTRACTING OF REVIEW BOARD (MRB) PI A TAPPED HOLE PITCH D 	7 MUST BE FULLY SYNTHETIC, FULL' JCONE AND CHLORINE. 1ECHANICALLY STAMP (NO INK) I (AND VARIANT OR "TYPE" IF AF OWED ON THE NEXT LINE WITH A RS START AT 001 FOR THE FIRST A INIMUM 0.12 HIGH CHARACTER LLER CHARACTERS. A VIBRATOI , TYPE-XX, S/N XXX. = 0.870 LB. 3 TO REMOVE OXIDES AND MILL (INCLUDING SANDING OR SCO /F SCOTCH-BRITE OR SIMILAR PR NUFACTURED IN ACCORDANC 4. O BE INSTALLED BY LIGO PERSC NITRONIC 60 THREADED INSERT! OLES TO BE PREPARED ACCOR 2000 CURRENT REV. 'IRGIN MATERIAL (I.E. NOT WELD E AND IN WRITING BY LIGO, REF ADE UNLESS APPROVED IN ADV IN GENERAL WELD REPAIRS ANIE E. THE MATERIAL USED MUST BE 3E REVIEWED IF AND WHEN BRC FFICER'S REPRESENTATIVE (COTF 'ROCESS, REFER TO LIGO-E09000 OIAMETER LIMIT OF H11 APPLIES.	6 Y WATER SOLUBLE S OR DYES) DRAWING PPLICABLE ON NOTED A THREE DIGIT SERIAL ARTICLE AND PROCEED S, UNLESS THE SIZE OF RY TOOL MAY BE USED. - FINISH, USE OF ABRASIVE PURING FOR MATTE FINISH) CODUCTS IS FORBIDDEN. E WITH LIGO INNEL, AFTER DELIVERY S. DING TO EMHART HELI-CO O REPAIRS OR PLUGS) UNLES FER TO LIGO-E0900364. (ANCE, AND IN WRITING, D PRESS FIT INSERT REPAIRS VIRGIN MATERIAL. SPECIAL DUGHT TO THE ATTENTION (C 2) THROUGH THE MATERIAL D364.	IL SS DF	5 A 0 1 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		3	
B	14. A TRUE POSITION TOLERA CONVENTIONAL TOLERA	ANCE OF Ø.010 IS ~ THE SAME A	AS A		45°	1.46	1000	Drill
						· · <th>0.50</th> <th></th>	0.50	
			DIME TOLE .XX .XXX ANG	Note Ensions are in Erances: ± ± Sular±°	AND TOLERANCES: (UNLESS C 1. INTERPRET DRA 2. REMOVE ALL S 3. DO NOT SCALE MATERIAL 6061-T	THERWISE SPECIFIED) WING PER ASME Y14.5-1994. HARP EDGES, .03 x 45°. E FROM DRAWING.	VIGO CALIFORNIA INSTITUTE OF TECHI MASSACHUSETTS INSTITUTE OF T YSTEM NONE SU JEXT ASSY	NOLOGY ECHNOLOG [®] B-SYSTEM

5

6061-T6 (SS)

8

7

6

D1300332-v1, PART PDM REV: , DRAWING PDM REV: P

FINISH none μinch

4

3

