Investigations of magnetic coupling to the quads

Excess magnetic coupling in OAT

Injection coils at ITMY in pseudo-Helmholtz configuration

Coupling at HEPI, ISI, SUS cables?

Injection shows up on HEPI & ISI as well as SUS channels

4

PUM to TM coupling

pitch

Force/torque at PUM to linear/angular displacement of optic

х

n(41)= plotTFf[eom2, makefinputvector[x2], makeoutputvector[x3], 1, 15, GridLines → DecadeMinorGrid, ImageSize → 600] 0.001 10=4

Thanks to Mark Barton

yaw

UIM to TM coupling

Force/torque at UIM to linear/angular displacement of optic

X

pitch

$$\label{eq:gamma-star} \begin{split} \eta_{=} & \texttt{plotTFf[eom2, makefinputvector[pitch1], makeoutputvector[pitch3],} \\ & \texttt{1, 15, GridLines} \rightarrow \texttt{DecadeMinorGrid, ImageSize} \rightarrow \texttt{600}] \end{split}$$

yaw

Thanks to Mark Barton

Checks

1) Coupling to optical lever? Much higher fields at optical lever and its electronics produced smaller peak in optical lever channel.

2) Linear coupling? Increased field by 2.98 increased motion by 3.00 (would go as B² for induced moments).

3) Calibration? In-situ magnetometer calibration

Removing M0 ECDs

Removal of L1(UIM) blade dampers

Suggested AOSEM cuts to reduce eddy current coupling (not tested yet)

Results after ECD removal

Measurements of gradients at PUM magnet locations

Measured fields and large scale gradients in BSC1

- Check of injected field (37% lower than external magnetometer)
- Used to estimate how well magnets at different actuators cancel
- Measured earths field for estimates of magnetization of parts

Measurements combined to estimate motion from coupling to magnets

Yellow estimates exceed spec.

Magnets	Motion assuming magnets all oriented correctly (moment * 0.3) Assuming 20pT ambient field with B/gradB = 0.06 m	One magnet flipped (mo- ment * 2)	Worst case conspiracy (mo- ment * 8)
UIM magnets	Pos: 5.7e-20	Pos: 3.8e-19	Pos: 1.5 e-18
Magnet moment: 0.72	Pit (grad): 2.5e-18	Pit (grad): 1.7e-17	<mark>Pit (grad): 6.7 e-17</mark>
J/T. Moment arm for	Pit (field): 2.2e-18	Pit (field): 1.4e-17	<mark>Pit (field): 5.7 e-17</mark>
angular motion from	Yaw (grad): 2.0e-18	Yaw (grad): 1.3e-17	<mark>Yaw (grad): 5.3 e-17</mark>
gradients – pitch: 0.07 m,	Yaw (field): 9.5e-19	Yaw (field): 6.3e-18	Yaw (field): 2.5 e-17
yaw: 0.13 m			
PUM magnets	<mark>Pos: 3.25e-20</mark>	<mark>Pos: 2.2e-19</mark>	<mark>Pos: 8.7 e-19</mark>
Magnet moment: 0.013	Pit (grad): 3.9e-18	Pit (grad): 2.6e-17	Pit (grad): 1.0 e-16
J/T. Moment arm for	Pit (field): 1.6e-18	Pit (field): 1.0e-17	<mark>Pit (field): 4.2 e-17</mark>
angular motion from	Yaw (grad): 1.6e-18	Yaw (grad): 1.0e-17	<mark>Yaw (grad): 4.2 e-17</mark>
gradients - pitch and yaw:	Yaw (field): 6.2e-19	Yaw (field): 4.2e-18	Yaw (field): 1.7 e-17
0.15 m			

Relative permeability measurements

Measured relative permeability

Mass	Component	Measured relative permeability
Penultimate reaction mass	Central core, 304 steel: D060342B 002, most	$1.1 < \mu_{rel} < 2.0$
	regions	
	Central core near edges	$1.01 < \mu_{rel} < 1.1$
UIM isolated parts	Split base plate, 304, D060382	$1.1 < \mu_{rel} < 2.0$
	Full base plate, 304, D060376	$1.1 < \mu_{rel} < 2.0$
	Blade springs	6 < μ _{rel} (About 70 using largest measured mo- ment and volume estimate.)
UIM main chain assembled mass	Base plates, spacers, some screws	$1.01 < \mu_{rel} < 2.0$
Same one used in measurements	Blade springs	6 < μ _{rel}
of moment.		(About 70 using largest measured moment and volume estimate.)

23

Measuring magnetic moment

Balance offloads most weight, mg scale measures change in force as magnetic field is turned off and on

Ambient fields coupling to parts magnetized by earths field

Sample	Estimated induced moment in BSC1 From induced moment measured in test hutch (using ~ 1.5 e-4 T) and measured earth's field in BSC1. (J/T) Earths field in BSC1: X: 1.07 e-5 T Y: -1.63 e-5 T Z: -3.56 e-5 T Beam along Y	Estimated test mass motion at 10 Hz From varying ambient gradients (pos) or fields (pit, yaw) assuming 20pT ambient field with B/gradB = 0.06 m (m, rad, rad)	Consistency/ accuracy checks: magnets of known moment were added (J/T)
PUM reaction mass 304	Y: 0.006+0.005	Pos: < 2 e-21 m (95% confidence)	Expected: 0.72
central piece (end pieces	Z: 0.002+0.007	Pit (field): < 7 e-20 rad	Measured
were 316)	X: 0.0006+0.002	Yaw (field): < 9 e-21 rad	0.47+0.03
UIM , almost all 304, with-	Y: 0.002+0.008	Pos: < 2 e-21 m	Expected: 0.72
out magnets, flags, or	Z: 0.02+0.02	Pit (field): < 3 e-19 rad	Measured:
BOSEMS, but with blades	X: 0.19+0.02	Yaw (field): 8 e-19 rad	0.64+0.07
Blade spring from UIM, field along Y: medium axis Z: short axis X: long axis*	Y: 0.014+0.005 Z: 0.00+0.02 X: 0.099+0.003		

Moment induced by magnets

Magnets are placed at the same distance from parts as in quad

Moment reduced when canceling magnets moved closer together

Magnetization or gradient from nearby permanent magnets

Sample	Measured magnetic moment	DC magnetization and varying gradients and fields	DC gradients and varying magnetization
	For parts magnetized by nearby perma- nent magnets (J/T)	Estimated test mass motion at 10 Hz from varying ambient gradients (pos) or fields (pit, yaw) assuming 20pT ambient field with B/gradB = 0.06 m. Moment is induced by nearby perma- nent magnets. (m, rad, rad)	Estimated test mass motion at 10 Hz from varying magnetiza- tion from 20 pT magnetic field and gradients from permanent magnets (only for reaction chain)
Single blade spring from UIM with 2 magnets from a flag mounted at their relative locations, but only the blade	Y: 0.27+0.06	<mark>Pos: 7 e-20 m</mark> Pit (grad): 4.5 e-19 Yaw (grad): 3.0 e-18	<mark>Pos: 2 e-19 m</mark> Yaw (grad): 2.8e-18 Pit (grad): 1.9e-19
was on moment balance	Z: 0.02+0.1 X: 0.06+0.08	Pit (field): < 9 e-19 rad Yaw (field): < 4 e-19 rad	Pit (field): < 4 e-19 rad Yaw (field): < 2 e-18 rad
Single blade spring from UIM with 2 flag magnets as above, but with the two magnets moved until touching each other.	Y: 0.04+0.07 Z: nominal not seen X: nominal not seen	Pos: < 3 e-20 m Pit: nominal not seen Yaw: nominal not seen	Pos: < 8 e-20 m Pit: nominal not seen Yaw: nominal not seen

Summary of worst coupling

Global correlated magnetic noise

Magnetic coupling is also important for stochastic GW analysis

Summary of most important results

- Have found nothing that can explain yaw coupling from post ECD
- If we ignore yaw, removal of ECD magnets reduced coupling by a factor of about 4
- Pitch coupling could be explained by 1 or 2 reversed UIM or PUM magnets but not by coupling to paramagnetic materials
- The worst estimated coupling is to the UIM steel blade springs, not the 304 steel on the UIM and PUMre (2e-19/sqrt(Hz) @ 10 Hz, about 10 x spec. and right at the aLIGO noise floor at 10 Hz)
- The worst predicted coupling to the blade springs is, for reaction chain, varying ambient magnetization in gradients from permanent magnets, followed by magnetization from permanent magnets in varying ambient gradients
- These two mechanisms could be reduced by moving the cancelling magnets closer
- This coupling is about ten times worse than Stochastic desires
- Magnetic coupling to electronics and cables has not yet been tested 33

