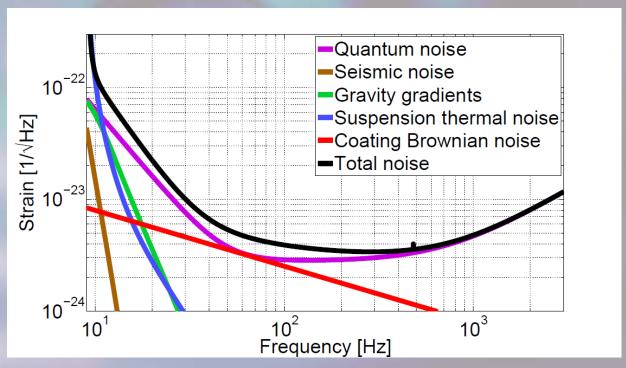
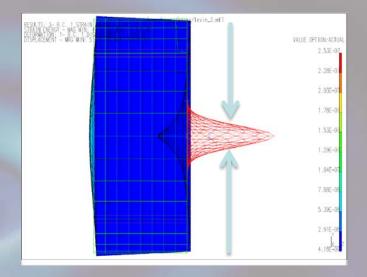
Mechanical Loss of TRA-DUCT 2902 Epoxy

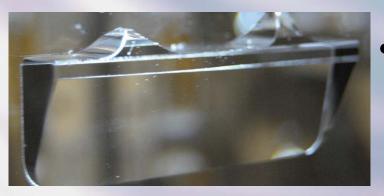
Gregory Harry American University

Jonathan Newport, Danika Balas, David Belyea, Alexandra France, Steve Penn, Raymond Robie


LVC Meeting Bethesda Maryland March 18, 2013

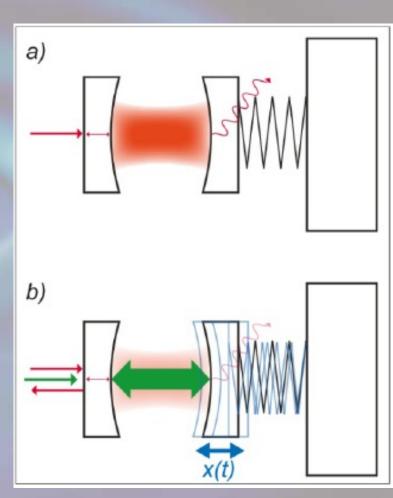
Advanced LIGO Core Optics


- Advanced LIGO test mass properties are expected to be major contributors to sensitivity across most frequency bands
- High optical power is necessary for low quantum noise at mid and high frequencies
- Thermal noise from mechanical loss in the test masses important at mid frequencies
- Any changes to the test masses must be made carefully



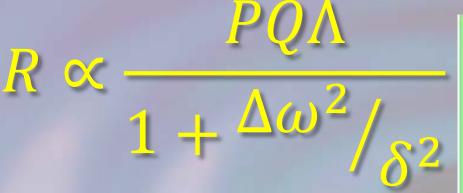
Test Mass Thermal Noise

- Primary contributor to test mass thermal noise is mechanical loss in optical coatings
- Large beam spot sizes reduce this thermal noise
 - Employed in Advanced LIGO
 - ETM 6.2 cm, ITM 5.5 cm
 - Test mass radius 17 cm

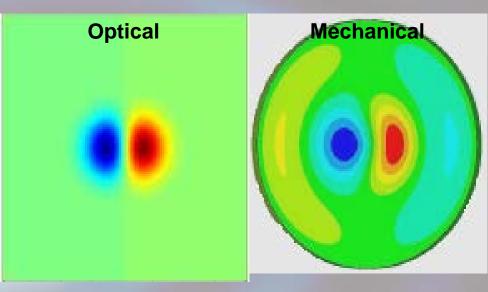


- Suspension must be connected to test masses
- Silicate bonding used to reduce thermal noise
 - Silicate bond still has high mechanical loss
 - Keep area of bond small
 - Bonding region far from readout beam location

Parametric Instability



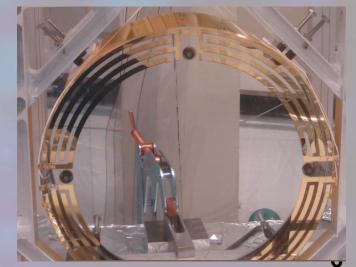
- Exchange of energy between optical cavity modes and acoustic test mass modes
- Radiation pressure from stored light can ring up acoustic modes to high amplitudes
- High modal amplitudes can cause lock loss
- Mitigation not part of Advanced LIGO project but considered for post-project upgrade
 - See T1300176



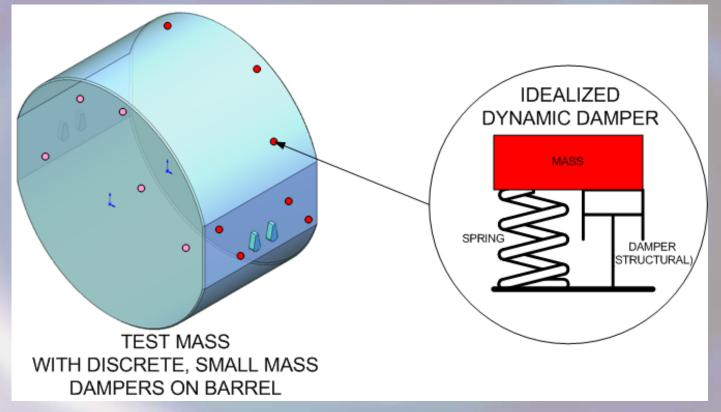
Instability Criteria

- R characterizes stability
- R > 1 means parametric instability occurs

- Low thermal noise requires low mechanical loss
 - High Q, the modal quality factors
- Low thermal noise requires large spot sizes
 - High overlap, Λ, between optical and mechanical modes
- High power, P, needed to reduce quantum noise
- Modes must be close in frequency, $\Delta \omega^2/_{\delta^2}$, as well as shape



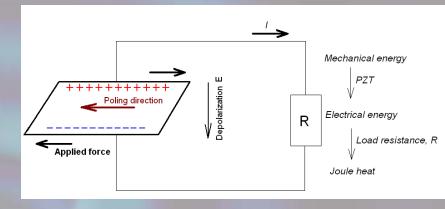
Mitigation of Parametric Instability



- Mirror radius of curvature can be tuned using ring heaters
 - Changes frequency of optical modes
 - Ring heaters already in place
- Electrostatic drive can be used to actuate on mechanical modes
 - Damp out modes as they excite
 - Electrostatic drive already in place
- Attach mechanical mode dampers to test masses
 - Reduce mechanical Q's
 - Dampers would need to be installed
- T1300176 prioritizes these for post project upgrades as
 - 1- ring heater, 2- electrostatic drive,
 3- dampers

Mechanical Mode Damping

- Dampers at specific frequencies attached at small number of places on test mass
- Small number of dampers can lower Q on most problematic modes



Mechanical Mode Damper Design

- Reaction mass attached to piezoelectric crystals (PZTs)
 - Resonant frequency tuned to test mass mode frequency
- PZTs connected to silica base
- PZTs stressed in shear during resonant motion

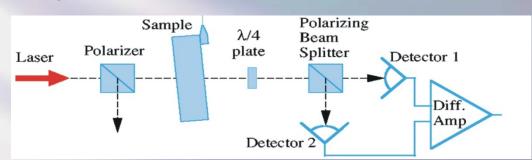
- PZTs generate voltage when stressed
- Resistor shunted across PZT to dissipate energy into heat
- Epoxy used to connect PZT to base and reaction mass as well as base to test mass
 - Silicate bonding not practical in a retrofit

LASTI Results

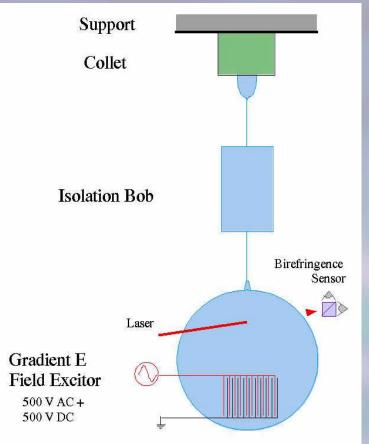
- Tests done at LASTI in 2010 by S. Gras and LASTI team
- Two dampers connected to LASTI test mass
 - Used EP30 epoxy

- Even without shunting PZTs, dampers reduce most mode Q's
- Epoxy mechanical loss largest contributor to damper loss
- Thermal noise from dampers (100 Hz) $1.3 \times 10^{-20} \text{m}/\sqrt{\text{Hz}}$
- Advanced LIGO thermal noise limit (100 Hz)

$$5.2 \times 10^{-21} \text{m}/\sqrt{\text{Hz}}$$


- Unacceptable thermal noise increase
- Need lower mechanical loss epoxy
- All results from G1001023

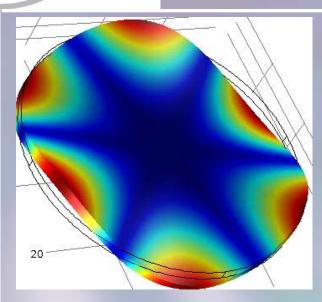
LIGO Epoxy Q Measurements


- American University Q measuring apparatus
 - Study epoxy mechanical loss
- Silica sample with epoxy spot
- Vacuum chamber to reduce air interaction
- Capacitive comb excites modes of silica samples with epoxy
- Birefringence readout sensitive to stress in samples
- Measurements summer of 2012 limited by environmental coupling
 - New, larger bell jar and support table installed fall 2012

Sample Suspension

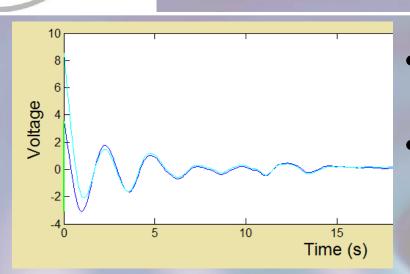
- Monolithic silica suspension used to reduce mechanical loss
- Intermediate bob between collet and sample reduce coupling to environment
- Silica fibers between clamped bob and intermediate bob and sample
- Fiber welded to silica sample mechanical loss
- Hydrogen torch used to draw fibers and weld sample

Epoxy Sample



- TRA-DUCT 2902 conducting epoxy
 - Suggestion from S. Gras
- Positioned off center of silica disk
 - Silica disk 3 inch diameter, 0.1 inch thick
 - Epoxy position chosen to couple elastic energy to epoxy while keeping Q's in measurable range
- Thin silica top piece keeps epoxy boundary conditions as in damper
 - 100 μm thick, 0.5 inch diameter
- Epoxy applied as single drop then pressed by hand with top piece
- Epoxy thickness 0.140 mm
- Epoxy hardened at room temperature for > 5 days

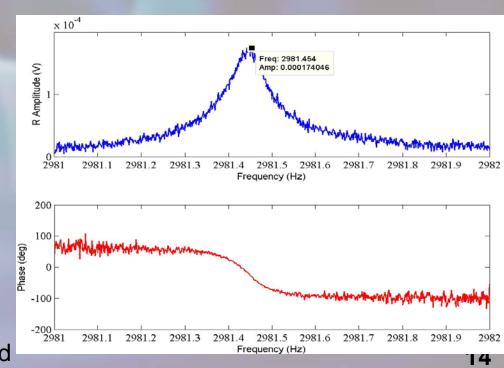
Finite Element Model



- Finite element models of oscillations calculated to determine energy in epoxy
- First 94 modes calculated
- Epoxy properties from manufacturers data sheet
 - Young's modulus 260 MPa
 - Density 3193 kg/m³
 - Poisson ratio 0.4
- Shear and bulk elastic energy in epoxy calculated for each mode
 >80% of energy in shear for all modes
 >98% in shear for all measured modes
- Frequency predictions compared to experimental results
 - Degenerate mode splitting not predicted
 - Poor agreement not understood

Mode	FEA (Hz)	Exp. (Hz)
n=0, <i>ℓ</i> =1	2682	2707.5
	2683	2981.5
n=1, <i>ℓ</i> =0	4065	4137.5
n=0, <i>ℓ</i> =3	6131	6157.6
	6133	6312.8
n=1, <i>ℓ</i> =1	9384	9457.8
Shear	36794	37071.2
	36818	37155.1

Q Measurements



FWHM fit by hand

$$Q = \frac{f_0}{\text{FWHM}}$$

- Working on complete fit of peaks with Matlab
- Measured mostly low frequency (< 10 kHz)
 - Shear modes at 37 kHz measured

- Typical ringdown times ~ 2 second
 - Too short for good fits
- Frequency domain data collected from driving near modal frequencies

Q Results

Mode	Frequency (Hz)	$\mathbf{Q} \left(\times \mathbf{10^4} \right)$	% of Energy in Epoxy
n=0, <i>ℓ</i> =1	2707.5	1.76	0.11
	2981.5	2.07	0.09
n=1, <i>ℓ</i> =0	4137.5	1.63	0.11
n=0, <i>ℓ</i> =3	6157.6	4.11	0.09
	6312.8	5.49	0.08
n=1, <i>ℓ</i> =1	9457.8	2.15	0.07
Shear	37071.2	9.51	0.04
	37155.1	8.64	0.04

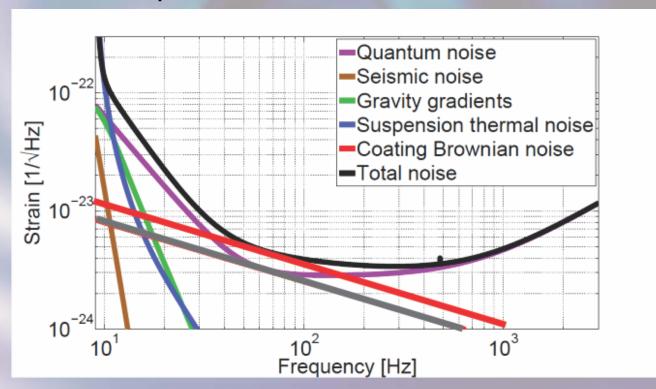
- Q of bare silica measured > 10 million
- Not used in fitting for epoxy mechanical loss

LIGO Loss Angle Calculation

		1
Ф ероху	=	a Q

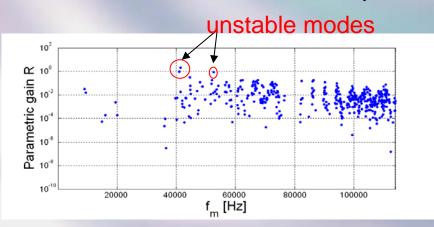
•	Energy a in
	epoxy from
	FEA model

- Q from FWHM
- Scale $\varphi \approx 10^{-2}$
- Two typical values
 - ~2.5, ~5.5
- Unknown why separation


	Mode	Frequency (Hz)	Loss angle $\left(\times10^{-2}\right)$
	n=0, <i>ℓ</i> =1	2707.5	5.2
		2981.5	5.4
	n=1, <i>ℓ</i> =0	4137.5	5.6
2	n=0, <i>ℓ</i> =3	6157.6	2.7
		6312.8	2.3
	n=1, <i>ℓ</i> =1	9457.8	6.6
		37071.2	2.6
	Shear	37155.1	2.9
	Average		4 ± 1

Thermal Noise Prediction

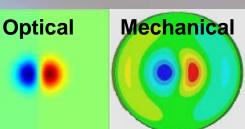
- Measured mechanical loss about a factor of 2 better than φ used in G1001023
- Thermal noise $\sim 9 \times 10^{-21} \text{m}/\sqrt{\text{Hz}}$
- Predicted thermal noise still about a factor of 2 worse than Advanced LIGO requirement



Future Plans

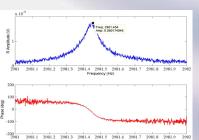
Epoxies

- HYSOL TRA-BOND
 - Used in LISA pathfinder
- EPOTEK 353ND
 - Glass transition, may be harder
- MasterBond EP30-2
- Natural Yacca gum from Australia
 - Shown to have low mechanical loss
 - Concerns about vacuum performance



- Matlab fitting of complete peaks for Q's
- Higher frequency modes
- Determine frequency dependence of loss
- Bulk loss in addition to shear

Conclusions



- Parametric instability potentially problematic for Advanced LIGO
- Mechanical mode dampers attached to test masses one possible solution
- Epoxy to construct and attach dampers can increase thermal noise and reduce sensitivity

- Tested TRA-DUCT 2902 epoxy for mechanical loss to determine thermal noise properties
- Better than modeled, but still not good enough $\varphi \approx (4 \pm 1) \times 10^{-2}$

$$S_x(100 \text{ Hz}) = 9 \times 10^{-21} \text{m}/\sqrt{\text{Hz}}$$

- Other epoxies to be measured in near future
- Hopefully one will work out