
Thermal Noise, Optics, 
and Gravitational Wave 

Detection 

Gregory Harry 
American University 

LIGO-G1201134 

National Institute of Science and Technology 
November 5, 2012 



Outline 

• Introduction to Thermal Noise 
– History and background 

• Coating Thermal Noise 
• Applications Limited by Coating Thermal Noise 
• Gravitational Wave Detection and Advanced LIGO 
• Optics in the Advanced LIGO Detectors 

– Issues arising during design, construction, and 
installation 

• Optics Projects of Potential Mutual Interest 



Thermal Noise 
• Random motion when not at 0 Kelvin 

– Can also appear as random voltage, 
force, pressure, optical properties, etc. 

• Energy in thermal noise increases 
with temperature 
– Cooling is a way, but not the only way, 

to reduce these thermal fluctuations 

• These random motions set a lower limit 
on measuring signals 
– This is the “noise” part of thermal noise 

• Not random fluctuations in temperature 
– Although these can play a role in thermal 

noise (thermo-optic, thermoelastic, etc.) 

Thermal Energy 

Cooling 



Brief History of Thermal Noise: I 
Robert Brown: Botanist (1827) 

• Microscope pioneer 
• Observed pollen moving in water 
• Saw dust from Sphinx moving as well 

Albert Einstein: Physicist (1905) 
• Mathematics of Brownian motion 
• Linked motion to fluid viscosity 
• Most cited of Einstein’s papers 

Brownian Motion 

Einstein 



Brief History of Thermal Noise: II 

Callen, Welton, and Greene 
(1950s) 

• Tie everything together 
• Relates random motion to 

energy loss 
• Fluctuation-Dissipation 

Theorem 

Johnson and Nyquist (1926) 
• Voltage noise around resistors 
• Seemingly separate to Brown’s motion 

Dissipation 

Fluctuation 

Johnson Noise 

Fluctuation-Dissipation Theorem 



Optical Coatings 
• Often made of alternating 

layers of different materials 
• Layer reflections interfere to 

cause coating reflection 
– Optimize layer thicknesses 
– Depends on indices of refraction 
– Can design for transmission 

• Higher reflection 
– Increased number of layers 
– Bigger index (n) separation 

• Scatter causes loss of light 
• Absorption causes heating 

High n 

Low n 

Coating Reflectivity 

Alternating Layers 



Coating Thermal Noise I 
Levin’s Formula 

• From Fluctuation-Dissipation Theorem 
• Describes random motions of surface of coating 

relative to mirror center of mass 
 

𝑆𝑥 𝑓 =  
4 𝐾𝐵 𝑇 𝑑
𝑓 𝑌 𝑤2 π2 φ 

KB: Boltzmann’s constant 
T:   temperature in Kelvin 
f:    frequency 

 

d: coating thickness 
Y: Young’s modulus 
w: beam width 
φ : mechanical loss 

 



Measurements of Coating φ 
• Mechanical loss φ also causes 

ringdown of normal modes 
– Test samples rings like a bell 
– Energy slowly leaves ringing 
– Measure modal Q’s 

• Can measure φ more easily 
than measuring thermal noise 

e-π f tφ Sin(2 π f t) 

Q Measurement 

Ringdown 



Direct Thermal Noise Measurements 

• Interferometer can 
directly measure 
coating thermal noise 

• Very difficult 
– Years to perfect  
– Months to measure 

• See 1/f dependence 

Tantala 

Titania-Tantala 

• Clear improvement from tantala to titania-tantala 
– Reasonable agreement with Q measurements 

• Seen improvement from using less tantala 
• Can (and have) also study substrate thermal noise 

Coating Thermal Noise Data 



Applications Limited by Coating 
Thermal Noise 

• Frequency stabilization 
– Precise timing measurements 
– Frequency combs 
– Work done at NIST-Boulder Sr Atomic 

Clock 
• Quantum optomechanics 

– Quantum behavior of macroscopic objects 
• Cavity quantum electrodynamics 

– Single atom-photon interactions 
• Gravitational Wave Detection 

– First research on coating thermal noise 
– Focus of American University efforts 

• Book on coatings and applications 

Atom in Cavity 



Gravitational Wave Detection 

LIGO Gravitational Wave Detectors 

• Measure prediction of Einstein’s theory of gravity 
– Moving masses produce waves in space and time 

• Astronomical sized objects needed 
– Still very tiny effect, about 10-18 m at Earth 

• Interferometer measures separation between 
coated optics; need to boost signal 
– High laser power: hundreds of kilowatts 
– Long arms: 4 kilometers Effect of Gravitational Waves 

Livingston LA Hanford WA 



LIGO Detectors 
• Initial LIGO had two 4-km long and one 2-km 

long interferometers 
– Livingston Louisiana and Hanford Washington 

• Advanced LIGO has three 4-km interferometers 
under construction 

• One each in Livingston, 
Hanford, one in India 

• Michelson configuration 
with Fabry-Perot arms 
– Also signal and power 

boosting mirrors 
• Mirrors hang as pendulums 

Simplified LIGO Interferometer 

• Full 8-km optical path in vacuum 



Advanced LIGO 

100 
million 
light 
years 

Advanced LIGO 

Enhanced LIGO Initial LIGO 
• October 2010, installation began 

on Advanced LIGO (aLIGO) 
• Most hardware procured 
• Installation of mirrors and other 

hardware in progress 

• Sensitivity designed to be 
10X initial LIGO 
– Initial LIGO saw no signals 

• Limited in sensitive band 
by coating thermal noise 

• Early data in 2015 

Advanced 
LIGO 

Sensitivity 

Astronomical Reach 



Advanced LIGO Optics Types 
• Test masses 

– Define Fabry-Perot cavities 
– End test mass and input test masses 
– Highest optical power on coatings 
– Most stringent requirements 
– Laboratoire des Matériaux Avancés (LMA) 

• Beamsplitters 
– Divide the beam into two arms 
– Equal stress on both sides 
– Commonwealth Scientific and       

Industrial Research Organization (CSIRO) 
• Compensation plates 

– Secondary optic behind input test masses 
– Used to adjust thermal lensing 
– CSIRO 

 

Test Masses: 
34cm φ x 20cm 40 kg 

40 kg 

BS:  
37cm φ x 6cm 

Recycling Mirrors: 
26.5cm φ x 10cm 

ITM 
T = 1.4% 

SR3 

PR3 

Compensation plates: 
34cm φ x 10cm 

• Recycling mirrors 
– Reflect both optical power and signals back into interferometer 
– CSIRO 

 



Advanced LIGO Test Masses 
• 40 kilograms with 6 cm spot size 

– Large spot reduces coating thermal noise 
– Fused silica glass for low thermal noise 

• Two step polish 
– Superpolish to 1 Å microroughness , within 

100 nm of figure requirement 
– Ion beam figuring to correct figure 

LIGO Test Mass 

Metrology 
 

Surface Figure 

Property Requirement Measurement 

Microroughness 0.16 nm rms 0.11 nm rms 

Radius of Curvature 2245-5+15 m 2249.8 m 

Surface Figure Error 0.3 nm rms 0.12 nm rms 

Astigmatism 3 nm rms 0.04 nm rms 

– Polishing done at Coastline and Zygo Extreme Precision Optics 



Advanced LIGO Optics Coatings 
Thermal Lensing 

Coatings 
• Ion beam deposition coating 
• Titania doped tantala/silica 

– Lower thermal noise 
– Large index contrast, low coating 

thickness 
– Reduced absorption, low scatter 

• Design to preserve reflectivity but 
reduce amount of titania-tantala 

 
Coated LIGO Optic 

Property Requirement Measurement 

Scatter 10 ppm 6.5 ppm 

Absorption 0.5 ppm 0.5 ppm 

Uniformity of reflectivity 0.2% 0.2% 

End Mirror Transmission 5 ± 1 ppm 4.8 ppm 

Input Mirror Transmission 1.4 ± 0.1 % 1.38% 

Transmission Matching 1% TBD 



Advanced LIGO Optics Issues 
• Absorption of AR coatings 

– Inexplicably large in some 
samples, overall high 

– Annealing bringing down 
close to specifications 

• Figure change with annealing 
– Significant distortion in optic shape 
– Only some optics, mostly Corning glass 

• Polishing effects on thermal noise 
– Ion beam etching used with superpolish 
– Both techniques demonstrated to not adversely 

effect thermal noise; details unknown 



AR Coating Absorption 
• Possibly related to thin tantala layer 

– Only seen on beamsplitters and compensation 
plates; have thin layers 

• Consistent with tantala, substrate 
and/or interlayer absorption 

• Improves with annealing 
– Can take > 100 hours at > 450 C 

• Humidity while annealing may play role 
Models of Absorption vs Depth Absorption with Annealing 



Figure Change with Annealing 
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Number of days dwell time at 600C 

Distortion of FMs (over ~272 mm aperture) due 
to annealing 

"FM01 - S1
cumulative
distortion after
annealing"

"FM03 - S1
cumulative
distortion after
annealing"

8 nm stability required 

• Change in surface figure with annealing 
observed in some Advanced LIGO optics 

• Primarily in Corning 7980 fused silica 
• Corning optics 

replaced with 
Heraeus glass 

• Recently seen in 
Heraeus as well 
– About 10% of 

Corning change 
• No understanding 

of cause or cure 



Polishing and Thermal Noise 
• Mechanical loss of glass 

surfaces worse than bulk 
• Flame polished silica surfaces 

well characterized 
• No large thermal noise effects 

from super- or ion beam polish 
 – Details unstudied 
– Might be able to improve with annealing, chemical 

treatment, or other processes 
– Trade offs between roughness and mechanical loss? 

• Magneto-rheological polishing another option 
– Experience has microroughness high 

Silica Mechanical Loss vs 
Surface to Volume Ratio 



Improved Coatings for Next 
Generation Detectors 

• Reducing temperature 
– Lowers T in thermal noise equation 
– Properties (φ, Y, etc.) can change 

• Beam shaping 
– Effectively increase beam size 
– Strict figure requirements 

 • All reflective optics 
– Diffractive coatings 
– Improved thermal lensing 

• Coating free mirrors 
– Eliminate need for coatings 
– Hard to get high reflectivity 

Different Beam Shapes 

Diffractive 
Beamsplitter 



Next Generation Polishing Issues 
• Mesa beam or other unusual beam shapes allow 

for larger spot sizes  
– Reduce thermal noise, better averaging 
– Difficult to polish, may require new techniques 

• Gauss-Laguerre modes allow 
spherical polish but require 
extreme figure 

• Coating-free mirrors may have 
strict roughness and figure needs 
– Also require AR coatings so 

absorption is important 



Next Generation Optics Materials 
• Cryogenic silicon or sapphire mirrors 

– Thermal noise lower at low temperatures 
– What figure/microroughness is possible? 
– What homogeneity can silicon have at 

1550 nm? 
– How does polish effect thermal noise? 
– What coatings are possible? 

• New coating materials 
– Silica /tantala increase mechanical 

loss at low temperature 
– Hafnia improves mechanical loss 
– Crystalline coatings promising: 

AlGaAs, AlGaP 
 

40 kg Sapphire Optic 

Tantala and Hafnia vs 
Temperature 



Conclusions 
• Coating thermal noise limitation in many precision 

optical measurements 
– Gravitational wave detectors prime example 

• Advanced gravitational wave detectors coming soon 
– Improved technology will provide greater sensitivity 

• aLIGO mirrors are larger with bigger spot sizes, finer 
polish, lower absorption, and lower thermal noise 

• aLIGO optics issues during fabrication include high 
absorption and figure change with annealing 

• Next generation detectors need optics research 
• Many areas of mutual interest with NIST 

 



Advanced LIGO Technology 
180 W Nd:YAG Laser 

Multistage Active 
Seismic Isolation 

Optics Table Interface 
(Seismic Isolation System) 

Damping Controls 

Electrostatic 
Actuation 

Hierarchical Global 
Controls 

Quadruple Pendulum Suspension 

Feedback and 
Control 



Questions on Figure and Annealing 
• Does type of glass matter?  

– Primarily seen in Corning 7980 fused silica 
– Also in one Heraeus glass optic 

• Is type or quality of polish important 
– Heraeus optic that changed had spotty surface with 

high microroughness 
• Are there correlations between figure change 

and molecular level issues in glass 
– Impurities  
– Bond angle changes 
– Can these be studied with X-ray or other techniques 

• Preliminary interest in this issue from Corning 



• Primary value of diffractive 
optics improved thermal lensing 
– No transmission in substrates 

• Can be made of opaque material 
– Silicon at 1064 nm 

Diffractive Optics 

Silicon Waveguide Grating 

Diffraction Grating Coating 

• Thermal noise needs more research 
– Surface quality may be important 

• Mirror size needs development 
• Noise from lateral displacement           

needs solution 
• Exact topology to be determined 

 



Projects of Mutual Interested between 
LIGO and NIST 

• Causes and cures of 
absorption in AR coatings 

• Causes and cures of figure 
change in silica with annealing 

• Thermal noise, microroughness, and 
figure from polishing techniques 

• Polish and thermal noise in sapphire 
and silicon substrates 

• Microroughness, figure, and 
thermal noise in crystalline 
coatings and diffractive optics 



Thermal Lensing In aLIGO Optics 
• Initial LIGO optics polished 

assuming thermal lens forms 
• Point design assume particular 

absorption values 
• Needed to go to feedback 

system with CO2 laser 
 Cavity Gain in Initial LIGO 

Thermal Compensation System 

• Advanced LIGO designed 
with compensation 

• Minimize CO2 laser 
power to reduce noise 

 



Astronomical Sources of Gravitational 
Waves Inspiral Sources: 

 Neutron Stars 

Stochastic Sources: 
Gravitational Wave Background 

Burst Sources: 
Supernova 

Periodic Sources: 
Rotating Neutron Stars 



Results from Initial LIGO 
• Initial LIGO at design sensitivity from 

November 2005 to October 2007 
• No gravitational waves detected 
• Interesting /notable non-detections  

• Crab Pulsar 
• Energy loss due to gravitational 

waves less than 6% 
• Ellipticity limit < 3 10-4 

• GRB070201 
• Either not in Andromeda or not 

neutron star inspiral 

• Stochastic background below 
theoretical limits 

Initial LIGO 
Sensitivity 

Laser/MC

Recycling 
Mirror

6 W

100 W

13 kW0.2 W

Input Test 
Mirror

End Test 
Mirror

4 km Fabry-Perot cavities

Whole Interferometer 
Enclosed in Vacuum

Initial LIGO Detector 



Cryogenics 

Engineering challenges 
• High thermal conductivity 

materials to get heat out 
• High light power can add heat 

to optics 
• Refrigerators can cause 

vibration and other noise Cooled Mirror 

• Reduction in T directly lowers thermal noise 
• Need to study materials at low temperatures 

– Properties can improve,  worsen, or stay same 
– New materials may become possible 



Cryogenics and Materials 
• Material φ’s change with T 
• Often have loss peaks 

– Tantala, titania-tantala, silica 
– Help understand source of 

mechanical loss 
• Very low T,  φ’s become low 

• Many loss peaks different 
with annealing/doping 

• Hafnia (HfO2) poor at room 
temperature but continually 
improves with low T 

Loss Peaks in Ta and Ti-Ta 

Hafnia Mechanical Loss 



Beam Shaping 
• Averaging across mirror gives 

lower thermal noise 
• Effectively increasing w value 
• Brings up optical problems 

– Optical loss at edge of mirror 
– Cavity stability at high power 

• Many experimental attempts 
• Mesa beams 

– Requires special shaped mirror 
• Laguerre Gauss beams 

– Use spherical mirrors 
– Plans for use in prototype 

Different Shaped Beams 

Laguerre Gauss 3,3 Mode 



Coating Free Mirrors 
• Can use total internal 

reflection effect for mirror 
• Need an anti-reflective 

coating on face 
– Much thinner than reflective 

• Beam travels inside mirror 
– Scatter, absorption concerns 

• Mostly theory and 
modeling work 

• Concerns with level of 
reflectivity achievable 

• Experiment using Brewster 
angle mirror 

Coating Free Mirrors 

Brewster’s Angle Reflector 



Coating Thermal Noise II 

w 
d 

Y,φ 

• w: how well noise is averaged  
• d: how much coating 
• Y: how stiff is the coating 
• φ: how much heat energy can 

affect coating motion 

Substrate 

Coating 

Side View of Optic 



Frequency Stabilization 
• Optical cavities used as frequency reference 

– Cavities have coated mirrors on each end 
• Light of certain frequency will resonate in cavity 
• Length stability determines frequency stability 
• Coating thermal noise will limit cavity length 

– Currently limited to proton radius over 1 second 

Optical Cavity 
Cavity Resonance 



Cavity Optomechanics 
• Measure motion of small, but 

macroscopic objects 
– Nano to milli grams 

• Some samples made by etching 
– Only coatings, no substrates 
– Coating properties crucial 

• Often cryogenic 
• Light acts as spring 

– Radiation pressure 
• Exchange energy between 

mirrors and light 
– Doppler shift 

Mini-mirror in Suspension 

Micron Scale Oscillator 



Cavity QED 
• Single atom (ion) in cavity 

– Also quantum dot 
– Bose Einstein condensate 

• Secondary beam traps atom 
• Thermal noise can influence 

trapping 
 • Coating scatter very low 

– Chance of interaction with 
atom >> chance of scatter  

• Can use optical fibers to 
define cavity  

• Generate single photons 
 

Fiber Optic Cavity 

Cavity with Single Atom 



Frequency Stabilization Applications 
Atomic clocks 

• Metrology of optical surfaces 
• Improved spectroscopy 
• Global positioning (GPS) technology 
• Gravitational redshift measurement 

over 1 meter 
 

Frequency combs 
Link across frequencies  

• Connects atomic clocks based 
on different species 

• Optical frequency comparison 
to microwave standards 

• Study changes in fundamental 
constants Frequency Comb 

Sr Atomic 
Clock 



Cavity Optomechanics Experiments 
• Single electron spin detection 
• Quantum information theory (Qubits) 
• Quantum limits of force, mass, and position 
• Quantum mechanical behavior of large objects 

– Coupling of large resonator to single atom 
– Schrödinger’s cat experiments 

 
 Schrödinger’s Cat 

• Radioactive decay breaks 
poison bottle or not 

• Macroscopic state depends 
of quantum event 

• Just thought experiment until 
recently 

 
Schrödinger’s Cat Experiment 



Cavity QED Applications 
• Study fundamental 

quantum systems 
– Interaction of light and 

matter 
• Single atom lasers 

• Measure entanglement 
between different atoms 
– Secure quantum 

cryptography 
• Quantum computation 
• Quantum networks 

Single Atom Loaded Into Cavity 

Quantum Computer 



Young’s Modulus Measurement 

Transducer 

Glass Slide 

Coating 

Water 1” dia. optic 

Spacer 

• Thermal noise is a force noise 
• Stiffness converts force to position 
• Young’s modulus of both coating 

and substrate important 

• Work at ERAU on Y 
• Green trace from silica 
• Blue trace from sapphire 
• Also studying high index 

coating materials 

Pulse from Young’s Modulus Measurement 

Y Experiment 



Thermo-optic Noise 

Experimental Setup at ERAU 

• Different form of coating thermal noise 
• Thermal fluctuations cause change in index of 

refraction and layer thickness 
• Does not depend on φ, but on dn/dT and dL/dT 
• Generally less than Brownian thermal noise 

• ERAU center of thermo-
optic noise research 

• Measuring dn/dT from 
changing reflectivity with 
temperature 

• Difficult data analysis 
from multiple layers 



Khalili Cavities 
• Make one mirror of 

cavity itself a cavity 
• Thick coating (EETM) 

sensed by less light 
• Thin coating (IETM) 

sensed by more light 
• Planned for use in 

prototype interferometer 
• Added complexity due to 

additional mirror 
• Hope to study quantum 

noise and squeezed light 

Khalili Cavity 

10 m Interferometer Prototype 



Initial and Advanced LIGO Sensitivity 
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