

Thermal Noise, Optics, and Gravitational Wave Detection

National Institute of Science and Technology November 5, 2012

Gregory Harry

American University

LIGO-G1201134

Outline

- Introduction to Thermal Noise
 - History and background
- Coating Thermal Noise
- Applications Limited by Coating Thermal Noise
- Gravitational Wave Detection and Advanced LIGO
- Optics in the Advanced LIGO Detectors
 - Issues arising during design, construction, and installation
- Optics Projects of Potential Mutual Interest

Thermal Noise

- Random motion when not at 0 Kelvin
 - Can also appear as random voltage, force, pressure, optical properties, etc.
- Energy in thermal noise increases with temperature
 - Cooling is a way, but not the only way, to reduce these thermal fluctuations

Thermal Energy

Cooling

- These random motions set a lower limit on measuring signals
 - This is the "noise" part of thermal noise
- Not random fluctuations in temperature
 - Although these can play a role in thermal noise (thermo-optic, thermoelastic, etc.)

Brief History of Thermal Noise: I

Robert Brown: Botanist (1827)

- Microscope pioneer
- Observed pollen moving in water
- Saw dust from Sphinx moving as well

Brownian Motion

Einstein

Albert Einstein: Physicist (1905)

- Mathematics of Brownian motion
- Linked motion to fluid viscosity
- Most cited of Einstein's papers

Brief History of Thermal Noise: II

Johnson Noise

Johnson and Nyquist (1926)

- Voltage noise around resistors
- Seemingly separate to Brown's motion

Fluctuation-Dissipation Theorem

Callen, Welton, and Greene (1950s)

- Tie everything together
- Relates random motion to energy loss
- Fluctuation-Dissipation
 Theorem

Optical Coatings

- Often made of alternating layers of different materials
- Layer reflections interfere to cause coating reflection
 - Optimize layer thicknesses
 - Depends on indices of refraction
 - Can design for transmission

Coating Reflectivity

- Higher reflection
 - Increased number of layers
 - Bigger index (n) separation
- Scatter causes loss of light
- Absorption causes heating

Coating Thermal Noise I

Levin's Formula

- From Fluctuation-Dissipation Theorem
- Describes random motions of surface of coating relative to mirror center of mass

$$S_{x}(f) = \frac{4 K_B T d}{f Y w^2 \pi^2} \phi$$

K_B: Boltzmann's constant

T: temperature in Kelvin

f: frequency

d: coating thickness

Y: Young's modulus

w: beam width

 ϕ : mechanical loss

Measurements of Coating ϕ

Q Measurement

- Mechanical loss ϕ also causes ringdown of normal modes
 - Test samples rings like a bell
 - Energy slowly leaves ringing
 - Measure modal Q's
- Can measure \(\phi \) more easily
 than measuring thermal noise

Direct Thermal Noise Measurements

Interferometer can directly measure coating thermal noise

- Very difficult
 - Years to perfect
 - Months to measure
- See 1/f dependence

Coating Thermal Noise Data

- Clear improvement from tantala to titania-tantala
 - Reasonable agreement with Q measurements
- Seen improvement from using less tantala
- Can (and have) also study substrate thermal noise

Applications Limited by Coating Thermal Noise

- Frequency stabilization
 - Precise timing measurements
 - Frequency combs
 - Work done at NIST-Boulder

- Quantum behavior of macroscopic objects
- Cavity quantum electrodynamics
 - Single atom-photon interactions
- Gravitational Wave Detection
 - First research on coating thermal noise
 - Focus of American University efforts
- Book on coatings and applications

Gravitational Wave Detection

- Measure prediction of Einstein's theory of gravity
 - Moving masses produce waves in space and time
- Astronomical sized objects needed
 - Still very tiny effect, about 10⁻¹⁸ m at Earth
- Interferometer measures separation between coated optics; need to boost signal
 - High laser power: hundreds of kilowatts
 - Long arms: 4 kilometers

LIGO Gravitational Wave Detectors

Effect of Gravitational Waves

LIGO Detectors

- Initial LIGO had two 4-km long and one 2-km long interferometers
 - Livingston Louisiana and Hanford Washington
- Advanced LIGO has three 4-km interferometers under construction
 Simplified LIGO Interferometer
- One each in Livingston,
 Hanford, one in India
- Michelson configuration with Fabry-Perot arms
 - Also signal and power boosting mirrors
- Mirrors hang as pendulums
- Full 8-km optical path in vacuum

Advanced LIGO

- October 2010, installation began on Advanced LIGO (aLIGO)
- Most hardware procured
- Installation of mirrors and other hardware in progress

Astronomical Reach

- Sensitivity designed to be 10X initial LIGO
- Initial LIGO saw no signals
 Limited in sensitive band
 by coating thermal noise

Early data in 2015

Advanced LIGO Optics Types

- Recycling mirrors
 - Reflect both optical power and signals back into interferometer
 - CSIRO

CSIRO

Advanced LIGO Test Masses

- 40 kilograms with 6 cm spot size
 - Large spot reduces coating thermal noise
 - Fused silica glass for low thermal noise
- Two step polish
 - Superpolish to 1 Å microroughness, within
 100 nm of figure requirement
 - Ion beam figuring to correct figure
 - Polishing done at Coastline and Zygo Extreme Precision Optics

Surface Figure

LIGO Test Mass

Metrology

Property	Requirement	Measurement
Microroughness	0.16 nm rms	0.11 nm rms
Radius of Curvature	2245-5+15 m	2249.8 m
Surface Figure Error	0.3 nm rms	0.12 nm rms
Astigmatism	3 nm rms	0.04 nm rms

Advanced LIGO Optics Coatings

Property	Requirement	Measurement
Scatter	10 ppm	6.5 ppm
Absorption	0.5 ppm	0.5 ppm
Uniformity of reflectivity	0.2%	0.2%
End Mirror Transmission	5 ± 1 ppm	4.8 ppm
Input Mirror Transmission	$1.4\pm0.1\%$	1.38%
Transmission Matching	1%	TBD

Thermal Lensing

Coated LIGO Optic

Coatings

- Ion beam deposition coating
- Titania doped tantala/silica
 - Lower thermal noise
 - Large index contrast, low coating thickness
 - Reduced absorption, low scatter
- Design to preserve reflectivity but reduce amount of titania-tantala

Advanced LIGO Optics Issues

- Absorption of AR coatings
 - Inexplicably large in some samples, overall high
 - Annealing bringing down close to specifications
- Figure change with annealing
 - Significant distortion in optic shape
 - Only some optics, mostly Corning glass
- Polishing effects on thermal noise
 - Ion beam etching used with superpolish
 - Both techniques demonstrated to not adversely effect thermal noise; details unknown

AR Coating Absorption

- Possibly related to thin tantala layer
 - Only seen on beamsplitters and compensation plates; have thin layers
- Consistent with tantala, substrate and/or interlayer absorption
- Improves with annealing
 - Can take > 100 hours at > 450 C
- Humidity while annealing may play role

Absorption with Annealing

Models of Absorption vs Depth

Figure Change with Annealing

- Change in surface figure with annealing observed in some Advanced LIGO optics
- Primarily in Corning 7980 fused silica
- Corning optics replaced with Heraeus glass
- Recently seen in Heraeus as well
 - About 10% of Corning change
- No understanding of cause or cure

Polishing and Thermal Noise

- Mechanical loss of glass surfaces worse than bulk
- Flame polished silica surfaces well characterized
- No large thermal noise effects from super- or ion beam polish

Silica Mechanical Loss vs Surface to Volume Ratio

- Details unstudied
- Might be able to improve with annealing, chemical treatment, or other processes
- Trade offs between roughness and mechanical loss?
- Magneto-rheological polishing another option
 - Experience has microroughness high

Improved Coatings for Next Generation Detectors

- Reducing temperature
 - Lowers T in thermal noise equation
 - Properties (ϕ , Y, etc.) can change
- Beam shaping
 - Effectively increase beam size
 - Strict figure requirements

- All reflective optics
 - Diffractive coatings
 - Improved thermal lensing
- Coating free mirrors
 - Eliminate need for coatings
 - Hard to get high reflectivity

Next Generation Polishing Issues

- Mesa beam or other unusual beam shapes allow for larger spot sizes
 - Reduce thermal noise, better averaging
 - Difficult to polish, may require new techniques
- Gauss-Laguerre modes allow spherical polish but require extreme figure
- Coating-free mirrors may have strict roughness and figure needs
 - Also require AR coatings so absorption is important

Next Generation Optics Materials

- Cryogenic silicon or sapphire mirrors
 - Thermal noise lower at low temperatures
 - What figure/microroughness is possible?
 - What homogeneity can silicon have at 1550 nm?
 - How does polish effect thermal noise?
 - What coatings are possible?

40 kg Sapphire Optic

Tantala and Hafnia vs Temperature

New coating materials

- Silica /tantala increase mechanical loss at low temperature
- Hafnia improves mechanical loss
- Crystalline coatings promising:
 AlGaAs, AlGaP

Conclusions

- Coating thermal noise limitation in many precision optical measurements
 - Gravitational wave detectors prime example
- Advanced gravitational wave detectors coming soon
 - Improved technology will provide greater sensitivity
- aLIGO mirrors are larger with bigger spot sizes, finer polish, lower absorption, and lower thermal noise
- aLIGO optics issues during fabrication include high absorption and figure change with annealing
- Next generation detectors need optics research
- Many areas of mutual interest with NIST

Advanced LIGO Technology

180 W Nd:YAG Laser

Multistage Active Seismic Isolation

Optics Table Interface (Seismic Isolation System)

Damping Controls

Hierarchical Global Controls

Electrostatic Actuation

Quadruple Pendulum Suspension

Feedback and Control

Questions on Figure and Annealing

- Does type of glass matter?
 - Primarily seen in Corning 7980 fused silica
 - Also in one Heraeus glass optic
- Is type or quality of polish important
 - Heraeus optic that changed had spotty surface with high microroughness
- Are there correlations between figure change and molecular level issues in glass
 - Impurities
 - Bond angle changes
 - Can these be studied with X-ray or other techniques
- Preliminary interest in this issue from Corning

Diffractive Optics

- Primary value of diffractive optics improved thermal lensing
 - No transmission in substrates
- Can be made of opaque material
 - Silicon at 1064 nm
- Thermal noise needs more research
 - Surface quality may be important
- Mirror size needs development
- Noise from lateral displacement needs solution
- Exact topology to be determined

Silicon Waveguide Grating

Projects of Mutual Interested between LIGO and NIST

- Causes and cures of absorption in AR coatings
- Causes and cures of figure change in silica with annealing

- Thermal noise, microroughness, and figure from polishing techniques
- Polish and thermal noise in sapphire and silicon substrates
- Microroughness, figure, and thermal noise in crystalline coatings and diffractive optics

Thermal Lensing In aLIGO Optics

 Initial LIGO optics polished assuming thermal lens forms

Point design assume particular absorption values

Needed to go to feedback
 system with CO₂ laser

Cavity Gain in Initial LIGO

Advanced LIGO designed with compensation
Minimize CO₂ laser power to reduce noise

Thermal Compensation System

Astronomical Sources of Gravitational

Inspiral Sources: Neutron Stars Waves

Burst Sources: Supernova

Periodic Sources: Rotating Neutron Stars

Stochastic Sources: Gravitational Wave Background

Results from Initial LIGO

 Initial LIGO at design sensitivity from November 2005 to October 2007

No gravitational waves detected

Interesting /notable non-detections

 Energy loss due to gravitational waves less than 6%

Mirror

Whole Interferometer Enclosed in Vacuum

4 km Fabry-Perot cavities

13 kW

- Ellipticity limit < 3 10⁻⁴
- GRB070201
 - Either not in Andromeda or not neutron star inspiral
- Stochastic background below theoretical limits

Cryogenics

- Reduction in T directly lowers thermal noise
- Need to study materials at low temperatures
 - Properties can improve, worsen, or stay same
 - New materials may become possible

Engineering challenges

- High thermal conductivity materials to get heat out
- High light power can add heat to optics
- Refrigerators can cause vibration and other noise

Cooled Mirror

Cryogenics and Materials

- Material φ's change with T
- Often have loss peaks
 - Tantala, titania-tantala, silica
 - Help understand source of mechanical loss
- Very low T, ϕ 's become low

Loss Peaks in Ta and Ti-Ta

- Many loss peaks different with annealing/doping
- Hafnia (HfO₂) poor at room temperature but continually improves with low T

Hafnia Mechanical Loss

Beam Shaping

Different Shaped Beams

- Averaging across mirror gives lower thermal noise
- Effectively increasing w value
- Brings up optical problems
 - Optical loss at edge of mirror
 - Cavity stability at high power
- Many experimental attempts
- Mesa beams
 - Requires special shaped mirror
- Laguerre Gauss beams
 - Use spherical mirrors
 - Plans for use in prototype

Coating Free Mirrors

Coating Free Mirrors

- Mostly theory and modeling work
- Concerns with level of reflectivity achievable
- Experiment using Brewster angle mirror

- Can use total internal reflection effect for mirror
- Need an anti-reflective coating on face
 - Much thinner than reflective
- Beam travels inside mirror
 - Scatter, absorption concerns

Brewster's Angle Reflector

Coating Thermal Noise II

Side View of Optic

- w: how well noise is averaged
- d: how much coating
- Y: how stiff is the coating
- ϕ : how much heat energy can affect coating motion

Frequency Stabilization

- Optical cavities used as frequency reference
 - Cavities have coated mirrors on each end
- Light of certain frequency will resonate in cavity
- Length stability determines frequency stability
- Coating thermal noise will limit cavity length
 - Currently limited to proton radius over 1 second

Cavity Optomechanics

- Measure motion of small, but macroscopic objects
 - Nano to milli grams
- Some samples made by etching
 - Only coatings, no substrates
 - Coating properties crucial
- Often cryogenic

Micron Scale Oscillator

Mini-mirror in Suspension

- Light acts as spring
 - Radiation pressure
 - Exchange energy between mirrors and light
 - Doppler shift

Cavity QED

- Single atom (ion) in cavity
 - Also quantum dot
 - Bose Einstein condensate
- Secondary beam traps atom
 - Thermal noise can influence trapping
- Coating scatter very low
 - Chance of interaction with atom >> chance of scatter
- Can use optical fibers to define cavity
- Generate single photons

Fiber Optic Cavity

Frequency Stabilization Applications

Atomic clocks

- Metrology of optical surfaces
- Improved spectroscopy
- Global positioning (GPS) technology
- Gravitational redshift measurement over 1 meter

Frequency combs Link across frequencies

- Connects atomic clocks based on different species
- Optical frequency comparison to microwave standards
- Study changes in fundamental constants

Frequency Comb

Cavity Optomechanics Experiments

- Single electron spin detection
- Quantum information theory (Qubits)
- Quantum limits of force, mass, and position
- Quantum mechanical behavior of large objects
 - Coupling of large resonator to single atom
 - Schrödinger's cat experiments

Schrödinger's Cat

- Radioactive decay breaks poison bottle or not
- Macroscopic state depends of quantum event
- Just thought experiment until recently

Schrödinger's Cat Experiment

Cavity QED Applications

- Study fundamental quantum systems
 - Interaction of light and matter
- Single atom lasers

Quantum Computer

Single Atom Loaded Into Cavity

- Measure entanglement between different atoms
 - Secure quantum cryptography
- Quantum computation
- Quantum networks

Young's Modulus Measurement

- Thermal noise is a force noise
- Stiffness converts force to position
- Young's modulus of both coating and substrate important

- Work at ERAU on Y
- Green trace from silica
- Blue trace from sapphire
- Also studying high index coating materials

Pulse from Young's Modulus Measurement

Thermo-optic Noise

- Different form of coating thermal noise
- Thermal fluctuations cause change in index of refraction and layer thickness
- Does not depend on φ, but on dn/dT and dL/dT
- Generally less than Brownian thermal noise
 - ERAU center of thermooptic noise research
 - Measuring dn/dT from changing reflectivity with temperature
 - Difficult data analysis from multiple layers

Experimental Setup at ERAU

Khalili Cavities

- Make one mirror of cavity itself a cavity
- Thick coating (EETM) sensed by less light
- Thin coating (IETM) sensed by more light

ITM IETM EETM $l \lesssim 10 \, \mathrm{m}$

Khalili Cavity

- Planned for use in prototype interferometer
- Added complexity due to additional mirror
- Hope to study quantum noise and squeezed light

10 m Interferometer Prototype

Initial and Advanced LIGO Sensitivity

