



# An Overview of Advanced LIGO Interferometry

Luca Matone

Columbia Experimental Gravity group (GECo)

Jul 16-20, 2012

LIGO-G1200743



#### Summary



- Automatic Alignment and Wavefront sensors
  - The amount of first-order TEMs (01 or 10) provides alignment information
- Input Mode Cleaner
  - Suspended triangular cavity
  - Spatially filters incoming laser beam (non-TEM00 modes rejected)
  - Provides additional frequency noise and beam jitter suppression
- Output Mode Cleaner
  - Four-mirror bow tie configuration
  - Sidebands are rejected along with non-TEM00 modes
- Thermal Compensation System (TCS)
  - Compensates for thermal induced deformations ( $\sim 800 \ kW$  stored in arms)
  - Optimizes IFO coupling to TEM00 (light that carries GW information)



#### Noise budgeting



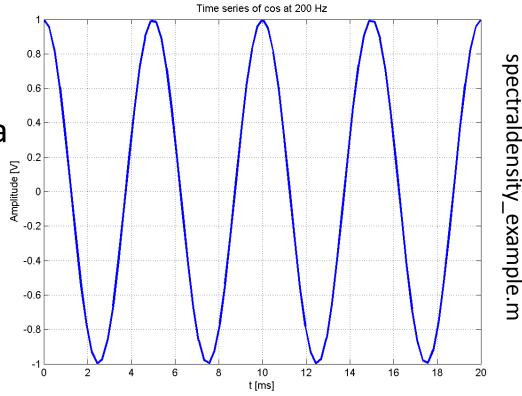
- Amplitude Spectral Density and Power Spectral Density
- Linear system can be described in terms of a TF
- TF poles dictate time-response of system
- Control System
  - Manages and regulates a set of variables in a system
  - A quantity is measured then controlled
- General stability criteria
- Noise propagation throughout control system
- eLIGO noise budget sample



#### Power Spectral Density (PSD)



- Need to work in frequency space
- PSD: a graphical representation to easily determine the power of a signal over a particular frequency band.
- Uses the fft algorithm



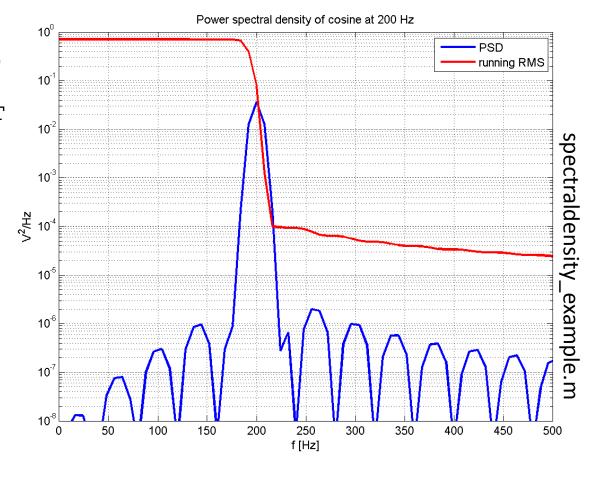


## Power Spectral Density (PSD)



- In this example, power is computed using
  - w=hamming(length(x))
  - [Pxx,f]=periodogram(
     x,wi,'onesided',NFFT
     ,Fs)
- Data windowing
  - In the fft process, power in one frequency bin "leaks" to nearby bins.
  - Filter (with a window filter)
     the input data stream
- The (running) RMS computed using the PSD (and shown in red)

$$RMS = \sqrt{\sum P_{xx} \cdot \Delta f}$$

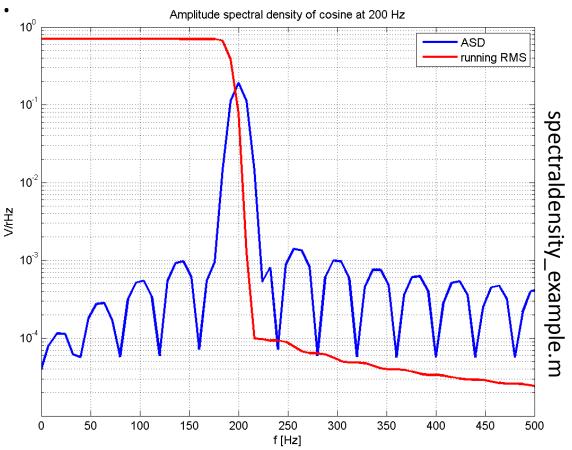




# Amplitude Spectral Density (ASD)



- Plotting the amplitude:
  - simply the square root of the power spectral density  $\sqrt{P_{\chi\chi}}$



LIGO-G1200743



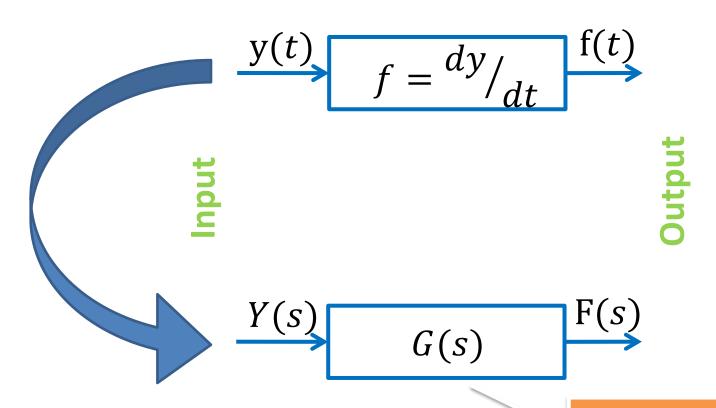


#### Noise budget

- Need to measure the Amplitude Spectral Density of various noise terms
- Project them onto the sensitivity curve



## Time domain ↔ Laplace domain



Transform variable  $s=j\;\omega$  (complex frequency)

A linear system can be represented as a Transfer Function



#### Transfer function, poles and zeros



- Convenient to express G(s) in terms of its poles and zeros:
  - Roots of the numerator (zeros) and denominator (poles)

$$G(s) = \frac{Q(s)}{P(s)}$$

$$= k \cdot \frac{(s - z_1) \cdot (s - z_2) \dots (s - z_m)}{(s - p_1) \cdot (s - p_2) \dots (s - p_n)}$$

where k is the gain of the transfer function



## Summary of pole characteristics



#### Real distinct poles (often negative)

$$\frac{c_i}{s - p_i} \quad \leftrightarrow \quad c_i \, e^{p_i t}$$

Real poles, repeated m times (often negative)

$$\left[\frac{c_{i,1}}{s-p_{i,1}} + \frac{c_{i,2}}{\left(s-p_{i,2}\right)^{2}} + \dots + \frac{c_{i,3}}{\left(s-p_{i,3}\right)^{3}} + \frac{c_{i,m}}{\left(s-p_{i,m}\right)^{m}}\right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left[c_{i,1} + c_{i,2}t + \frac{1}{2!}c_{i,3}t^{2} + \dots + \frac{c_{i,m}}{(m-1)!}t^{m-1}\right] \cdot e^{p_{i}t}$$



## Summary of pole characteristics



#### Complex-conjugate poles

$$\frac{\overline{c_i}}{s - p_i} + \frac{(c_i)^*}{s - (p_i)^*} \quad \leftrightarrow \quad c_i e^{p_i t} + (c_i)^* e^{(p_i)^* t}$$

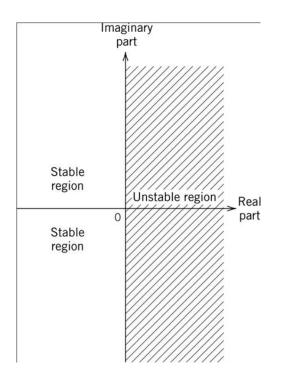
often re-written as a second-order term

$$\frac{\omega^2}{s^2 + 2\delta\omega \, s + \omega^2} \leftrightarrow \sim e^{\alpha t} \cdot \sin(\beta t + \varphi)$$

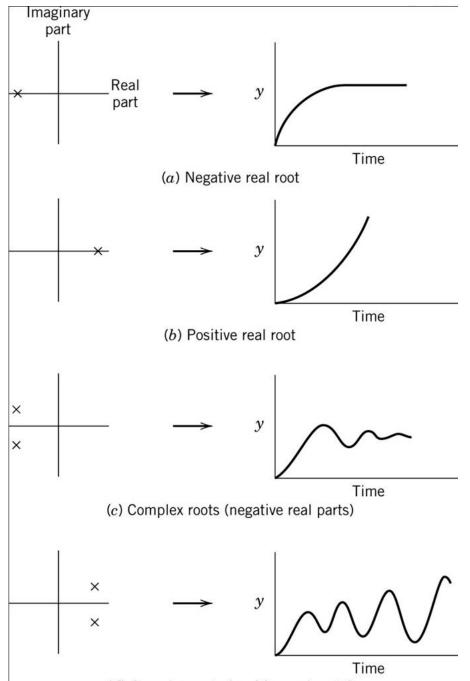
- Poles on imaginary axis
  - Sinusoid
  - Pole at zero: step function
- Poles with a positive real part
  - Unstable time-domain solution



# Time domain response











#### **Comments**

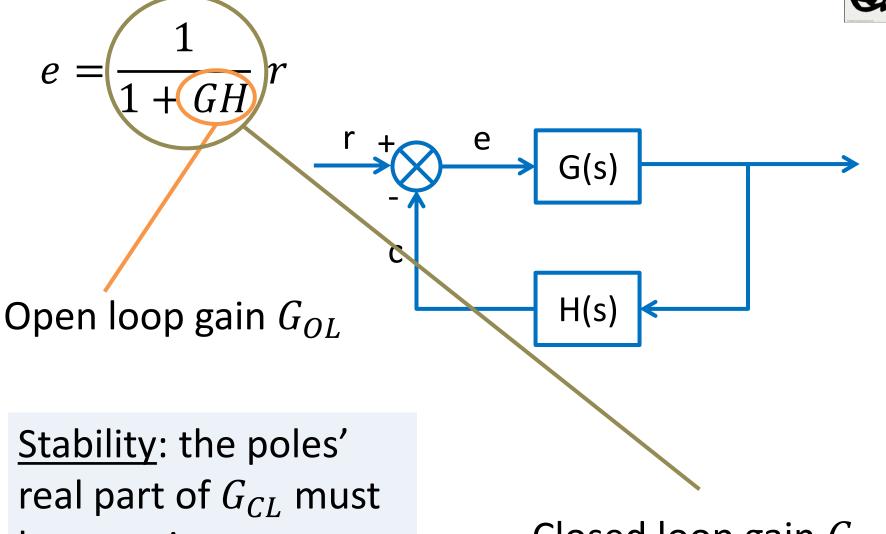
$$F(s) = \sum_{i} \frac{\alpha_{i}}{s + a_{i}} \qquad f(t) = \sum_{i=0}^{n} \alpha_{i} e^{-a_{i}t}$$

- Poles of F(s) determine the time evolution of f(t)
- 2. Zeros of F(s) affect coefficients
- 3. Poles closer to origin  $\rightarrow$  larger time constants



#### Negative feedback





be negative

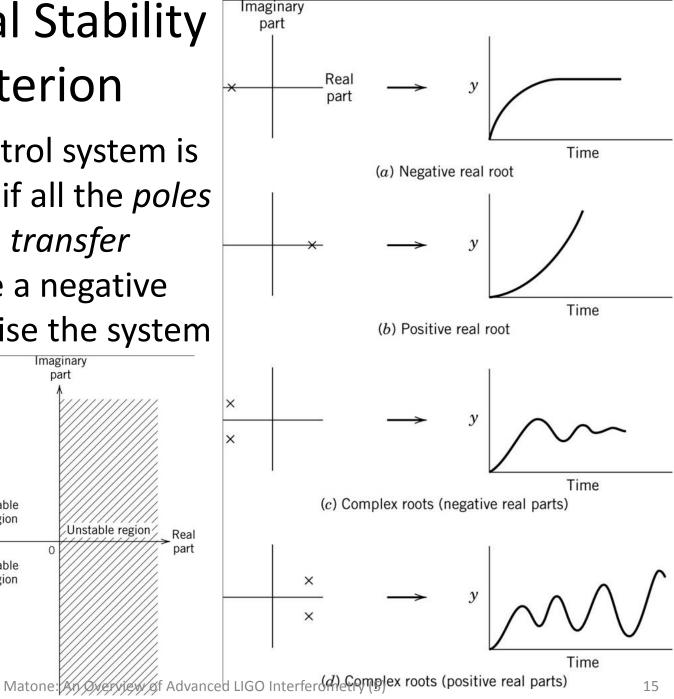
Closed loop gain  $G_{CL}$ 



#### General Stability Criterion

The feedback control system is stable if and only if all the poles of the closed loop transfer function  $G_{CL}$  have a negative real part. Otherwise the system is unstable.

part Stable region Unstable region Stable region

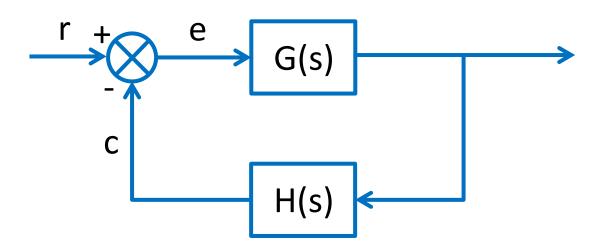




#### Loop stability and design



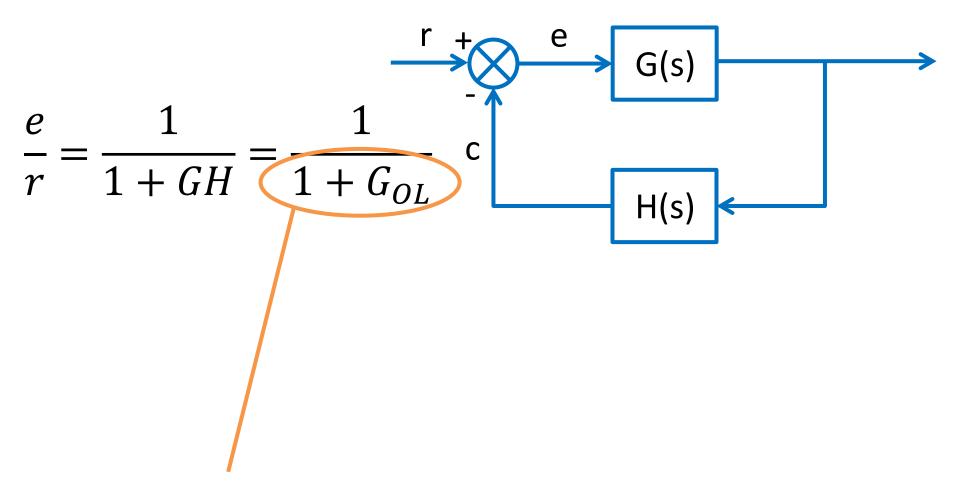
- If the system is unstable,
  - We can't change G(s) but
  - We can design a different controller H so as to make the system stable
- But how should we change H? Let's look closely at the root of the problem







#### The problem



If  $G_{OL}$  becomes -1 then system is unstable





## The general shape of $G_{OL}$

$$\frac{e}{r} = \frac{1}{1 + G_{OL}}$$

$$G_{OL}$$
 has a limited bandwidth.  $H(s)$ 

Within bandwidth:

$$G_{OL} \gg 1$$

$$e = 0$$

$$r \approx 0$$

Outside bandwidth:

$$G_{OL} \ll 1$$

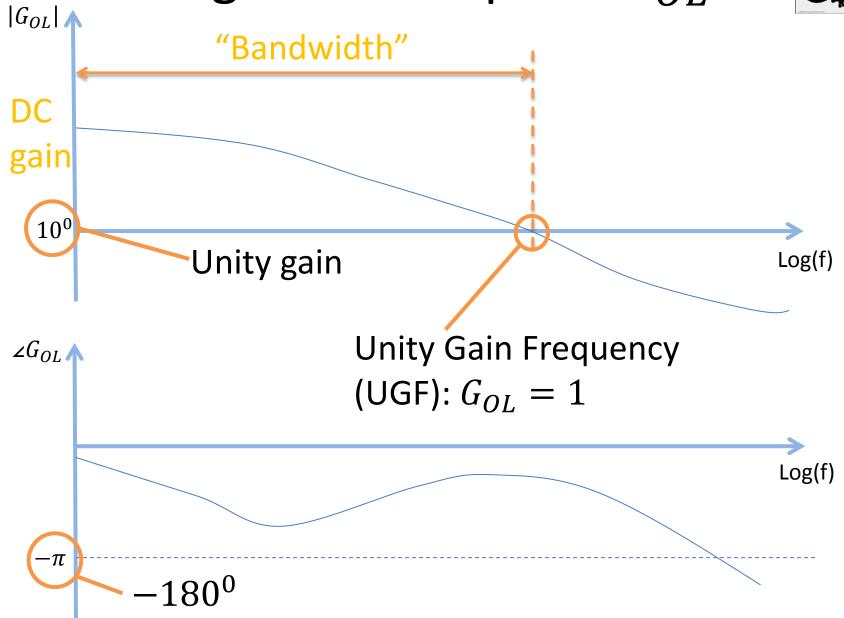
$$e = 1$$

$$r \cong 1$$



### The general shape of $G_{OL}$

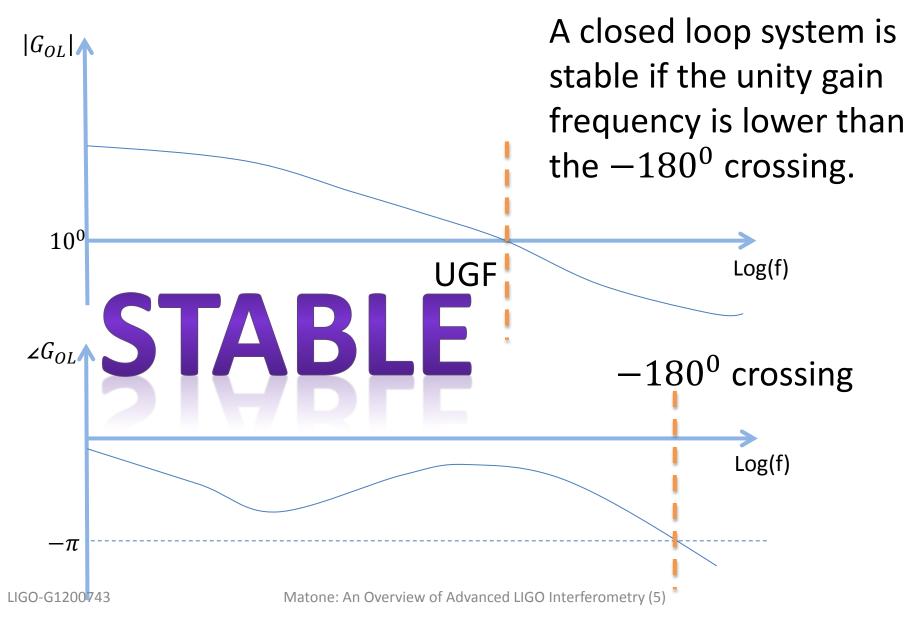






#### Stability Criteria

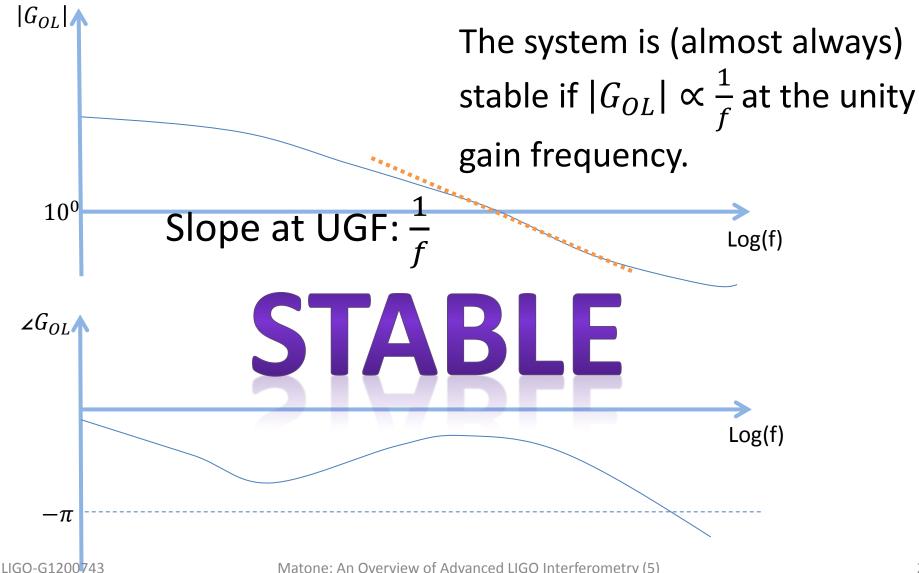






#### Stability Criteria: Rule of Thumb





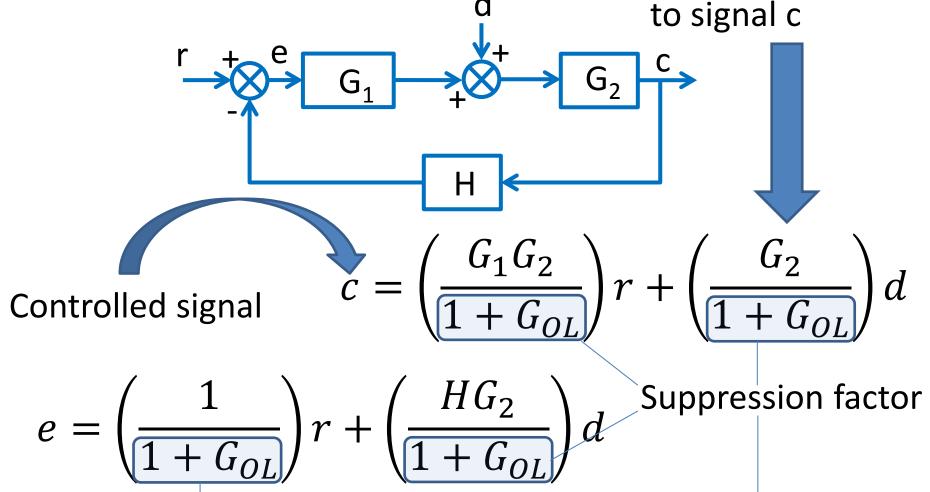


#### Performance to noise input d:



#### with feedback

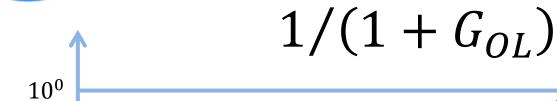
Noise contribution to signal c



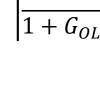


The general shape of







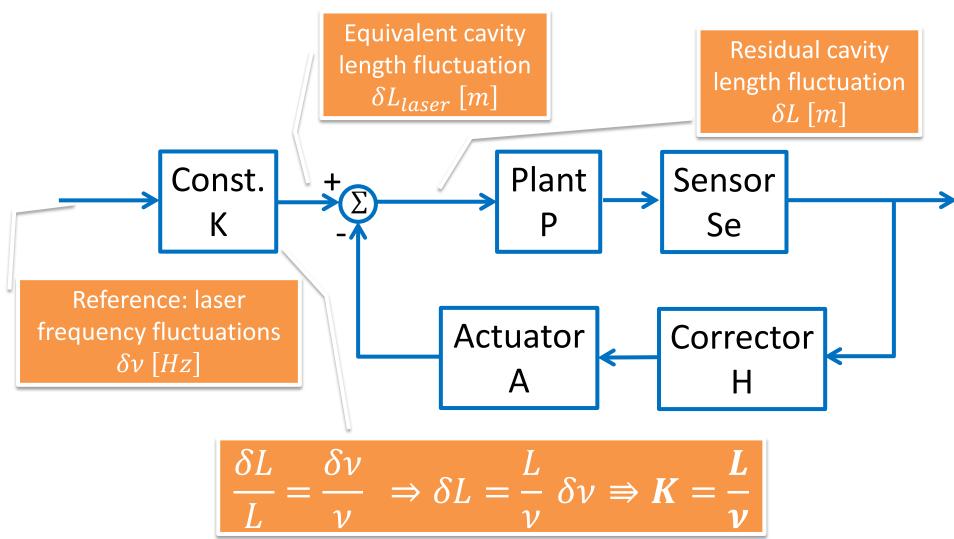




#### Toy example:

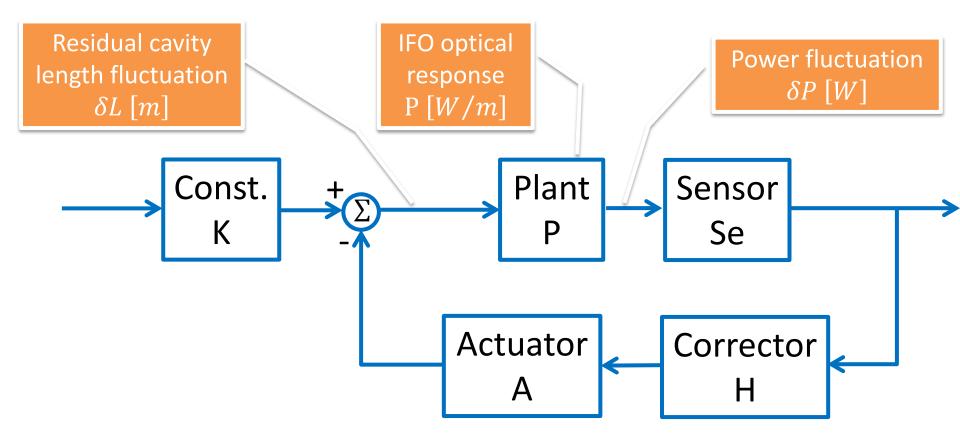


### Locking FP arm to laser frequency



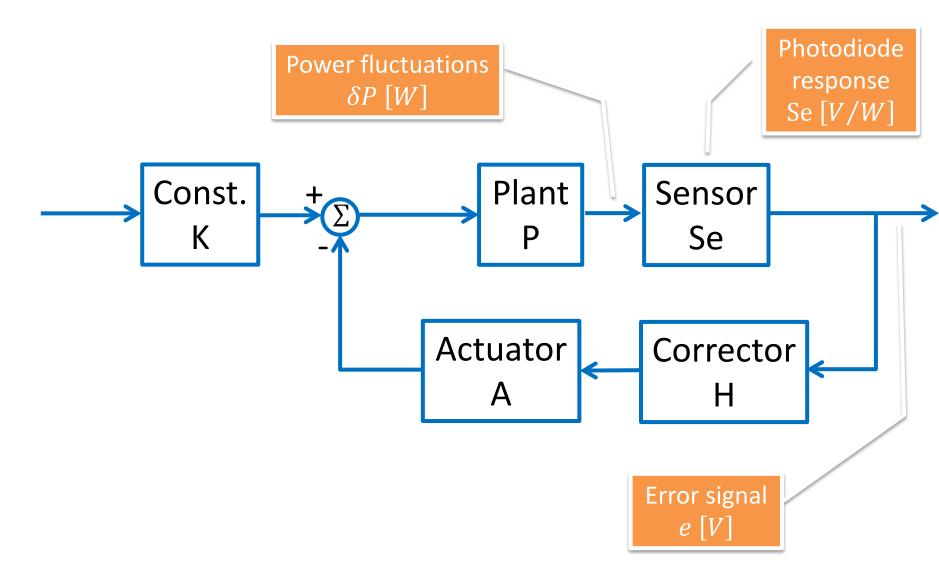






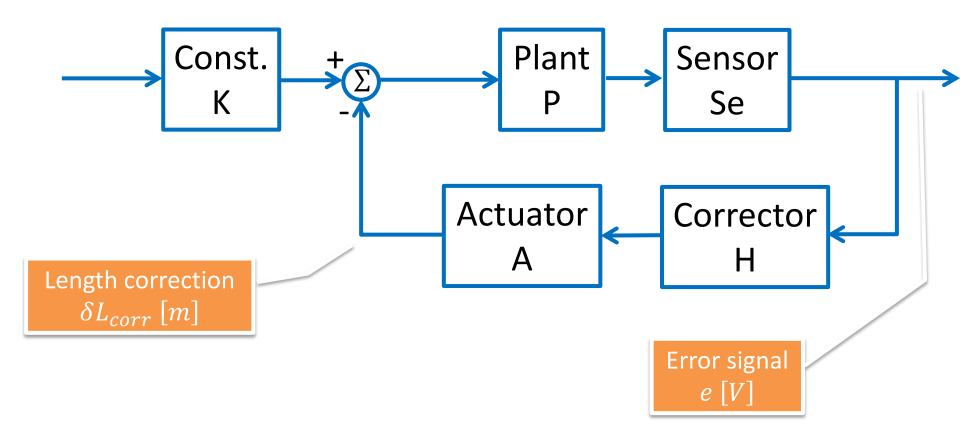








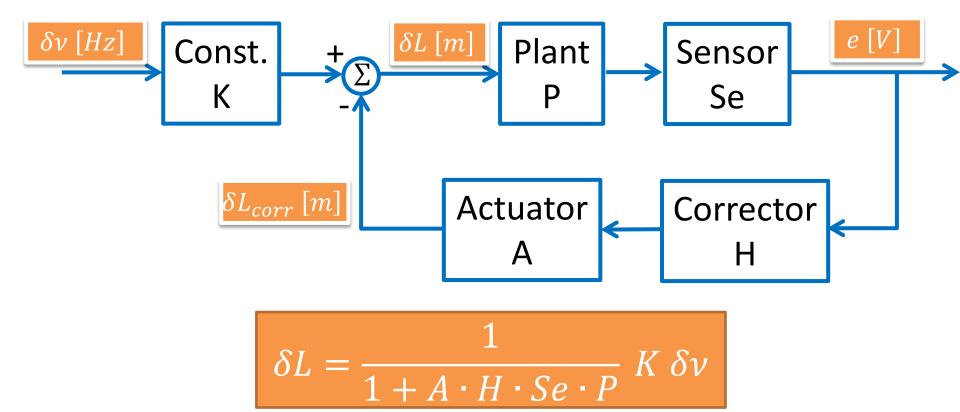


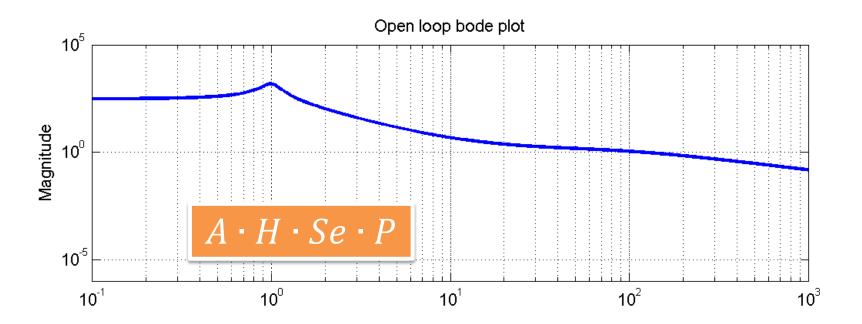


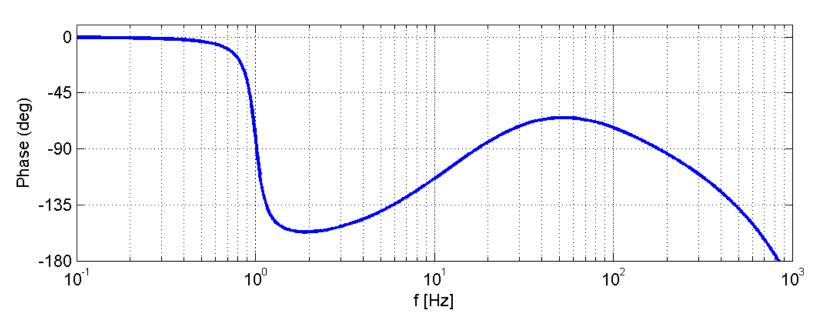


#### Toy example: Locking FP arm to laser frequency



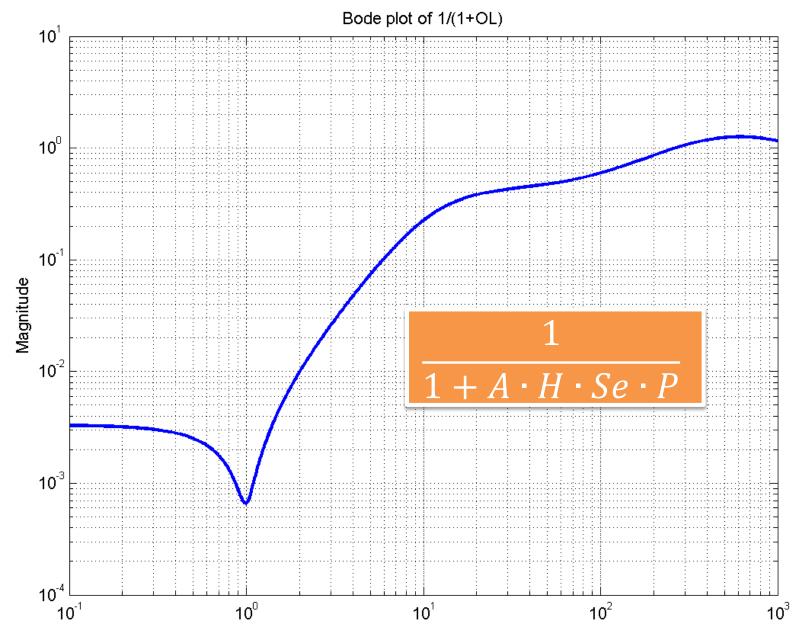












## Project noise contribution

#### Noise budget



Amplitude Spectral Density [m/rHz]



 $\delta L = TF \cdot \delta \nu$ 

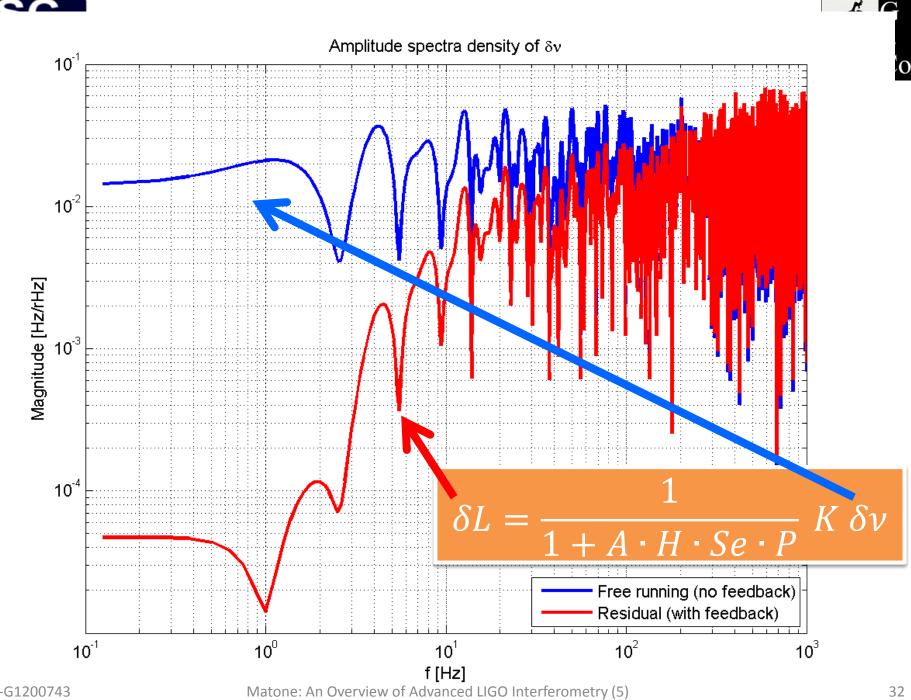
Measure noise contribution

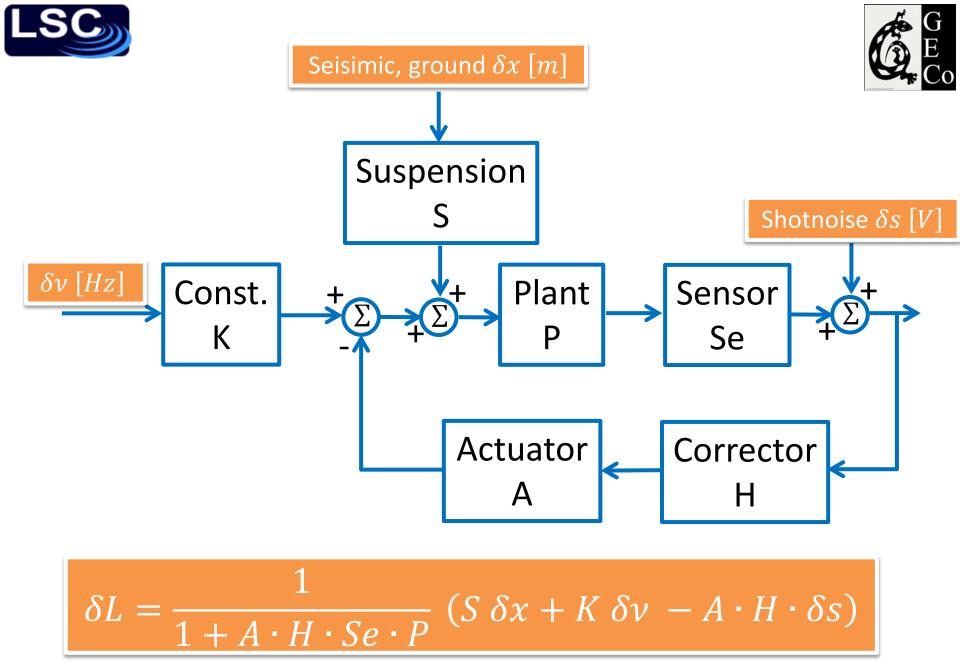
Amplitude Spectral Density [Hz/rHz]

Measure signal

Amplitude Spectral Density [m/rHz]

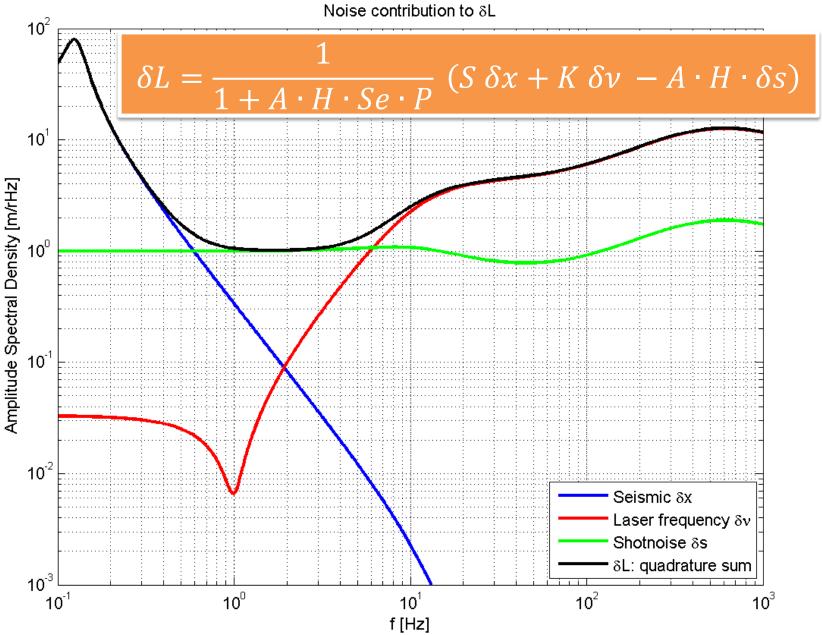
Measure
Transfer Function
TF relating the
two signals













#### Noise budgeting



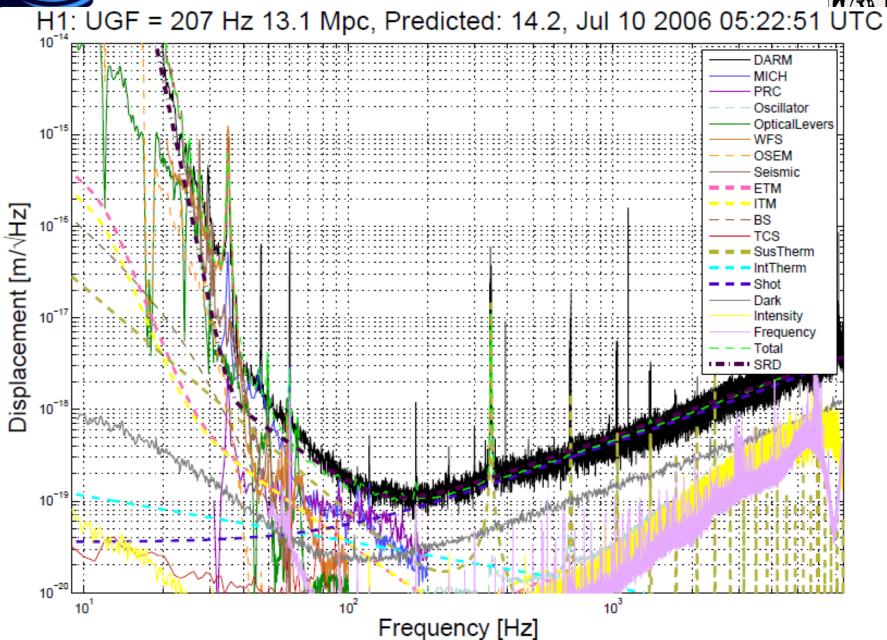
- Noise term (for example  $\delta \nu$ ) is measured/estimated in frequency space (ASD)
- To project this noise term, need to measure/model/estimate the system's TFs
- Noise budgeting
  - Noise projection: multiply noise term (in this case  $\delta \nu$ ) by the TF

$$\delta L_{expected} = TF \cdot \delta v$$

- Compare (budget) projection  $\delta L_{expected}$  with measured  $\delta L$ 
  - If in agreement: sensitivity limited by that one noise term
  - If not in agreement: other noise terms are at play
- eLIGO noise budget sample
  - Contribution sum of all noise terms: in quadrature
  - Quadrature sum of noise terms is compared to detector's sensitivity



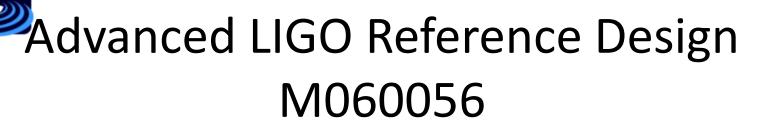








#### **MISC**





- Sensitivity and Reference Design Configuration
  - $-h\sim10^{-22}$  RMS integrated over 100~Hz bandwidth
  - Tunings:
    - NS-NS: greatest 'reach', optimization at 100 Hz
    - BH-BH: low frequency optimization
    - Pulsars: narrow-band tuning, SRM swap



Advanced LIGO Reference

Design M060056

Quantum noise limited IFO

Noise Budget for DARM, NS/NS Range: 171 Mpc

