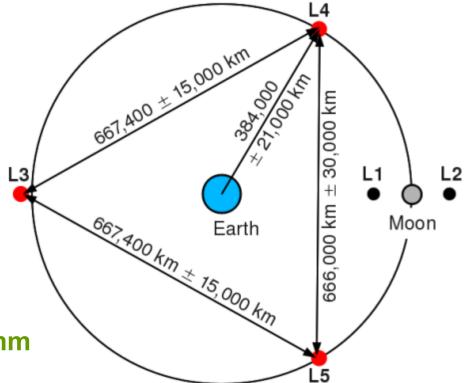
LAser GRavitational-wave ANtenna in GEocentric Orbit

Background

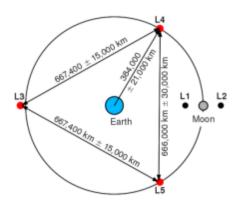
- LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a response to NASA's Request for Information (RFI) titled "Concepts for the NASA Gravitational Wave Mission" NNH11ZDA019L
 - One of 17 submissions
 - One of two called "LAGRANGE"

- Reference:
 - Conklin, et. al. "LAGRANGE: LAser GRavitational-wave Antenna at GEolunar Lagrange points" arXiv:1111.5264v2 [astro-ph.IM] 5 Dec 2011

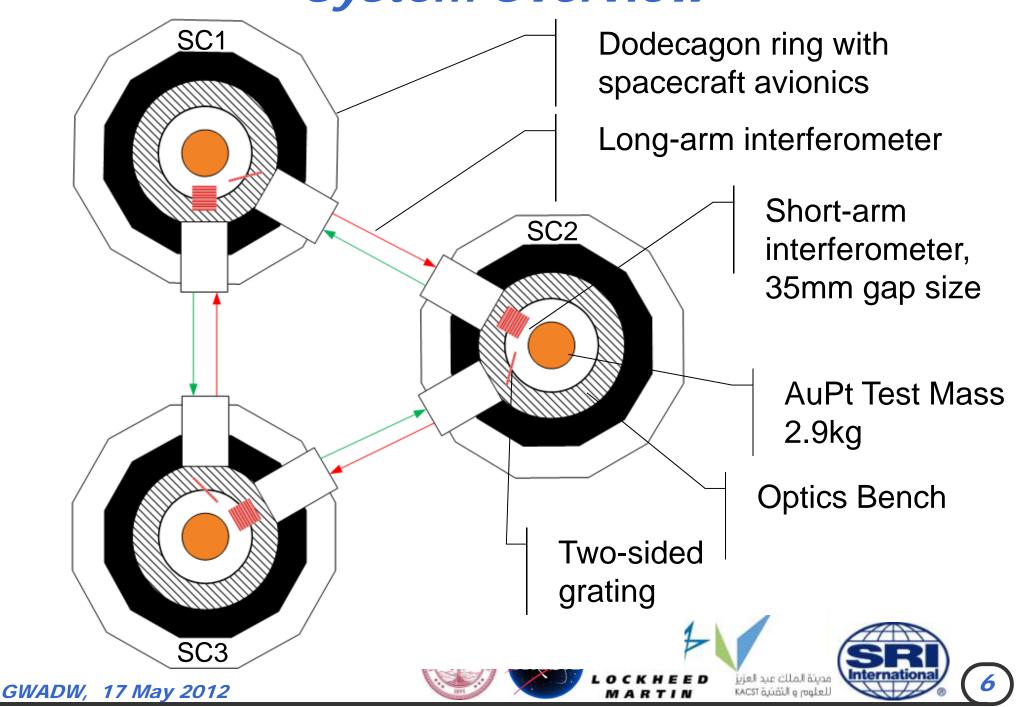
The SALKS Collaboration


TELAND TOURD JUNON THE AND THE	NASA	LOCKHEE MARTIN	مدينة الملك عبد العزيز للعلوم و التقنية KACST	SRI International
Stanford	NASA ARC	Lockheed	KACST of	SRI
		Martin	Saudi Arabia	International
science payload lead (GRS / IMS)	science orbit, orb. injection, prop. mod.	telescope, spacecraft	science payload, tech development	µN thrusters

Design Overview


- 3 identical drag-free spacecraft & payloads
- Communications & cost drives decision for geocentric orbit
- Minimum complexity
 - 1 spherical TM per S/C
 - 1 laser (+1 spare) & bench per S/C
 - 2 telescopes, in-field pointing
 - 7 DoF control per spacecraft
 - Translation
 - Rotation
 - Breathing angle
 - Continuous, simultaneous, fast comm
 - Fixed antennas on each S/C
 - Mbps through NASA GN (11 m class), ~1 hour data latency
- 5 year mission lifetime

Orbit Selection

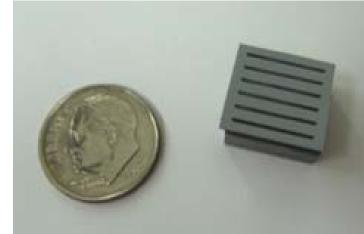

- ~ 3 stable, near-Earth orbits considered
 - 1. High retrograde: ~600,000 km from Earth (Hellings, OMEGA 1998)
 - 2. Earth-moon L3, L4, L5: 384,000 km from Earth
 - 3. Earth-Sun L2 circular Halo: ~1.5 Mkm from Earth (must be checked)
- EM L3, L4, L5 chosen for detailed study, because:
 - Closest to Earth
 - Minimum cruise time
 - Launch to Weak Stability Boundary: 4 months with $\Delta v = 580$ m/sec
 - Launch to Trans-Lunar Injection: 7 months with $\Delta v = 475$ m/sec

	EM L3,L4,L5	LISA
Arm length	670 000 km	5 000 000 km
Δ arm length	≤ 5%	1%
Breathing angle	≤±5 deg	±0.5 deg
Range rate	≤ 150 m/sec	10 m/sec
Δ orbit plane	5 deg	60 deg

System Overview

Spacecraft & Mission Design

- S/C based on existing LM S/C, TRL >6
 - ~3 m × 0.7 m, 300 kg, 500 W
- Single propulsion module drops each satellite off one at a time
- Thermal design: GRS 10 µK at 1 mHz
 - ±50 K at exterior at 27.3 period
 - Thermal load radiated top/bottom
 - Payload at center
- Launch mass: 2,070 kg
- 4-7 month cruise
- 5 year lifetime
- ROM cost \$950M FY12 (Lockheed Martin)

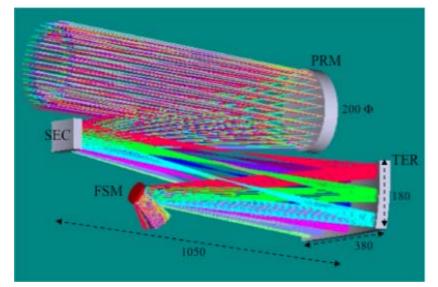

Includes 30% reserve
 GWADW, 17 May 2012

O C K H E E D M A R T I N

Spacecraft Propulsion

- Initial conditions maximize time each S/C remains at L-point
 - Station keeping every 6-12 months (L3)
 - Station keeping capability recommended for any orbit
- Drag-free & attitude via µN ion thrusters
- NGO evaluating alternates to FEEPs
 - SRI micro-fabricated ion thruster attractive alternate to Busek CMNT or Italian/Austrian FEEPs
 - Micro-fabricated emission sites produce ions & electrons
 - "Digital propulsion": 100's 1,000's of independent emitters / cm²
 - Single unit can produce forces + torques
 - Huge dynamic range: ion production physics unchanged over 10⁻⁹ to 1 N
 - Up to 10,000 sec lsp
 - Prototype: 1 nN to 5 μN thruster ion source tested to 40 hr of operation
 - Can be demonstrated on a 1U CubeSat

GWADW, 17 May 2012


.

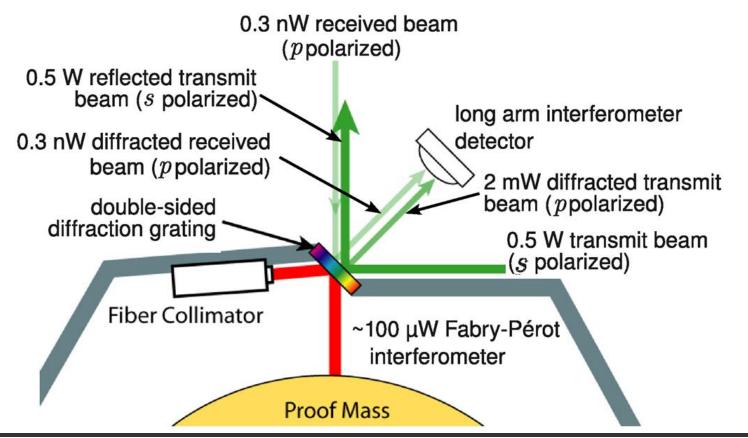
•

Telescope Design

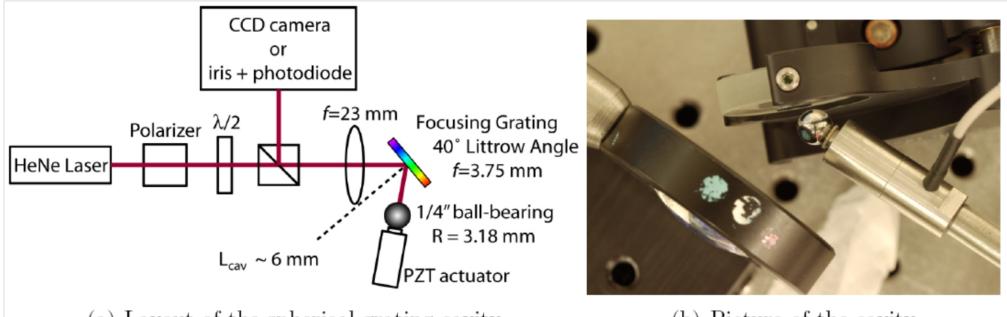
- Two-stage design required for
 - 5 degree Field or Regard due to constellation geometry changes
 - 1mm beam size on optical bench
- 20 cm aperture
- ±2.5 deg beam steering
- 5 pm path-length stability
- Low CTE composite metering structure
- Stage one is 6:1 3-mirror Anastigmat (TMA)
 - Leads to ±15 deg steering mirror near exit pupil
- mK temperature control

Stage One Design: TMA

Stage Two gives additional 33x magnification


Interferometric Measurement System

- IMS follows LISA scheme with some differences
- 1 W Nd:YAG NPRO (1064 nm), split to feed both arms
- Split interferometry: long-arm / short-arm interferometers
 - Short-arm (TM to optics bench): grating Fabry-Pérot cavity
 - Long-arm (optics bench to remote optics bench): local & received laser phase difference (PBS or diffraction grating)
- Laser pre-stabilization by optical cavity or iodine cell
- 150 MHz Doppler frequency
 - Use modified LISA phasemeter
- 6 µrad point-ahead angle: LISA Point Ahead Angle Mirror (PAAM) by TNO (TRL 4)


Interferometry with a Diffraction Grating

- Double sided diffraction grating on low CTE material
 - Small, ~ mm relay region between long & short arm interferometers
 - CTE < *dn*/*dT*
 - Fewer components compared to LISA \rightarrow smaller optics bench
- Sensitivity to grating motion: 1 µcycle/pm

Grating-Sphere Cavity

Mode matching and stable low finesse cavity demonstrated

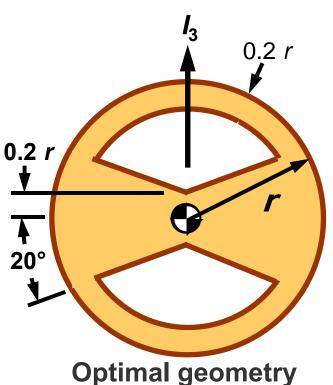
(a) Layout of the spherical grating cavity

(b) Picture of the cavity

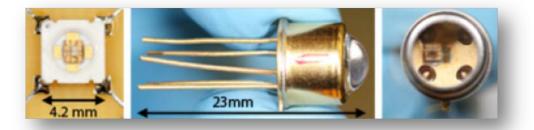
Figure A.1: Schematic and photograph of focusing grating cavity used to demonstrate successful mode-matching using a spherical end-mirror.

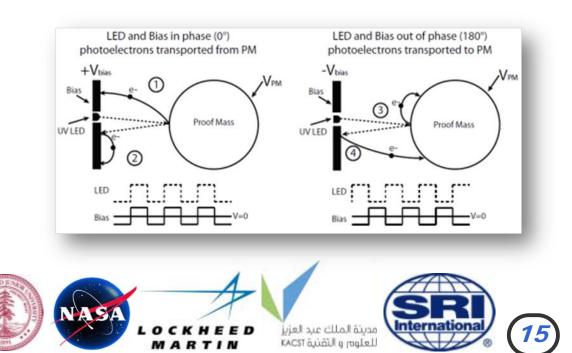
Advantages of a Spherical GRS

- 1. No TM forcing or torquing
 - Neither electrostatic support nor capacitive sensing required, reducing disturbances & complexity
- 2. Optical readout enables large gap (35 mm)
 - Disturbances reduced and/or spacecraft requirements relaxed
- 3. A long flight heritage
 - Honeywell gyros, Triad I (5×10⁻¹¹ m/sec²), GP-B (4×10⁻¹¹ m/sec² Hz^{1/2})
- 4. Scalability
 - Performance can be scaled up or down by adjusting TM and gap size
- 5. Simplicity
 - No cross coupling of degrees of freedom
- 6. Simple flight-proven caging mechanism (DISCOS)



Test Mass

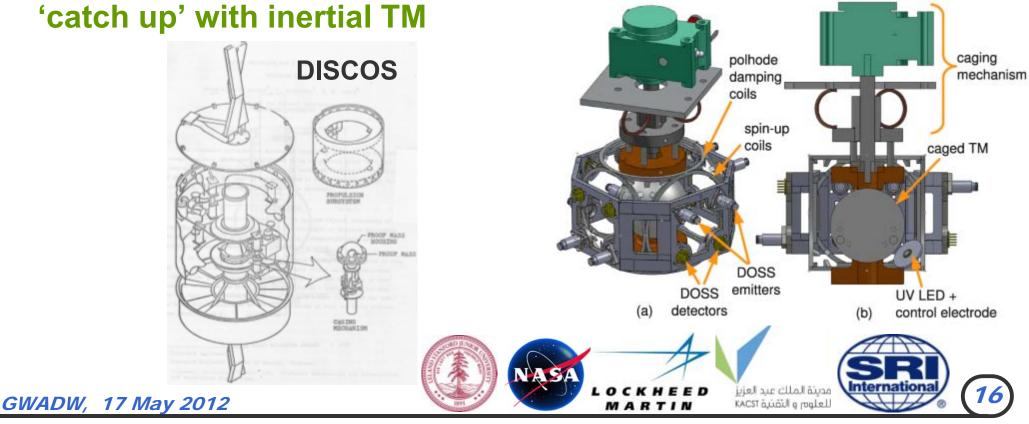

- Test mass: 70%/30% Au/Pt (LISA)
 - Alternate: Berglide (2%/97.5%/0.5% Be/Cu/Co)
- Spinning (3-10 Hz) average all but axisymmetric irregularities
 - Out-of-plane motion → patch length changes
 1 pm/Hz^{1/2} at 1 mHz
- Hollowed out sections ($\Delta I/I = 0.1$) shift polhode to 0.3-1 Hz
- Carbide coated (e.g. SiC)
 - Hard (no sticking), reflective, conductive, allows UV charge control, measured patches consistent or better than gold



Insert Charge Management Here

- Charge accumulation on proof mass: 50-200 e-/sec
- Charge control by UV photoemission using 254 nm line of an rf mercury source successfully demonstrated on GP-B
- Newer commercial UV LEDs (240-255 nm)

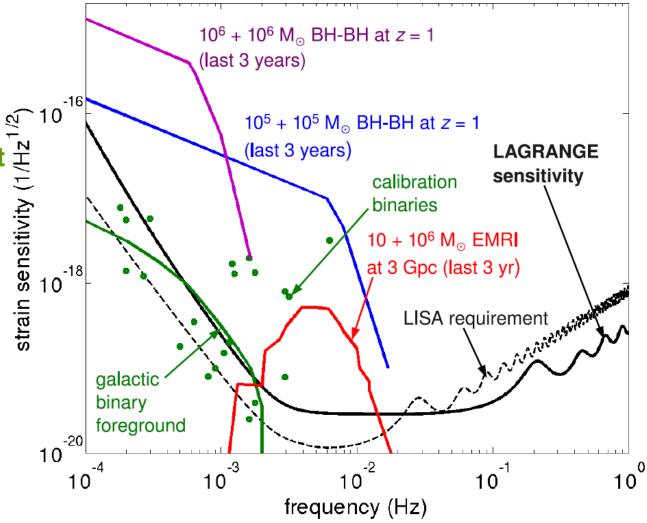
Fast-switchable (> 100 MHz) allowing ac charge management through synchronization with bias electrode


Test Mass Caging & Release

DISCOS flight proven mechanism

- Jack screw holds TM against housing
- Successfully demonstrated twice onorbit, 2nd time after 6 month caging
- After release, µN thrusters 'catch up' with inertial TM

Capture time only function of residual velocity & max thrust


DISCOS capture time: ~100 sec Proposed: ~1000 sec

Strain Sensitivity

- Arm length: ~670,000 km
- Metrology: 8 pm/Hz^{1/2} at 3 mHz •
- Acceleration noise: 3×10⁻¹⁵ m/sec²
- Sensitivity 2x less than ٠ LISA below 20 mHz
- **Below 2 mHz galactic** •
- binary confusion sets limit Maintains most important science objectives of LISA •

Supermassive Black Hole Binaries **Extreme Mass Ratio Inspirals**

The End

