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Background
• LAser GRavitational-wave ANtenna in GEocentric Orbit was 

proposed originally as a response to NASA’s Request for 
Information (RFI) titled “Concepts for the NASA Gravitational 
Wave Mission” NNH11ZDA019L

• One of 17 submissions

• One of two called “LAGRANGE”

• Reference: 
• Conklin, et. al. “LAGRANGE: LAser GRavitational-wave Antenna at GEo-

lunar Lagrange points” arXiv:1111.5264v2 [astro-ph.IM] 5 Dec 2011
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Design Overview
• 3 identical drag-free spacecraft & payloads

• Communications & cost drives decision for geocentric orbit

• Minimum complexity

• 1 spherical TM per S/C

• 1 laser (+1 spare) & bench per S/C

• 2 telescopes, in-field pointing

• 7 DoF control per spacecraft
• Translation

• Rotation

• Breathing angle

• Continuous, simultaneous, fast comm

• Fixed antennas on each S/C

• Mbps through NASA GN (11 m class), ~1 hour data latency

• 5 year mission lifetime
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Orbit Selection
• ~ 3 stable, near-Earth orbits considered

1. High retrograde: ~600,000 km from Earth (Hellings, OMEGA 1998)

2. Earth-moon L3, L4, L5: 384,000 km from Earth

3. Earth-Sun L2 circular Halo: ~1.5 Mkm from Earth (must be checked)

• EM L3, L4, L5 chosen for detailed study, because:

• Closest to Earth

• Minimum cruise time

• Launch to Weak Stability Boundary: 4 months with ∆v = 580 m/sec

• Launch to Trans-Lunar Injection: 7 months with ∆v = 475 m/sec
EM L3,L4,L5 LISA

Arm length 670 000 km 5  000 000 km

∆ arm length ≤ 5% 1%

Breathing angle ≤ ±5 deg ±0.5 deg

Range rate ≤ 150 m/sec 10 m/sec

∆ orbit plane 5 deg 60 deg
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System Overview
Dodecagon ring with 
spacecraft avionics

Long-arm interferometer

Short-arm 
interferometer,
35mm gap size

Two-sided 
grating

AuPt Test Mass
2.9kg

Optics Bench

SC1

SC2

SC3
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Spacecraft & Mission Design
• S/C based on existing LM S/C, TRL >6

• ~3 m × 0.7 m, 300 kg, 500 W

• Single propulsion module drops each satellite off one at a time

• Thermal design: GRS 10 μK at 1 mHz
• ±50 K at exterior at 27.3 period

• Thermal load radiated top/bottom

• Payload at center

• Launch mass: 2,070 kg

• 4-7 month cruise

• 5 year lifetime

• ROM cost $950M FY12 (Lockheed Martin)
• Includes 30% reserve
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Spacecraft Propulsion
• Initial conditions maximize time each S/C remains at L-point

• Station keeping every 6-12 months (L3)

• Station keeping capability recommended for any orbit

• Drag-free & attitude via μN ion thrusters

• NGO evaluating alternates to FEEPs

• SRI micro-fabricated ion thruster
attractive alternate to Busek CMNT or Italian/Austrian FEEPs

• Micro-fabricated emission sites produce ions & electrons

• “Digital propulsion”: 100’s – 1,000’s of independent emitters / cm2

• Single unit can produce forces + torques

• Huge dynamic range: ion production physics unchanged over 10–9 to 1 N

• Up to 10,000 sec Isp

• Prototype: 1 nN to 5 μN thruster ion source tested to 40 hr of operation

• Can be demonstrated on a 1U CubeSat
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Telescope Design
• Two-stage design required for

• 5 degree Field or Regard due to constellation geometry changes

• 1mm beam size on optical bench

• 20 cm aperture

• ±2.5 deg beam steering

• 5 pm path-length stability

• Low CTE composite metering structure

• Stage one is 6:1 3-mirror
Anastigmat (TMA)

• Leads to ±15 deg steering
mirror near exit pupil

• mK temperature control

Stage One Design: TMA

Stage Two gives additional 33x 
magnification
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Interferometric Measurement System
• IMS follows LISA scheme with some differences

• 1 W Nd:YAG NPRO (1064 nm), split to feed both arms

• Split interferometry: long-arm / short-arm interferometers

• Short-arm (TM to optics bench): grating Fabry-Pérot cavity

• Long-arm (optics bench to remote optics bench): local & received laser phase 
difference (PBS or diffraction grating)

• Laser pre-stabilization by optical cavity or iodine cell

• 150 MHz Doppler frequency

• Use modified LISA phasemeter

• 6 μrad point-ahead angle: LISA Point Ahead Angle Mirror (PAAM) by TNO 
(TRL 4)



Interferometry with a Diffraction Grating
• Double sided diffraction grating on low CTE material

• Small, ~ mm relay region between long & short arm interferometers

• CTE < dn/dT

• Fewer components compared to LISA → smaller optics bench

• Sensitivity to grating motion: 1 μcycle/pm

Information contained herein is not subject to Export Control or ITAR
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Grating-Sphere Cavity
• Mode matching and stable low finesse cavity demonstrated
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Advantages of a Spherical GRS
1. No TM forcing or torquing

• Neither electrostatic support nor capacitive sensing required, reducing 
disturbances & complexity

2. Optical readout enables large gap (35 mm)
• Disturbances reduced and/or spacecraft requirements relaxed

3. A long flight heritage
• Honeywell gyros, Triad I (5×10–11 m/sec2), GP-B (4×10–11 m/sec2 Hz1/2)

4. Scalability
• Performance can be scaled up or down by adjusting TM and gap size

5. Simplicity
• No cross coupling of degrees of freedom

6. Simple flight-proven caging mechanism (DISCOS)



GWADW,  17 May 2012 14

Information contained herein is not subject to Export Control or ITAR

Test Mass
• Test mass: 70%/30% Au/Pt (LISA)

• Alternate: Berglide (2%/97.5%/0.5% Be/Cu/Co)

• Spinning (3-10 Hz) average all but
axisymmetric irregularities

• Out-of-plane motion → patch length changes
1 pm/Hz1/2 at 1 mHz

• Hollowed out sections (∆ I/I = 0.1) shift
polhode to 0.3-1 Hz

• Carbide coated (e.g. SiC)
• Hard (no sticking), reflective, conductive, allows UV charge control, 

measured patches consistent or better than gold

r

0.2 r

20°

0.2 r

I3

Optimal geometry
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Insert Charge Management Here
• Charge accumulation on 

proof mass: 50-200 e-/sec

• Charge control by UV 
photoemission using 254 
nm line of an rf mercury 
source successfully 
demonstrated on GP-B

• Newer commercial UV 
LEDs (240-255 nm)

Fast-switchable (> 100 MHz) allowing ac charge 
management through synchronization with 
bias electrode
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Test Mass Caging & Release
• DISCOS flight proven mechanism

• Jack screw holds TM against 
housing

• Successfully demonstrated twice on-
orbit, 2nd time after 6 month caging

• After release, μN thrusters
‘catch up’ with inertial TM

DISCOS

• Capture time only 
function of
residual velocity & max 
thrust
DISCOS capture time: ~100 sec
Proposed: ~1000 sec



Strain Sensitivity
• Arm length: ~670,000 km

• Metrology: 8 pm/Hz1/2 at 3 mHz

• Acceleration noise: 3×10–15 m/sec2 

• Sensitivity 2x less than
LISA below 20 mHz

• Below 2 mHz galactic
binary confusion sets limit

• Maintains
most important science
objectives of LISA

Information contained herein is not subject to Export Control or ITAR

Supermassive Black Hole Binaries
Extreme Mass Ratio Inspirals
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The End
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