#### Results from TOBAs

Cross correlation analysis to search for a Stochastic Gravitational Wave Background

University of Tokyo Ayaka Shoda

M. Ando, K. Okada, K. Ishidoshiro, W. Kokuyama, Y. Aso, K. Tsubono

### Prototype TOBA

- > 20-cm small torsion bar
- Suspended by the flux pinning effect of the superconductor
- > Rotation monitor:
  - laser Michelson interferometer
- > Actuator: coil-magnet actuator







### Previous Result





For the detection of a stochastic gravitational-wave background, simultaneous observation is necessary.

### Simultaneous Observation



Tokyo



~370km

DATE: 21:30 – 7:30, Oct. 29, 2011

Sampling frequency: 500 Hz, the direction of the test mass: north-south

# Data Quality



### Data Quality

#### Spectrogram



### Cross Correlation Analysis

#### Concept

difficult to predict the waveform of a stochastic GW background

Search the coherent signal on the data of the two detectors.

Correlation Value= 
$$\int_{f_{\min}}^{f_{\max}} df \, \tilde{s}_1^*(f) \tilde{Q}(f) \tilde{s}_2(f)$$

 $\widetilde{S}_i(f)$ : The signal of *i*-th detector

 $\widetilde{Q}(f)$ : The optimal filter (Weighting function)

### Cross Correlation Analysis

Data selection



 Delete 10% of the segments whose noise level is worst

Calculate the cross correlation value

 Choose the analyzed frequency band as 0.035 - 0.84 Hz

**Detection test** 

If not detected

Set the upper limit

 Inject mock signals into the real data and calculate the detection efficiency

### Result





# Result -upper limit



### Summary

- Established the pipeline of the cross correlation analysis with TOBAs
- The stochastic GW background signal is not detected.
- Update the upper limit on a stochastic GW background at  $0.035\sim0.840~{\rm Hz}$ :  $h_0^2\Omega_{\rm gw}<1.9\times10^{17}$

# Backup slides

### Data Selection



- Divide time series data into several segments
- Remove the segments in which RMS is big
- Calculate cross correlation with the survived segments

### Cross Correlation Value

$$Y \approx \int_{f_{\min}}^{f_{\max}} df \, s_1^*(f) s_2(f) Q(f)$$

Optimal Filter: a filter which maximizes the signal-to-noise ratio

$$Q(f) = N \frac{\gamma(f)}{f^3 P_1(f) P_2(f)}$$

 $P_i(f)$ : PSD of i-th detector

#### Overlap reduction function

: a function which represents the difference of response to the GWs between two detectors



In the case of TOBAs, same as the interferometer's one

In this case,  $\gamma(f) \approx 1$ 

### Optimal filter

Optimal filter =

big when the sensitivity to a stochastic GW background is good



### **Upper Limit**

How big a stochastic GW background can we detect if it would come to this data set?

1. Make a mock signal of a stochastic GW background

- 2. Inject the signal into the observational data
- Perform same analysis as explained above

Repeat 1-3 to compute the rate at which we detect the mock signal.





### Parameter Tuning

There are some parameters whose optimal values are depend on the data quality

- $\triangleright$  The length of the segments  $\rightarrow$  200 sec
- ➤ The amount of the segments removed by data selection
  →10 %
- The bandwidth of the analyzed frequency band  $\rightarrow 0.8 \text{ Hz}$

Determined by the time shifted data.

The values which make the upper limit calculated with time shifted data best is used.

# Summary of Analysis



#### Data selection

#### The indicator of the noise level = Whitened RMS



RMS calculation

### Cross correlation anlysis

$$s(t) = h(t) + n(t)$$

$$signal \quad GW \quad noise$$

$$signal \quad = \int_{-T/2}^{T/2} s_1(t) s_2(t) Q(t) dt$$

$$= \int_{-T/2}^{T/2} \left(h_1(t) + n_1(t)\right) \left(h_2(t) + n_2(t)\right) Q(t) dt$$

$$= \int_{-T/2}^{T/2} h_1(t) h_2(t) Q(t) dt$$
Noise is reduced
$$= \int_{-T/2}^{T/2} h_1(t) h_2(t) Q(t) dt$$

Fourier transformation

Cross correlation value 
$$= \int_{f_{\min}}^{f_{\max}} df \, \tilde{s}_1^*(f) \tilde{Q}(f) \tilde{s}_2(f)$$

### **Detection Criteria**

By the Neuman-Peason criterion,

Probability distribution of  $\langle Y \rangle / T_{seg}$ 



Note: we do not know the sign of the two signal.

$$\langle Y 
angle / T_{seg} \geq |z_{lpha}|$$
 Signal is present  $\langle Y 
angle / T_{seg} < |z_{lpha}|$  Signal is absent

### Signal detection

#### How to decide $\mathcal{Z}_{\alpha}$ :

- •Calculate  $\langle Y \rangle / T_{\rm seg}$  with diversely time shifted data •Histogram of calculated  $\langle Y \rangle / T_{\rm seg}$  when the signal is absent.



 $\alpha$ : false alarm rate

β: false dismissal ra

# Future plan

