

Vienna Center for Quantum Science and Technology

SFB TR7

GWADW 2012 16th May, 2012

Bulk material investigations at cryogenic temperatures

G. Hofmann¹, J. Komma¹, C. Schwarz¹, D. Heinert¹,
R. Nawrodt¹, K. Haughian², K. Craig², P. Murray²,
G. Cole³, P. Seidel¹, S. Rowan²

¹ Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
 ² Institute for Gravitational Research, University of Glasgow, G12 8QQ Glasgow, UK
 ³ Faculty of Physics, University of Vienna and Vienna Center for Quantum Science and Technology, 1090 Wien, Austria

 Current GWDs like Ligo [1], Virgo [2], GEO600 [3] and TAMA300 [4] reached their limits

 Current GWDs like Ligo [1], Virgo [2], GEO600 [3] and TAMA300 [4] reached their limits

- Samples of different geometry but same crystal orientation and
- Samples of different crystal orientation but same geometry
- Ring down measurement

Diameter	Height	Orientation
65 mm	50 mm	(111)
65 mm	70 mm	(111)
65 mm	120 mm	(111)
3 inch	75 mm	(111)
3 inch	75 mm	(100)
110 mm	200 mm	(111)

Gerd Hofmann

Friedrich-Schiller-Universität Jena

Bulk material investigations at cryogenic temperatures

Temperature [K]

Arrhenius plot

• Mechanical loss ϕ in an anelastic solid is described by:

$$\phi(\omega) = \Delta \frac{\omega\tau}{1 + \omega^2\tau^2}$$

• Relaxation time τ of the loss process follows the Arrhenius law:

$$\tau = \tau_0 \exp \frac{E_A}{k_B T}$$

• Thus one gets the Arrhenius plot:

$$\ln \omega = -\ln \tau_0 - \frac{E_A}{k_B} \times \frac{1}{T}$$

$$y = y_0 + m \times x$$

Nowick & Berry [5], Gottstein[6]

Arrhenius plot for Ø 65 mm x 50 mm sample

Interstitial oxygen in silicon

- Czochralski grown crystals with oxygen impurities
- Oxygen covalently bonded between two silicon atoms
- Potential loss mechanisms:
 - Rotation due to six-fold symmetry
 - Diffusion by hoping
- Annealing did not change the loss peak – exclusion of kinks and dislocations

Interstitial oxygen in silicon

- Czochralski grown crystals with oxygen impurities
- Oxygen covalently bonded between two silicon atoms
- Potential loss mechanisms:
 - Rotation due to six-fold symmetry
 - Diffusion by hoping
- Annealing did not change the loss peak – exclusion of kinks and dislocations

Comparison of 111 and 100 orientation

• Choice for KAGRA [8]

 Low absorption for 1064 nm compared to silicon

Loss measurement of bulk sapphire samples

Gerd Hofmann

Bulk gallium arsenide

- Epitaxial growth of crystalline Al_xGa_{1-x}As
- Loss of bulk GaAs is completely unknown at low temperatures

Al_{0.12}Ga_{0.88}As (79.2 nm) Al_{0.92}Ga_{0.08}As (90.6 nm) Al_{0.12}Ga_{0.88}As (79.2 nm) Al_{0.92}Ga_{0.08}As (250 nm) GaAs substrate

Cole et al.[11]

Loss measurement of bulk gallium arsenide sample

Loss measurement of bulk gallium arsenide sample

- Silicon and sapphire for future GWDs
- In silicon a loss peak around 115 K is caused by oxygen
- Gallium arsenide
 - first measurement
 - light induced damping observed
 - after illumination it stays at high losses

Acknowledgements: This work was supported by the German science foundation within the SFB TR7.

Gerd Hofmann

References

- [1] G. M. Harry: Advanced LIGO: the next generation of gravitational wave detectors, 2010
- [2] T. Accadia et al.: *Status of the Virgo project,* 2011
- [3] H. Grote: *The GEO 600 status,* 2010
- [4] R. Takahashi: Status of TAMA300, 2004
- [5] A. S. Nowick, B. S. Berry: Anelastic Relaxation in Crystal Solids, 1972
- [6] G. Gottstein: *Physikalische Grundlagen der Materialkunde*, 2007
- [7] C. C. Lam, D. H. Douglass: *Observation of Oxygen Impurities in Single-Crystal Silicon by Means of Internal Friction*, 1981
- [8] K. Kuroda: *Status of LCGT,* 2010
- [9] T. Uchiyama et al.: Mechanical quality factor of a cryogenic sapphire test mass for
- gravitational wave detectors, 1999
- [10] C. R. Locke, M. E. Tobar, E. N. Ivanov: *Monolithic sapphire parametric*
- transducer operation at cryogenic temperatures, 2000
- [11] G. D. Cole et al.: *Monocrystalline AlxGa1–xAs heterostructures for high-reflectivity high-Q* micromechanical resonators in the megahertz regime, 2008
- [12] H. Okamoto et al.: Controlling Quality Factor in Micromechanical Resonators by Carrier Excitation, 2009