
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T1100608-v4 2012/09/04

Guardian Developer’s Guide

C. Kucharczyk, B. Lantz, S. Waldman

The aLIGO System Guardian provides a state-oriented framework for controlling the
various aLIGO subsystems. State verification and transitions between states are handled

by user-written scripts that are called automatically based on user input. Individual
system guardians are overseen by guardian managers that can control the states of

individual systems as well as those of the interferometer.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100

Fax (509) 372-8137 Fax (225) 686-7189
E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/

LIGO-T1100608-v4

Contents

1 Introduction 2

1.1 Overview . 2

1.2 Documentation . 2

2 Example Guardian Implementation 3

2.1 Setup Walkthrough . 3

2.1.1 Getting Started . 3

2.1.2 Simulink . 3

2.1.3 Directories . 3

2.1.4 medm . 4

2.1.5 Defining states . 4

2.1.6 Defining state transitions . 6

2.2 Execution Walkthrough . 7

2.2.1 runGuardian . 7

2.2.2 Running the Guardian . 7

2.2.3 Startup . 7

2.2.4 Transition to DAMPED . 8

2.2.5 Transition to ISOLATED . 8

3 Structure 10

3.1 Directory Structure . 10

3.1.1 userapps/release/guardian . 10

3.1.2 userapps/release/subsystem . 10

3.1.3 userapps/release/subsystem/scripts/chamber 10

3.1.4 userapps/release/subsystem/burtfiles/chamber 11

3.2 Inheritance . 11

3.2.1 inherited scripts . 11

3.2.2 inherited burtfiles . 11

3.3 Simulink . 11

3.4 Variables . 11

page 1

LIGO-T1100608-v4

4 Scripts and Tools 14

4.1 runGuardian . 14

4.2 GuardTools.pm . 14

4.2.1 Functions . 14

4.3 guardMakeMEDM . 17

4.4 generate alarms.pl . 17

5 Development 19

5.1 State creation and verification . 19

5.1.1 Creation . 19

5.1.2 Verification . 19

5.2 Transitions . 20

5.2.1 ‘goto’ scripts . 20

5.2.2 ‘transit’ scripts . 20

5.2.3 ‘recover’ scripts . 20

5.2.4 State Diagrams . 20

A Example alarms.txt file 22

B Transition script examples 23

B.1 goto SAFE . 23

B.2 transit DAMPED ISOLATED . 24

B.3 recover DEFAULT . 25

page 2

LIGO-T1100608-v4

1 Introduction

When the upgrade to Advanced LIGO (aLIGO) is completed, the LIGO project will have
three fully operational interferometers, each with many instances of several different types of
subsystems. In order to meet the aLIGO noise requirements, each subsystem has necessarily
become more complex; each has thousands of channels and unique control mechanisms. Since
it is impractical to staff each interferometer with a team of experts on each subsystem, we
must devise a way to allow control by an operator that may only have a surface understanding
of how each subsystem works. The set of tools designed to accomplish this task is collectively
called the guardian. This document provides an overview of the aLIGO System Guardian,
as well as the tools needed for development for the different LIGO subsystems.

1.1 Overview

The guardian is a framework designed to allow those with extensive knowledge of a subsystem
to encode that knowledge, thus making it accessible to anyone controlling the interferometer.
The tools incorporated in the guardian allow users to interact with different subsystems
through a uniform and intuitive interface, while still allowing developers the flexibility to
control that system in a specific manner. The key to the guardian framework is the use of
states.

By allowing a developer to define states for a subsystem, verify that the subsystem is in a
given state, and create transitions between different states, every subsystem can be simplified
to a much smaller collection of variables that the operator can use to control the system.
This makes control of the interferometer possible by people without expert knowledge on
each individual subsystem. In addition, this framework naturally lends itself to hierarchical
control, where the ‘state’ of a group of subsystems can be defined collectively by the state
of each individual subsystem.

Subsystem control is further simplified by the use of inheritance, with which states can
be commonly defined for multiple instances of the same system. Inheritance reduces the
amount of time spent and memory used by the developer during the implementation for
each subsystem.

1.2 Documentation

The files used to create this document can be found in the guardian documentation directory,
userapps/release/guardian/documentation. This directory also includes copies of template
scripts, the GuardTools perl module, the runGuardian script, and the generate alarms.pl

alarm generator script.

page 3

LIGO-T1100608-v4

2 Example Guardian Implementation

2.1 Setup Walkthrough

Before each piece of the guardian is described in detail, it may be helpful to have a better
sense for how the guardian is actually implemented for a subsystem. This section will walk
through an example implementation of the guardian for Stanford’s ISI subsystem ‘TST’ from
start to finish. Throughout the walkthrough, there will be links to sections where variables,
terminology, and ideas are fully described. At the end, we will summarize a step-by-step
method for defining a subsystem guardian.

2.1.1 Getting Started

Before we begin, we must make sure that we’re logged into the ‘controls’ account or an
account with sufficient file permissions to edit files in the /opt/rtcds/ file tree. This is also
important for the running of the runGuardian script, as it needs access to certain files in
that same tree.

2.1.2 Simulink

The first step to installing the guardian on our S1:ISI-TST subsystem is to drag the GUARD
library block from the ISC common model (in userapps/isc/common/models) into the TST
block of the S1:ISI-TST simulink model. This step creates all of the guardian variables
(section 3.4) in your model. Figure 3 in section 3.3 shows the inner workings of the guardian
block. Of course, you’ll need to re-make the model in order for these variables to show up.

2.1.3 Directories

The guardian requires a specific directory structure for keeping files and scripts. For a full
description of directories and inheritance, see section 3.1. For the S1:ISI-TST subsystem,
we’ll need the following directories:

• /opt/rtcds/userapps/release/isi/s1/burtfiles/tst

• /opt/rtcds/userapps/release/isi/s1/scripts/tst

• /opt/rtcds/stn/s1/target/s1isitst/logs

For a different subsystem, simply replace isi, s1, and tst with the appropriate subsystem
type, interferometer name, and chamber name respectively. For a first-time implementation,
the first two directories are unlikely to exist, and should be created. The third directory
should be created by the make process, but make sure it’s there just in case.

In the scripts directory, create a file named verify UNDEFINED. This creates a state called
UNDEFINED for the system. Since the file can be blank, you can do this via the command
$ touch verify UNDEFINED. We’ll cover state creation in more depth later in this walk-
through; state creation is fully described in section 5.1.1.

page 4

LIGO-T1100608-v4

2.1.4 medm

There are two medm screens through which the user interacts with the guardian. The first
is the main guardian medm screen (Fig. 1(a)) and the second is a BURT commands screen
(Fig. 1(b)). The main guardian screen displays all relevant variables, which are covered in
section 3.4. On the left, the screen shows the status of the system (green for good and red
for bad) and a list of buttons that the user can click to request state transitions. A status
message is displayed at the bottom of the screen. The BURT commands screen allows the
user to add states to the system, verify that the system is in the current state, and to restore
the BURT snapshots for each state of the system.

(a) Guardian medm screen (b) BURT screen

Figure 1: The Guardian and BURT Commands medm screens. These screens are the main
way in which the user interacts with the guardian.

A script called guardMakeMEDM has been written to generate these screens automatically,
and it is located in the main guardian directory (userapps/release/guardian). If you run the
script with the subsystem name as the main argument, two screens will be created in that
subsystem’s automatically generated medm directory (e.g. for S1:ISI-TST, the screens will
be in /opt/rtcds/stn/s1/medm/s1isitst). There are some other options for creating generic
screens and placing them in a different directory, which you can read about in section 4.3.

In order to get the screens, we run $./guardMakeMEDM S1:ISI-TST now. Since we haven’t
defined any states other than UNDEFINED, this will generate a screen with no buttons to
request states on the left-hand side (since you cannot request to transition to an UNDE-
FINED state. This is covered in section 4.3). It will, however, create a screen for making
additional states in a much easier fashion, which we’ll need moving forward.

2.1.5 Defining states

We define a guardian ‘state’ as a set of EPICS variable alarm values and severities defined for
a set of system variables, paired with a cyclic redundancy check (CRC) checksum value that
is uniquely defined by those alarms. Generation of a CRC checksum has been programmed

page 5

LIGO-T1100608-v4

into the real-time code generator (RCG). The checksum derives its value on the values and
severity settings of each variable’s alarms, but not on the value of the variable itself. By
comparing the current checksum of the system’s alarms to a previously stored checksum, we
can determine whether the system currently has the same set of alarm values and severities
that were previously set. By storing checksum values for various states, we can quickly and
easily verify that the system has a desired set of alarms. We store checksums in text files with
the name ‘verify STATE’, and the guardian determines what states are defined by parsing
the files in the ‘burtfiles’ directory and looking for files with that format.

In order to define a state, we must determine which variables we want to alarm, and what
the values and severities for those variables should be. For example, let’s define a ‘SAFE’
state for our TST subsystem. For the BSC-ISI seismic system, a ‘SAFE’ state is one in
which the master switch is turned off, the watchdog is not tripped, all of the sensor infilters
and actuator outfilters are engaged, the coordinate transformation matrices have the correct
values, and the damping loops are turned on (though all output is off because the master
switch is off). This list comprises several hundred variables and would be incredibly tedious
and time-consuming to set by hand. Thankfully, there is a set of tools to make these alarms
much easier to set and states easier to create. While we will go into more detail about these
tools later, for now all we need to know is that creating a specially formatted text file with
the right name in the right place and clicking a button will do everything we need to create
a state.

So, to define a SAFE state for our TST subsystem, we create a file called ‘safe alarms.txt’
in TST’s burtfiles directory. This is called a ‘pattern’ file and is used by the aforementioned
tools to . In the pattern file, we format each line like so:

PATTERN OPERATION SEVERITY

where PATTERN is a perl regular expression pattern that matches only the specific channels
we wish to alarm, OPERATION is some type of defined operation that will determine the
alarm values, and SEVERITY is the desired alarm severity. As an example, we have included
the safe alarms.txt file as Appendix A.

Once this file has been created, we can open the BURT commands medm screen. You’ll notice
that the first button on the screen says “ADD/UPDATE STATE”. Pushing this button runs
a function called guardAddState in the GuardTools perl module. This function takes in the
subsystem name and a state name and creates a new state or updates an existing state. The
text field on the medm screen below this button is used to write the name of the state you
wish to add or update.

To create the ‘SAFE’ state, we write ‘SAFE’ in the text field and push the button. Af-
ter creating the guardsnap file, the script will write the guardsnap file to the system, thus
installing the alarms. It will then take a complete snapshot of the system and store it in
a STATE.snap burtfile. This burtfile can be restored to get a full system restoration of a
particular state. Finally, the guardAddState function will run guardMakeMEDM, and the
newly created screens will be placed in the subsystem’s medm directory at /opt/rtcds/st-
n/s1/medm/s1isitst.

page 6

LIGO-T1100608-v4

2.1.6 Defining state transitions

States aren’t very useful without ways to change them. Within the guardian framework, we
can change states in two ways: by simply restoring the BURT snapshot for a state, or using
a script to change the state in a more complex way. In guardian parlance, the former type
are called ‘goto’ transitions, while the later are unimaginatively called ‘transit’ transitions.
While there is an easy template for ‘goto’ scripts that can simply be renamed to enable
a ‘goto’ transition to any state, ‘transit’ transition scripts require more specific subsystem
knowledge. In our current example, the transition of a BSC-ISI from a DAMPED state to an
ISOLATED state is complex and takes up to a minute to finish. However, the seismic team
have written scripts to automatically handle this transition, which we can encode in a transit
script to do all the work for us. For ‘transit’ transitions, the guardian stays in transition
state (with its own properly defined alarms) until we get to the final state. Transit scripts
therefore allow us to monitor the state of a system while it is undergoing longer transitions.

A good rule of thumb to follow when deciding whether to use a goto or a transit script: if it
matters how you get to a particular state, you should use a transit script. Otherwise, a goto
script will likely suffice. For the BSC-ISI, the ISOLATED state can only be reached if the
system is in a DAMPED state. Therefore, we only create a transit DAMPED ISOLATED
script, and not a goto ISOLATED script, since doing so will prevent the user from trying to
isolate the system without being in a damped state. For more detail, see section 5.2.

In addition, when we fail to verify that we are in a given state, we need a way to respond to
this failure. Scripts that allow the user to recover from verification failure are called ‘recover’
scripts. Recover scripts can be defined for any state or transition state. In addition, a
recover DEFAULT script should exist for each subsystem that handles recovery for all states
for which a recover script is not defined.

Scripts are defined in the subsystem’s scripts directory. All scripts must be made executable
by issuing a chmod +x script name command. For the TST subsystem, we create four
scripts: goto SAFE, goto DAMPED, transit DAMPED ISOLATED, and recover DEFAULT.

For the transition from DAMPED to ISOLATED, we must also create a state with the
name TRANSIT DAMPED ISOLATED with its own alarms, since if we violate one of these
alarms, we may want to take recovery action. For this, we follow the state definition pro-
cedure in section 2.1.5 - create a pattern file named transit safe damped alarms.txt that
contains a list of channels we want to alarm and what the alarm values should be. For tran-
sit states, make sure to set the alarm bounds wide enough to account for variables whose
values will be changing during the transitions. Then, click the ADD/UPDATE STATE but-
ton and you should have your new transition state. Inside the transit script, you should be
sure to load in the guardian snapshot file when you start the transition in order to make
sure the correct alarms are set.

Example goto, transit, and recover scripts are shown in Appendix B.

page 7

LIGO-T1100608-v4

2.2 Execution Walkthrough

Now that we have states and state transitions, we can start running the guardian in real
time. The sections below will detail each part of getting the guardian to run on our example
subsystem.

2.2.1 runGuardian

When we refer to ‘running’ the guardian, we really mean that we are executin the central
script that handles state verification and transitions, which is called runGuardian and lives
in the main guardian directory. This script gets cycled on a specified cadence defined and
looks at the current value of two variables: the current state and the requested state. If
they are the same, the script will try to verify that it is in the current state by first checking
whether the current checksum matches the checksum stored in the verify STATE file, and
if it does, checking whether any variables are in alarm. If the two variables are different, it
will attempt to transition from the current state to the requested state. If a transit script
is defined, it will run that script. If a transit script is not defined, it will attempt to run a
goto script. In both cases, it will look for the script first in the local scripts directory, then
in the inherited scripts directory (if one exists; more on inheritance later). If none of these
are found, it will throw an error. The runGuardian script is described in more detail in
section 4.1.

2.2.2 Running the Guardian

Let’s say we have already defined the following states: SAFE, DAMPED, ISOLATED, and
TRANSIT DAMPED ISOLATED (in addition to the required UNDEFINED state we de-
fined in the beginning). We also have transitions defined: SAFE and DAMPED both have
goto scripts defined, but ISOLATED does not, since we only want to transition to an ISO-
LATED state if we are already in a DAMPED state. There is also a recover DEFAULT script
that sets the current state to UNDEFINED and requests a transition to SAFE.

To start the guardian, we simply issue the command $./runGuardian S1:ISI-TST

2.2.3 Startup

When the script is started, if it is not already in the SAFE state, verification will fail, and
the recover DEFAULT script will attempt to restore a SAFE state. If the model is not in the
SAFE state, the default behavior is to make the current state UNDEFINED and request a
SAFE state, causing runGuardian to run a transition from UNDEFINED to SAFE. If the
current or requested state fields are blank, the script will automatically put UNDEFINED
in the current state, and request to go to SAFE.

For now, we’ll assume that there’s no major problems and that we safely arrive at a SAFE
state.

page 8

LIGO-T1100608-v4

2.2.4 Transition to DAMPED

To transition the platform from a SAFE state to a DAMPED state, we make a request for
DAMPED state mashing the ‘DAMPED’ button on the guardian medm screen. Pressing
this button puts the string “DAMPED” in the request field, which no longer matches the
string “SAFE” in the current state field. Once the runGuardian script sees that STATE
and REQUEST do not match, it tries to run a transition between the two states. It first
looks for a transit script, but finding none in the local directory or the inherited directory, it
looks for a goto script, which it finds in the local directory. The goto DAMPED script is run,
and restores the system to the DAMPED.snap burtfile created during the add/update state
process, which essentially only involves turning the master switch on (since the damping
loops are already on in the SAFE state). The goto script also puts the string “DAMPED”
into the current and request state fields so that the runGuardian script knows to verify that
the system is in the DAMPED state and not attempt any further transitions.

At this point, the runGuardian script will do just that. It will check the current checksum
and compare it to the checksum stored in verify DAMPED, and if they match, will then check
whether any variables have tripped alarms. If either step fails, it will call recover DEFAULT
to try to recover from verification failure.

2.2.5 Transition to ISOLATED

Assuming that we’ve safely made it to DAMPED, we can run the more complicated transition
to the ISOLATED state. Once again, to request a transition we can simply press the button
for the ISOLATED state and runGuardian will find and run the transit DAMPED ISOLATED

script to make the transition. This transition script calls other subscripts for the ISI, such as
BSCISItool that were developed previously to control the platform. Since this is a transit
script, the system will actually go into a TRANSIT DAMPED ISOLATED state that allows
the runGuardian script to continue state verification even while the system is undergoing a
transition.

First, the transit script puts the string“TRANSIT DAMPED ISOLATED” into both the
STATE and REQUEST fields. This signals to runGuardian that it needs to verify that the
system is in a transition from the DAMPED state to the ISOLATED state, so it will check the
alarm checksum stored in verify TRANSIT DAMPED ISOLATED and whether any alarms
have been set off. Next, it restores the file TRANSIT DAMPED ISOLATED.guardsnap,
which changes the alarm bounds on the isolation gains and switches to allow their values to
be changed without going into alarm. Once the transition has completed, the transit script
will put the string “ISOLATED” into both the STATE and REQUEST fields to indicate
that it has finished, and will load the ISOLATED.guardsnap alarm file to load the correct
alarms for a DAMPED state. When runGuardian cycles once more and finds that state and
request match, it runs verify ISOLATED to verify that the system is in the DAMPED state.

If the ISI watchdog were to trip during this transition, there are a number of different
actions we might want to take as a result. One possibility is to wait for the system to finish
transitioning, then see that when it has reached the final state (in this case, ISOLATED), that
it is not in the proper state and to take action accordingly. However, since the DAMPED
to ISOLATED transition is not only complicated, but takes a long time, we would much

page 9

LIGO-T1100608-v4

rather simply reset the system to a SAFE state, reset the watchdog, and then start all over
again. However, since the subscripts that are running have not yet completed, they need to
be killed or they will continue to modify the system until they are done. The GuardTools
perl module has a function called guardKillSubscripts that can kill any sub-processes that
have been started by runGuardian.

This ends our walkthrough. We will now talk in more detail about the structure of the
guardian and the tools that are available to developers.

page 10

LIGO-T1100608-v4

3 Structure

Implementing and running the guardian depends on a specific file and directory structure.
This section will detail this structure with information about script and file locations, inher-
itance, and other relevant topics.

3.1 Directory Structure

userapps
release

guardian
${subsys}

${ifo1}
scripts

$chamber1
$chamber2

$chamber1
$chamber2

burtfiles

${ifo2}
scripts

$chamber1
$chamber2

$chamber1
$chamber2

burtfiles

Figure 2: Directory structure

3.1.1 userapps/release/guardian

The guardian folder is home to all of the core tools for implementing and running the
guardian. It houses the main runGuardian script, the GuardTools and CaTools perl modules
for guardian and channel access functions, the generate alarms.pl script for making guardian
snapshot files, and the guardMakeMEDM and guardManagerMEDM medm-generating scripts
for regular subsystem guardians and manager guardians.

3.1.2 userapps/release/subsystem

The top level ${subsystem} directory contains subfolders that hold guardian scripts and
burtfiles for individual subsystems.

3.1.3 userapps/release/subsystem/scripts/chamber

This directory contains all goto, transit, and verify scripts. It also contains a simple bash
script called ‘Inheritance’ that echoes the inheritance directory for that subsystem.

page 11

LIGO-T1100608-v4

3.1.4 userapps/release/subsystem/burtfiles/chamber

This directory will hold the BURT files for each state. This directory should also have an
inheritance script to point to any inherited burtfiles.

3.2 Inheritance

One of the key features of the guardian is support for inheritance. Under the guardian imple-
mentation of inheritance, the user can define one set of scripts that can be used by several
different subsystems for transitions. In each subsystem’s scripts and burtfiles directories,
there is a script called ‘Inheritance’ that echoes the name of the directory containing the
inherited files. Nearly all scripts that are created for one subsystem can be used as inherited
scripts - for BURT files, it is trickier to cleanly implement inheritance. However, the user
can define alarm pattern-matching files in the common directory to ease state creation for
other subsystems.

3.2.1 inherited scripts

The inherited scripts directory should contain any scripts that are consistent between similar
subsystems, e.g. verify SAFE for various ISIs. Scripts with the same name in local directories
take precedence over any inherited scripts.

3.2.2 inherited burtfiles

Since verification files use checksum values that are unique to each subsystem, it is impossible
to use full burtfile inheritance for state definition. However, inheritance can still be used
during state creation by defining inherited pattern files that can be used when defining states.
This way, each pattern file only needs to be defined once, and the operator need only run
through each transition to get the system in each desired state and save the checksum in
order to define states.

3.3 Simulink

Figure 3 shows the simulink library part for the guardian. The variables are described in
section 3.4 below.

3.4 Variables

The GUARD block in ISC common.mdl defines several variables that are used by the
guardian: (note: all of these variables have ’GUARD’ prepended, e.g. GUARD REQUEST.
The GUARD block should be placed at the sub-system level, so the channel names read,
e.g., S1:ISI-ITMX GUARD.)

page 12

LIGO-T1100608-v4

Figure 3: The guardian simulink block

page 13

LIGO-T1100608-v4

NAME TYPE DESCRIPTION
STATE text The current state of the system.

REQUEST text The requested state.
STATUS int The status of the system - 0 is good, 1 is bad.

COMMENT text Comment field for notifications and error messages
CADENCE int The amount of time to wait between each loop of run-

Guardian.
ALIVE COUNTEROUT int A counter that is reset on each loop of runGuardian. A

runaway counter indicates that runGuardian needs to
be restarted.

ALIVE RESET int The reset mechanism for the counter - a cdsEpicsMo-
mentary variable.

PID int The process ID for the runGuardian script
SUBPID int The process ID for the top-level subscript (a goto or

transit script) currently running.
HOST text The hostname of the computer running the runGuardian

script.
BURT SAVE text Text field for saving BURT snapshots to local ‘burtfiles’

directory

Table 1: Guardian Variables

page 14

LIGO-T1100608-v4

4 Scripts and Tools

There are a number of vital tools that are needed for implementing and running the guardian.
This section will cover all relevant scripts and modules that are used in that process. The
scripts discussed below are included as appendices to this document.

4.1 runGuardian

At the core of the guardian is the runGuardian script. This script runs in an infinite loop that
constantly monitors the state of the guardian variables, taking the appropriate action when
it finds the system in a particular state. In particular, runGuardian checks GUARD STATE
and GUARD REQUEST. If it finds that these are the same, i.e. that the current state is
the state we want to be in, then it verifies that we are, in fact, in the state we purport to
be in. If STATE and REQUEST differ, it attempts to fork off a separate process that is
responsible for making a transition between the two states.The runGuardian script can be
started before or after the model is started, since it will check whether the model exists on
every execution of its main loop.

It is important to note that runGuardian does not directly change the system in any way.
The one exception to this rule is that if runGuardian does not recognize the name of the state
in GUARD STATE, it will replace that state with UNKNOWN. Otherwise, runGuardian
only interacts with the system through the user-defined verify, transit, and goto scripts that
it calls.

When determining how to transition the system, runGuardian first checks to see whether
a transit FROM TO script exists in the local scripts directory for the current state and
requested state. If it does not find one, it then checks the inherited directory for the same
transit script. Failing that, it looks locally for a goto STATE script. As a last resort, it
looks in the inherited scripts directory again for a goto script. If none of these are found, it
fails gracefully by resetting the requested state to the current state, making an appropriate
comment, and throwing an error to GUARD STATUS.

4.2 GuardTools.pm

The GuardTools perl module provides a set of functions to the user that enable state requests,
transitions, and general BURT and guardian functionality. For more detailed information,
view the GuardTools perldoc. The functions in this library can be accessed directly using
the guardExec command line tool (e.g. $ guardExec guardListStates S1:ISI-ITMX runs
guardListStates on the S1:ISI-ITMX subsystem from the command line). The first argu-
ment is the function name, followed by the function arguments. More information can be
found in the perl documentation for the code as well as in the code itself.

4.2.1 Functions

Each function takes the name of the subsystem as the first argument, with additional argu-
ments if necessary. The subsystem name should be in the form “IFO:SUBSYS-CHAMBER”,

page 15

LIGO-T1100608-v4

e.g. “S1:ISI-ITMX”.

guardSystemDir
Returns the sub-directory for a given system and directory type. Directory types are
‘scripts’, ‘burtfiles’, or ‘logs’.

Example: my $burt dir = guardSystemDir("$SubSys", "burtfiles");

guardListStates
Returns a list of all the valid states for a given subsystem. It reads these states by
parsing states from from guardSystemDir($SubSys, ‘data’) and from the corresponding
inheritance directory.

Example: my @valid states = guardListStates("$SubSys");

guardComment
Posts a comment to the GUARD COMMENT field. Limited to forty characters.

Example: guardComment("$SubSys", "System is verified in LOCKED");

guardLog
Writes to the guardian log, located in guardSystemDir($SubSys, ’logs’), named
guardian.txt.

Example:

guardComment("$SubSys", "Error: $CHANNEL expected 0, found 1.");

guardError
Writes a comment to the GUARD COMMENT field and sets GUARD STATUS to 1.

Example: guardComment("$SubSys", "Error: verify DAMPED failed.");

guardStatus
One argument: returns the status of the subsystem.
Example: my $status = guardStatus("$SubSys");

Two arguments: sets the status of the subsystem.
Example: guardStatus("$SubSys", 0);

guardRequest
Requests a state transition to the state given as an argument.

Example: guardRequest("$SubSys", "DAMPED");

guardState
With one argument, returns the state for a subsystem.
Example: my $state = guardState("$SubSys");

With two arguments, sets the state for a subsystem.
Example: guardState("$SubSys", "SAFE");

guardPrompt
Creates a prompt for user input; returns the user input.

Example: my $user input = guardPrompt("What state do you want?");

page 16

LIGO-T1100608-v4

guardReadBurt
Reads a BURT file, returns references to 1) an array of hashes containing channel data,
and 2) comments found in the BURT header file. In the array of hashes, the hash keys
are ’channel’ for the channel name, ’value’ for the value, readonly for whether
the channel is read only (1 if yes, 0 otherwise), and ’type’ for the channel type. The
name of the BURT file passed as an argument must exist in guardSystemDir($SubSys,

’burtfiles’) and should be the full filename, e.g. ‘ISOLATED.snap’.

Example:

my ($chanval ref, $comment ref) =

guardReadBurt($SubSys, "DAMPED.snap");

my @chanvals = @$chanval ref;

my value = $chanvals[$ii]value;

guardMakeBurt
Makes a BURT file for a system with the name of the state passed in as the second
argument. Unless a filename for a pre-existing .snap file that exists in ‘burtfiles’ is
given, ‘defaultChannelList.req’ is used. Unlike guardReadBurt, no file extension is
required.

Example: guardMakeBurt($SubSys, ’DAMPED’);

guardRestoreBurt
Restores the system to the state defined by the BURT file passed in as the second
argument. Returns an array of hash-refs of badly defined channels.

Example: guardRestoreBurt($SubSys, ’SAFE’);

guardCleanBurt
Takes in a BURT file and removes excess lines and bad channels. Requires the name
of the dirty file and the clean file, and for both to exist in ’burtfiles’.

Example: guardCleanBurt($SubSys, ’dirty.snap’, ’clean.snap’);

guardVerifyState
Verifies that the system is in a state defined by the alarm checksum and whether any
variable is in alarm. Returns 1 if the system is verified in the state, 0 otherwise. Prints
channels with incorrect values to the log file.

Example: my $verified = guardVerifyState($SubSys, $state);

guardAlarm
Checks the alarm status of the system. Returns the number of alarms.

Example: my $n alarms = guardAlamr("L1:SUS-MC1")

guardAddState
Adds a state to a system by generating a guardian snapshot file containing only alarms
set by an alarms text file (held in the burtfiles directory of a subsystem). It then takes
a full snapshot of the new state, and writes the alarm checksum to a verify STATE
file. It will re-make the medm screen with the new state.

Example: my $failure = guardAddState("M1:ISI-BSC", "DAMPED");

page 17

LIGO-T1100608-v4

guardDeleteState
Deletes a state from a subsystem by removing any associated burtfiles, goto scripts,
verify scripts, and transit scripts. It will re-make the medm screen as well.

Example: my $failure = guardDeleteState("M1:ISI-BSC", "DAMPED");

guardRecordAlarms
Writes the current alarm checksum to a verify STATE file, where STATE is the state
passed in as the second argument.

Example: guardRecordAlarms("S1:ISI-ITMX", "ISOLATED");

4.3 guardMakeMEDM

The medm screens for the guardian are generated automatically by a script in userapps/-
guardian called guardMakeMEDM. Since the number and names of states defined for each
subsystem are different, this script automatically generates a screen with buttons for its
various states. It will create buttons for the states defined by files in the burtfiles directory,
but will not create a button for the UNDEFINED state nor any TRANSIT states.

The script has some command line options for creating generic screens and placing the newly
created screens in a specific directory. Generic screens are specified by including the -g flag,
and directory placement is specified by a second optional argument. So issuing the command

$ guardMakeMEDM -g S1:ISI-TST $USERAPPS DIR/isi/s1/medm/s1isiitmx

will create a fully generic screen and place it in the userapps subsystem medm directory
for S1:ISI-TST. The default directory placement is the subsystem’s automatically generated
medm directory, e.g. /opt/rtcds/stn/s1/medm/s1isitst for S1:ISI-TST.

4.4 generate alarms.pl

The generate alarms.pl script is a script that generates a guardian snapshot for a system
based on an input pattern file and the current state of the system. It is an important part of
the guardAddState function used to create new states. As mentioned in the walkthrough, the
script parses a pattern file and creates alarms based on the current value of system variables
and the operations defined by the user in the pattern file. The types of operators are described
in Table 2. These operations set the values CHANNEL.HIGH and CHANNEL.LOW for the
high and low alarm bounds.

Currently, the script supports only HSV and LSV fields - ZSV and OSV fields for binary
variables have been implemented but not yet tested, so their functionality is not guaranteed.

page 18

LIGO-T1100608-v4

+/-[value] Add [value] to the current variable value for HIGH, sub-
tract [value] for LOW

+[value1]/-[value2] Add [value1] to the current variable value for the HIGH,
subtract [value2] for the low alarm

*[value] Multiply the current variable value by [value] for HIGH,
divide by [value] for LOW

%[value] Add [value]% of the current variable value to itself for
HIGH, subtract for LOW (set a bound within [value]%
of the current variable value)

H[value1]/L[value2] Manually set the HIGH value to [value1], LOW to
[value2]

Table 2: A list of permitted operations for pattern files used with generate alarms.pl

page 19

LIGO-T1100608-v4

5 Development

This section will go into further detail about state creation, verification, and transitions.

5.1 State creation and verification

The process of state creation is important and deserves a more detailed explanation in this
documentation than provided above.

5.1.1 Creation

The process of state creation has been automated by the guardAddState function in the
GuardTools perl module. To create a state, the user starts by creating a state alarms.txt file
in the local burtfiles directory. If an appropriate pattern file already exists in the inherited
burtfiles directory, the user does not need to create a local one; however, the script that
generates alarms will use both files if they exist, with any patterns defined in the local file
taking precedence over those defined in the inheritance files.

Once this file has been created, the user must execute guardAddState($SubSys, $State) for
the desired subsystem and state. The user can execute this function with the button on the
BURT medm screen or by using the guardExec guardian command-line tool. This function,
documented previously, will use the generate alarms.pl script to create a guardian snapshot
file with a list of alarms. These alarms will be loaded into the subsystem, and a full snapshot
will be taken. The checksum value of this state will be saved to a file called ‘verify STATE’
in the subsystem’s burtfiles directory.

5.1.2 Verification

The runGuardian script handles all state verification. When runGuardian detects that the
current state and requested state match, it starts the verification sequence. The first step
is to check that the current alarm checksum stored in the EPICS variable ${IFO}:FEC-
${DCU ID} GRD ALH CRC matches the hexadecimal value stored in the text file ver-
ify STATE, where STATE is the current state of the system. This step ensures that the
alarms set when the state was created match the alarms that are currently set. The check-
sum method of verification ensures that we do not have to check every single alarm channel
or variable to check the state of the system.

The second step, after we know we have the alarms we want, is to ensure that no variables
are in a state of alarm. There are two types of variables that can have alarms: setpoints,
which are values that can be set by the user; and readbacks, which are variables that cannot
be set by the user. If either type of variable has a value that is in alarm, verification will
fail, and the runGuardian script will take the action defined by recover STATE, or, if that
does not exist, recovery DEFAULT.

page 20

LIGO-T1100608-v4

5.2 Transitions

One of the main features of the guardian is flexibility. Scripts allow the user that flexibility
to define transitions between states. There are three types of guardian scripts: goto scripts,
transit scripts, and recover scripts. The user can also run any sub-script from this script
that handles system changes or state transitions. In general, however, it is good practice to
ensure that the script in question will fail automatically if the system goes into a bad state.
While the runGuardian script should, in theory, have the power to kill subscripts, experience
with this functionality has show that it can leave the system in an undefined state.

As mentioned previously, examples of these scripts are defined in Appendix B

5.2.1 ‘goto’ scripts

Goto scripts are essentially BURT restores. If it doesn’t matter how you get to a state, you
may as well restore the state of the system completely to the state you want. Since states
are defined for the guardian using the verify scripts and not goto scripts, goto scripts do not
need to be defined for every state. In fact, they should only be defined for states that are
reachable via transitions that are short, since goto scripts are not forked off from the main
runGuardian script, and if they run for longer than the ALIVE timer, they will cause the
guardian status to go bad. Like transit scripts, goto scripts are not responsible for verifying
that they are in the final state, but they are responsible for putting the correct state and
request states to those fields.

5.2.2 ‘transit’ scripts

Transit scripts are explicitly defined transitions from one state to another state. These
scripts can change values, ramp gains, or take other action, but can also call sub-scripts to
do the dirty work. Any sub-scripts that they call can also be killed by the verify TRANSIT
scripts. Since transit scripts are forked, their return value is not acted on by the system, so
by default they exit with a value of 0. The script is not responsible for verifying that it is in
the final transitioned state. The script is, however, responsible for setting the STATE and
REQUEST fields to their final values once the transition is completed. Since the script is
forked off, it can take as long as is needed to make a transition.

5.2.3 ‘recover’ scripts

Recover scripts are used to recover from verification failure. If defined, the system will run a
recover script for a state if verification fails in that state. If no recover script is defined for a
state, the runGuardian script will execute the default recovery script, which sets the current
state of the system to UNDEFINED and the requested state of the system to SAFE.

5.2.4 State Diagrams

When implementing the guardian for a system, it is useful to create a state diagram that
details what happens to the system as it transitions and is verified in various states. An

page 21

LIGO-T1100608-v4

example state diagram for a triple suspension is included below.

UNDEFINED

SAFE

DAMPED

LOWNOISE

transit_SAFE_DAMPED

transit_DAMPED_LOWNOISE

verifyauto

OK / FAIL

verifyauto

OK / FAIL

request

request

auto

auto

auto / request?
TRIPPEDrequest

WD trip

WD trip

WD trip

goto_SAFE

WD trip

MANUAL

goto_MANUAL

OK

FAIL

verifyauto

OK / FAIL

WD trip
OK

FAIL

Figure 4: An example state diagram for a triple suspension

page 22

LIGO-T1100608-v4

A Example alarms.txt file

% sa f e a l a rms . txt
% This f i l e conta in s a l i s t o f s t r i n g s used to generate a guardian BURT f i l e
% with LOW, HIGH, LSV, HSV, and r egu l a r f i e l d s to r e s t o r e a 0,0,0system to
% a pa r t i c u l a r s t a t e . The accompanying s c r i p t gene ra t e bur t a l a rms w i l l

5 % take in a normally 0,0,0de f ined b u r t f i l e and save a . guardsnap f i l e in the
same

% d i r e c t o r y with the same name .
%
% Accept ib l e ope ra t i on s :
% +/− . . . : add or subt rac t the same EPSILON from the NOM value in the burt

f i l e (d e f au l t)
10 % + . . . / − . . . : add and subt rac t d i f f e r e n t EPSILONS from the NOM value

% ∗ . . . : Mult ip ly NOM by EPSILON 0,0,0 f o r high value , d i v i d e by EPSILON
0,0,0 f o r low value

% %. . . : +/− by percentage EPSILON of NOM value (0 . 01 = 1%)
% H. . . / L . . . : Manually s e t high and low 0,0,0va lue s
%

15 % For switches , the genera te a la rms . p l s c r i p t w i l l au tomat i ca l l y s e t
% the lower 0,0,0alarm s e v e r i t y to NOALARM 0,0,0 i f the low value i s 0 .

% Watchdog and masterswitch
WDMONSTATE INMON %0.01 MAJOR

20 WD (CPS |GS13 |L4C |T240) MAX H32000/L15000 MAJOR
WD (CPS |GS13 |L4C |T240) SAFETHRESH H32000/L15000 MAJOR
MASTERSWITCH %0.01 MAJOR
DACKILL STATE +/−1 MAJOR

25 % Set a l l i n f i l t e r and o u t f i l t e r sw i t che s to with in 1 , ga in s to with in 1%
INF (R? [XYZ] | [HV]) [1 2 3] SW[1 2]R +/−1 MAJOR
INF (R? [XYZ] | [HV]) [1 2 3] GAIN %0.01 MAJOR
OUTF [HV] [1 2 3] SW[1 2]R +/−1 MAJOR
OUTF [HV] [1 2 3] GAIN %0.01 MAJOR

30
% Set a l l a l ignment and c a r t e s i a n matr i ce s
(2CART |ALIGN |CART2ACT) %0.01 MAJOR

% Blend f i l t e r s
35 BLND R? [XYZ] (CPS |L4C |T240 |GS13) (CUR|NXT) SW[1 2]R %0.01 MAJOR

% Now se t c o n t r o l l e r sw i t che s and ga ins
(DAMP| ISO |FF01 |FF12) R ? [XYZ] SW[1 2]R +/−1 MAJOR
(DAMP| ISO |FF01 |FF12) R ? [XYZ] GAIN %0.01 MAJOR

40
% Turn a l l other alarms o f f
.∗ +/−1 NOALARM

safe alarms.txt

page 23

LIGO-T1100608-v4

B Transition script examples

B.1 goto SAFE

#!/ usr /bin / p e r l −w −I / l i g o / cd s c f g

use s t r i c t ;
use stdenv ;

5 INIT ENV(${IFO}) ;
use l i b $ENV{USERAPPS DIR} . ’ / guardian ’ ;
use GuardTools ;
use CaTools ;

10 # Get the subsystem name , d e f i n e the reques ted s t a t e
my $SubSys = s h i f t ;
my $REQUEST = ”SAFE” ;

Restore the SAFE. snap BURT snapshot f i l e
15 guardRestoreBurt ($SubSys , $REQUEST) ;

s l e e p (1) ;

Load in the reques ted s t a t e as the cur rent s t a t e
guardState ($SubSys , $REQUEST) ;

20 guardRequest ($SubSys , $REQUEST) ;

e x i t 0 ;

goto SAFE

page 24

LIGO-T1100608-v4

B.2 transit DAMPED ISOLATED

#!/ usr /bin / p e r l −w −I / l i g o / cd s c f g

use s t r i c t ;
use stdenv ;

5 INIT ENV($ENV{IFO}) ;
use l i b $ENV{USERAPPS DIR} . ’ / guardian ’ ;
use GuardTools ;
use CaTools ;

10 # Get the subsystem name
my $SubSys = s h i f t ;

Def ine the cur rent s tate , r eques ted s tate ,
and t r a n s i t i o n s t a t e

15 my $STATE = ”SAFE” ;
my $REQUEST = ”DAMPED” ;
my $TRANSIT STATE = ”TRANSIT ${STATE} $ {REQUEST}” ;

Load in the alarms f o r the t r a n s i t i o n s t a t e
20 guardRestoreBurt ($SubSys , ”$TRANSIT STATE. guardsnap”) ;

guardState ($SubSys , $TRANSIT STATE) ;
guardRequest ($SubSys , $TRANSIT STATE) ;

25 # Run the BSCISItool s c r i p t to i s o l a t e
my @args = qw(/opt/ r t cd s / userapps / r e l e a s e / i s i /common/ s c r i p t s /BSCISItool damp

) ;
push @args , $SubSys ;

system @args ;
30

Load in the f i n a l s t a t e
guardState ($SubSys , $REQUEST) ;
guardRequest ($SubSys , $REQUEST) ;

35 # Load in the alarms f o r the f i n a l s t a t e
guardRestoreBurt ($SubSys , ”$REQUEST. guardsnap”) ;

e x i t 0 ;

transit DAMPED ISOLATED

page 25

LIGO-T1100608-v4

B.3 recover DEFAULT

#!/ usr /bin / p e r l −w −I / l i g o / cd s c f g

use s t r i c t ;
use stdenv ;

5 INIT ENV(${IFO}) ;
use l i b $ENV{USERAPPS DIR} . ’ / guardian ’ ;
use GuardTools ;
use CaTools ;

10 # Set the cur rent s t a t e as UNDEFINED,
reques t to go to a damped s t a t e

my $SubSys = s h i f t ;
my $STATE = ”UNDEFINED” ;

15 my $REQUEST = ”SAFE” ;

guardState ($SubSys , $STATE) ;
guardRequest ($SubSys , $REQUEST) ;

20 e x i t 0 ;

recover DEFAULT

page 26

	Introduction
	Overview
	Documentation

	Example Guardian Implementation
	Setup Walkthrough
	Getting Started
	Simulink
	Directories
	medm
	Defining states
	Defining state transitions

	Execution Walkthrough
	runGuardian
	Running the Guardian
	Startup
	Transition to DAMPED
	Transition to ISOLATED

	Structure
	Directory Structure
	userapps/release/guardian
	userapps/release/subsystem
	userapps/release/subsystem/scripts/chamber
	userapps/release/subsystem/burtfiles/chamber

	Inheritance
	inherited scripts
	inherited burtfiles

	Simulink
	Variables

	Scripts and Tools
	runGuardian
	GuardTools.pm
	Functions

	guardMakeMEDM
	generate_alarms.pl

	Development
	State creation and verification
	Creation
	Verification

	Transitions
	`goto' scripts
	`transit' scripts
	`recover' scripts
	State Diagrams

	Example alarms.txt file
	Transition script examples
	goto_SAFE
	transit_DAMPED_ISOLATED
	recover_DEFAULT

