LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

51107539

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |                 |
|----------------------------------------|--------------------|-----------------|
| ltherCAT Adapters LIGO DCC#            | D1100419-v3        |                 |
| Controller Serial #                    |                    | <u>51107539</u> |
| Test Engineer:                         | Zach               | 6               |
| Test Date:                             | 11/22/1            | 1               |
| Overall picomotor chassis testing:     | [L]PÁSS            | [ ] FAIL        |
| Signature/Initials:                    |                    |                 |
|                                        |                    |                 |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20 Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

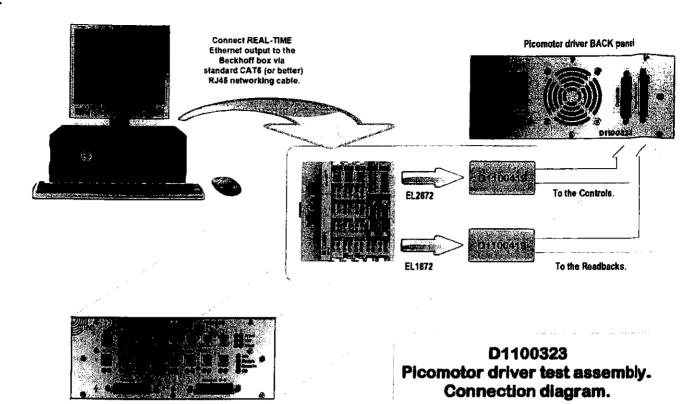
- 4. Temperature5. Output terminals



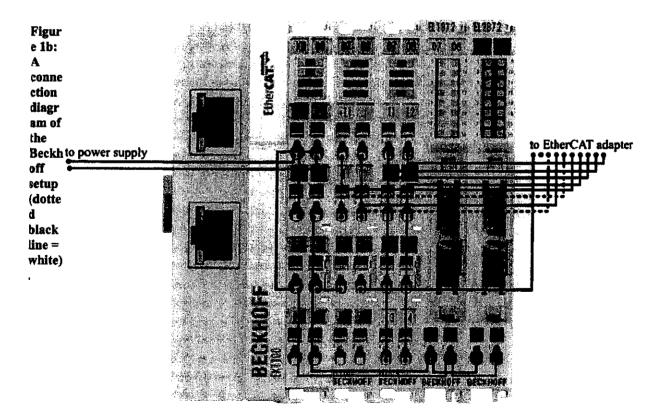
### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)


#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551


## Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on



Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



# Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the pieomotor and the PLC controls are set up:

| [ ] | Check that the "ON" LED is lit if the power cable is connected and the power switch |
|-----|-------------------------------------------------------------------------------------|
|     | is on, and that it goes off when the power switch is off.                           |

heck that the "ON" indicator on the visualization also responds to the power switch.

Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | 50   | off    | m     |
| STARTING UP      | off                      | on     | flashes | flashes            | off  | σn     | on    |
| READY            | off                      | on     | off     | off                | off  | $\sim$ | 00    |
| Check if passed: | [4                       | H      | [ ]     |                    |      |        |       |

Table 1: LED response to picomotor status

[ Y Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |              |  |
|----------|------|--------------|--|
|          | Left | Right        |  |
| 1        | [4]  | . [4]        |  |
| 2        | [4]  | [4]          |  |
| 3        | 14   | [4]          |  |
| 4        | [4]  | U/           |  |
| 5        | W    | [4]          |  |
| 6        | M/   | U/           |  |
| 7        |      | $\mathbf{I}$ |  |
| 8        | []   | [4           |  |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [+      | [1]   | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                           |  |
|----------------|----------------|---------------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN")        |  |
| VERY SMALL (1) | M              | Ŋ,                        |  |
| MEDIUM (100)   | [ ]            | $\mathbf{M}_{\mathbf{p}}$ |  |
| MAGNUM (10000) | [4             | [4                        |  |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | N              | [-]                |  |
| JOG (50Hz)     | [ ]            | IJ                 |  |
| SPRINT (500Hz) | []             | U/                 |  |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 28,03          | 21.90              |  |
| 2                | 24.03          | 28.99              |  |
| 3                | 30.03          | 30.12              |  |
| 4                | 30.96          | 31.10              |  |
| 5                | 31.75          | 32.01              |  |
| Check if passed: | [4]            | [Y                 |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [9]            | [1]                |  |  |
| 2        |                | [1                 |  |  |
| 3        | [1]            | H                  |  |  |
| 4        | []             | [/                 |  |  |
| 5        | [1]            | [1]                |  |  |
| 6        | 1/             | []                 |  |  |
| 7        | [1]            | [1]                |  |  |
| 8        |                | [1                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [/]            | []                 |  |
| 2        |                | [1                 |  |
| 3        | [8]            | [/                 |  |
| 4        |                | [1]                |  |
| 5        | []             | [1                 |  |
| 6        | [1]            | [X                 |  |
| 7        | [ ]            | 11                 |  |
| 8        | [1             | [ ]                |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Front panel LEDs                  | [ Y Pass | [ ] Fail |  |
|-----------------------------------|----------|----------|--|
| Sep sizes                         | Pass     | [ ] Fail |  |
| Speeds                            | [ ] Pass | [ ] Fail |  |
| Output terminals                  | [ ]Pass  | [ ] Fail |  |
|                                   |          |          |  |
| Overall picomotor driver testing: | [ ]Pass  | [ ] Fail |  |

Test Engineer: Z. J. G

Test Date: 11/72/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

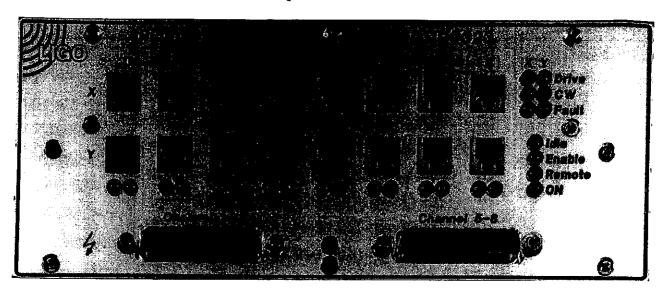



Figure 3: Picomotor driver chassis rear panel

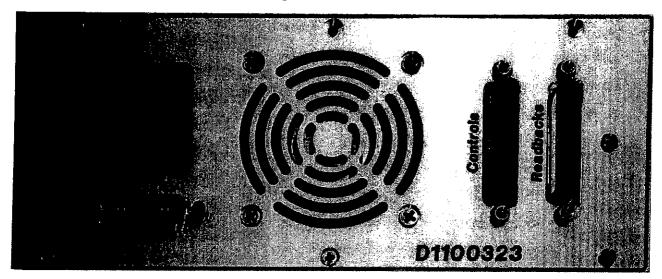
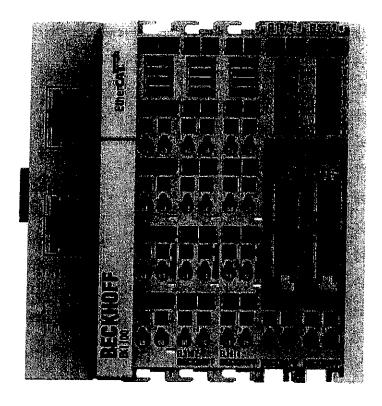




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

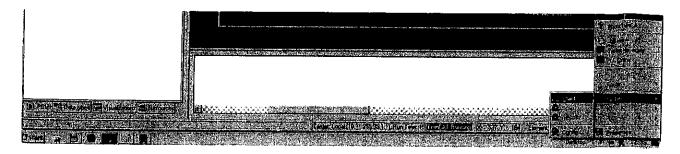
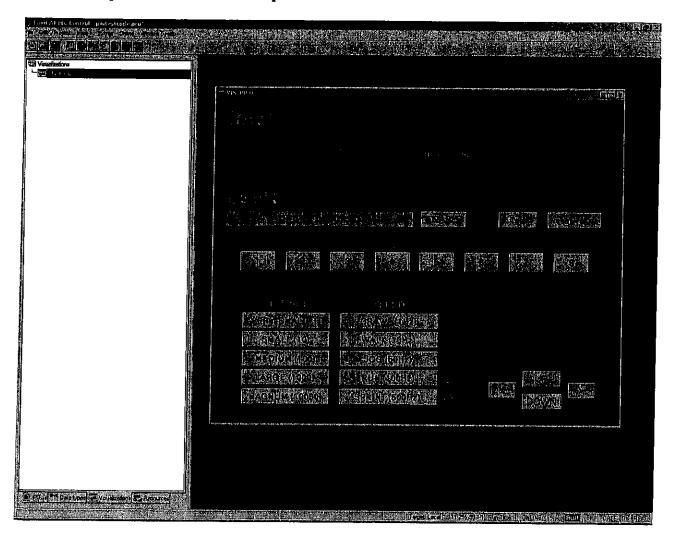




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| <u>D1100323-v1</u> |
|--------------------|
| D1100419-v3        |
| 5/1 5/107540       |
| Zach 6             |
| 1/21/1             |
| [ ] FAIL           |
|                    |
|                    |
|                    |

# Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals



#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551



### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

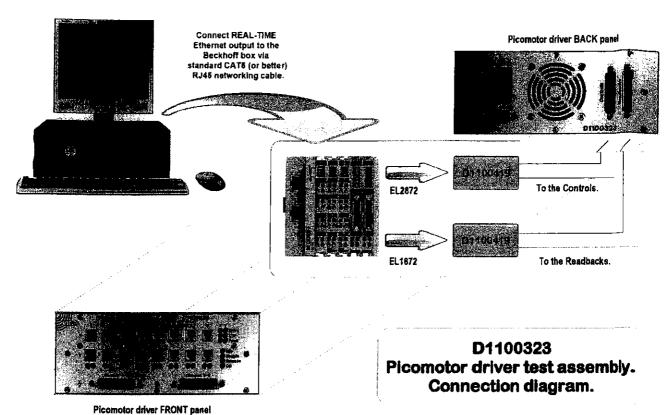
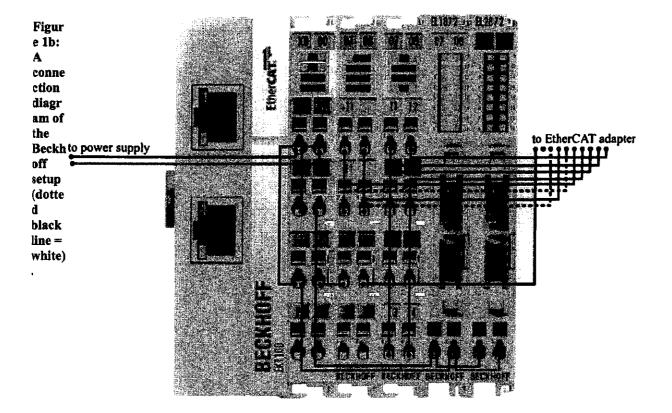




Figure 1a: A connection diagram of the picomotor setup.





#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- [ ] Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | <b>Chassis Front Panel LEDs</b> |        |         | Software Readbacks |          |        |       |
|------------------|---------------------------------|--------|---------|--------------------|----------|--------|-------|
|                  | IDLE                            | Enable | Fault X | Fault Y            | IDLE     | Enable | Power |
| DRIVER DISABLED  | on                              | off    | off     | off                | $\infty$ | 086    | M     |
| STARTING UP      | off                             | on     | flashes | flashes            | S        | on     | on    |
| READY            | off                             | on     | off     | off                | SF       | on     | on    |
| Check if passed: | [4]                             | [4     | [4]     | []                 | H        | [4     | 4-}-  |

Table 1: LED response to picomotor status

- [ Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

TAGO

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4]  | N     |
| 2        | [4]  | [4]   |
| 3        | M    | [ ]   |
| 4        | [1]  | [4]   |
| 5        | [4]  | [1]   |
| 6        | [1   | / H/  |
| 7        |      |       |
| 8        | H    | [4    |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [+      | [-]     | []    | []    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | []             | i T                |  |
| MEDIUM (100)   | [4]            | [4                 |  |
| MAGNUM (10000) | [4]            | 19                 |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [ 9            | 14                 |  |
| JOG (50Hz)     | [4             | 19                 |  |
| SPRINT (500Hz) | [4             | 17                 |  |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 30,61          | 27.32              |  |  |
| 2                | 31.76          | 28.47              |  |  |
| 3                | 32.93          | 29.66              |  |  |
| 4                | 33.92          | 30.72              |  |  |
| 5                | 34.90          | 31.68              |  |  |
| Check if passed: | [4]            | W                  |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [/]            | [9                 |  |  |
| 2        | [J             | [9                 |  |  |
| 3        | [/             | [4]                |  |  |
| 4        | [4]            | [4]                |  |  |
| 5        | [1]            | [Y                 |  |  |
| 6        | N              | 14                 |  |  |
| 7        |                | [ ]                |  |  |
| 8        | [4]            | []                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [1]            | [4                 |  |  |
| 2        | (V)            | [4                 |  |  |
| 3        | [ ]            | [1/                |  |  |
| 4        | $\overline{}$  | [4]                |  |  |
| 5        | [4]            | 14                 |  |  |
| 6        | [9]            | [4                 |  |  |
| 7        | [ 9            | [4]                |  |  |
| 8        | [4]            | [3                 |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [ Pass   | [ ] Fail |
| Front panel LEDs                  | [YPass   | [ ] Fail |

Test Engineer: Zach Co
Test Date: 1/21/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

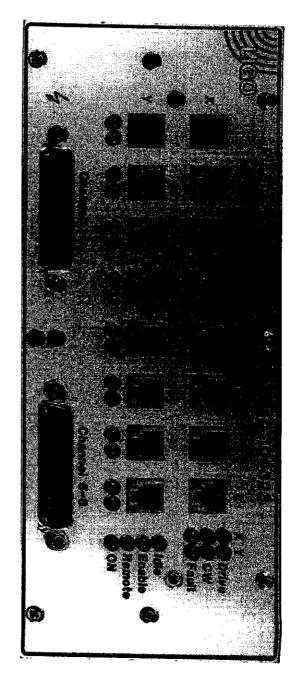



Figure 3: Picomotor driver chassis rear panel

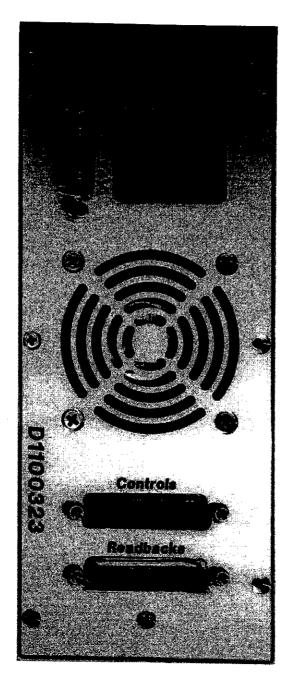
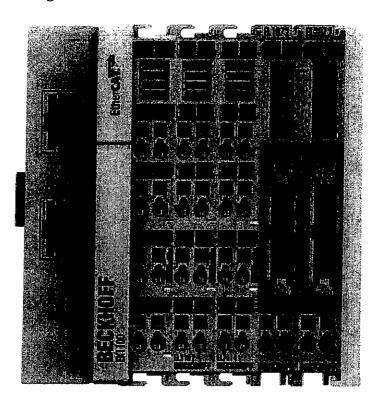






Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

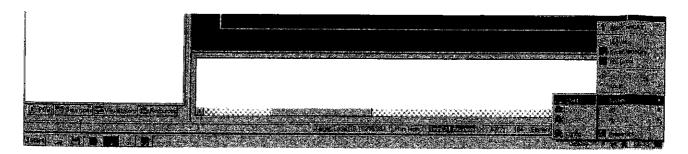
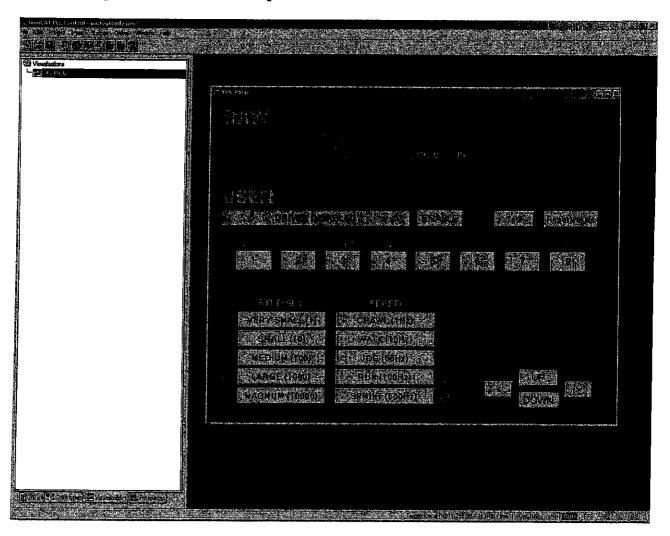




Figure 6: Step 5 of PLC controls setup





# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014

E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### <u>Testing Schedule:</u>

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

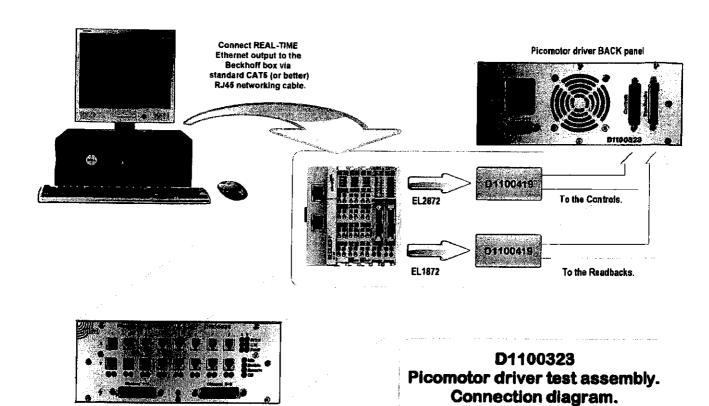


### System requirements

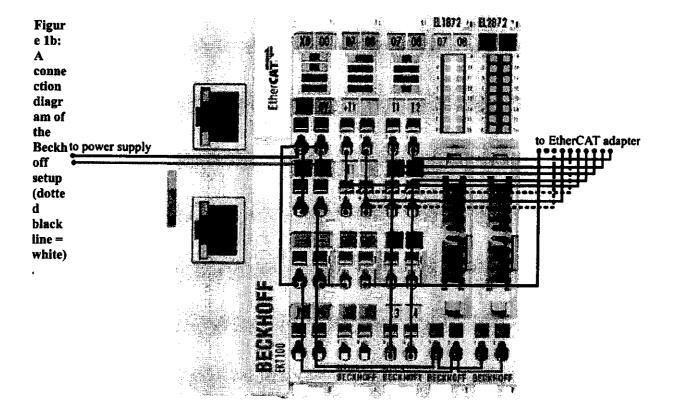
#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:


- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551




## **Setting up**

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on



Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs


After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- [/] Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | on                 | off    | 54    |
| STARTING UP      | off                      | on     | flashes | flashes | 686                | 52     | cn    |
| READY            | off                      | on     | off     | off     | 6 fg               | on     | 51    |
| Check if passed: | M                        | [1]    | [4]     | H       | +1                 | []     | [4    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.



- [ ] Check that the fan is running and blowing air out of the box (rear panel).
- [] Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |           |  |
|----------|------|-----------|--|
|          | Left | Right     |  |
| 1        | [4]  | M         |  |
| 2        | [4]  | [ ]       |  |
| 3        | [4]  | [1]       |  |
| 4        | 19   | [1]       |  |
| 5        | 14   | 14        |  |
| 6        | W    | 14        |  |
| 7        | M    | 14        |  |
| 8        | [4]  | <u>[1</u> |  |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under [] "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CW Y  |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [V]     | [4]     | H     | [4]   |  |

Table 2: LED response to picomotor direction

- (while motor is running)
- (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | [1]            | [Y                 |  |  |
| MEDIUM (100)   | [4]            | [4//               |  |  |
| MAGNUM (10000) | [Y             | [9                 |  |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| CRAWL (1Hz)    | [U             | 14                 |  |  |
| JOG (50Hz)     | [4]            | (Y                 |  |  |
| SPRINT (500Hz) | []             | [1]                |  |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |  |
|------------------|----------------|--------------------|--|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1                | 29.44          | 27.67              |  |  |  |
| 2                | 30.62          | 26.78              |  |  |  |
| 3                | 31.75          | 25.93.             |  |  |  |
| 4                | 32.79          | 30.98              |  |  |  |
| 5                | 33.60          | 31.83              |  |  |  |
| Check if passed: | V              | 14                 |  |  |  |

Check the "pass" box for each above if the temperature increases over time.



#### 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | W              | [4                 |  |  |  |
| 2        | [4]            | $\mathbb{N}$       |  |  |  |
| 3        | [4]            | [4                 |  |  |  |
| 4        | [1]            | [4]                |  |  |  |
| 5        | N/             | M                  |  |  |  |
| 6        | [A]            | M                  |  |  |  |
| 7        | [Y]            | [4]                |  |  |  |
| 8        | [4]            | rí                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [4]            | [1]                |  |  |  |  |
| 2        | [Y]            | [1]                |  |  |  |  |
| 3        |                | [1]                |  |  |  |  |
| 4        | [4]            | [1]                |  |  |  |  |
| 5        | [4]            | [1                 |  |  |  |  |
| 6        | [1]            | [ <i>X</i>         |  |  |  |  |
| 7        |                |                    |  |  |  |  |
| 8        | [ ]            | [1                 |  |  |  |  |



## **Testing Summary**

For each test, indicate the results in the table below:

| Front panel LEDs                      | [M] Pass  | [ ] Fail |
|---------------------------------------|-----------|----------|
| Step sizes                            | [ 4] Pass | [ ] Fail |
| Speeds                                | [^] Pasts | [ ] Fail |
| Output terminals                      | [~] Pass  | []Fail   |
| · · · · · · · · · · · · · · · · · · · |           |          |
| Overall picomotor driver testing:     | [ ] Pass  | [ ] Fail |

Test Engineer: Zech G

Test Date: 1/21/11

Additional Comments:



## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

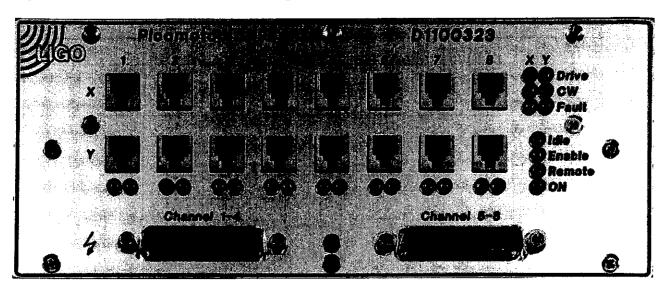
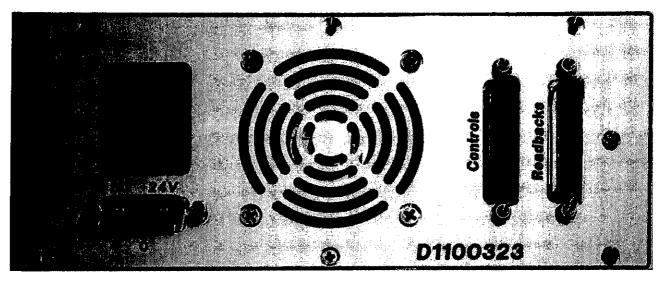
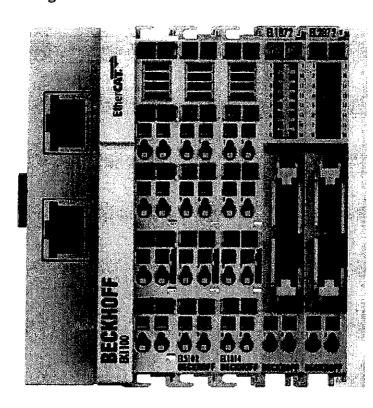





Figure 3: Picomotor driver chassis rear panel



Z GO

Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

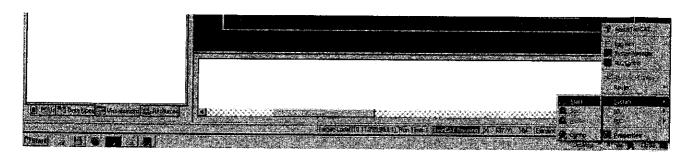
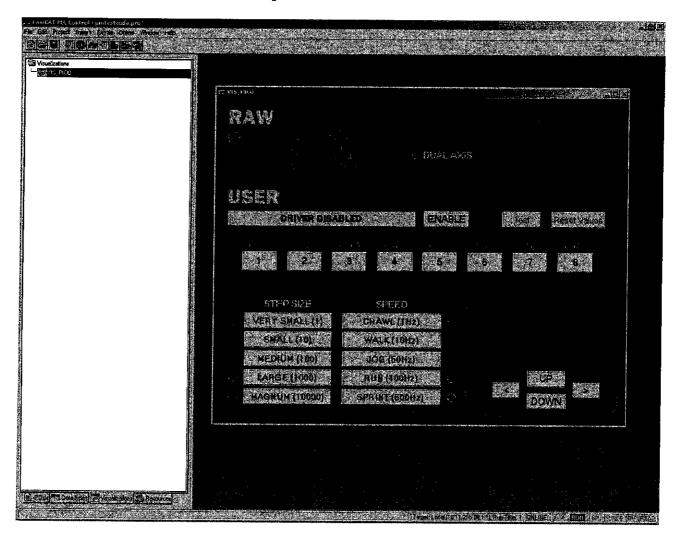




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854 8200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| Discomptor controller chassis LIGO DCC# | Discomptor controller chassis LIGO DCC# | Discomptor chassis LIGO DCC# | Discomptor chassis LIGO DCC# | Discomptor chassis testing: | Discompt

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

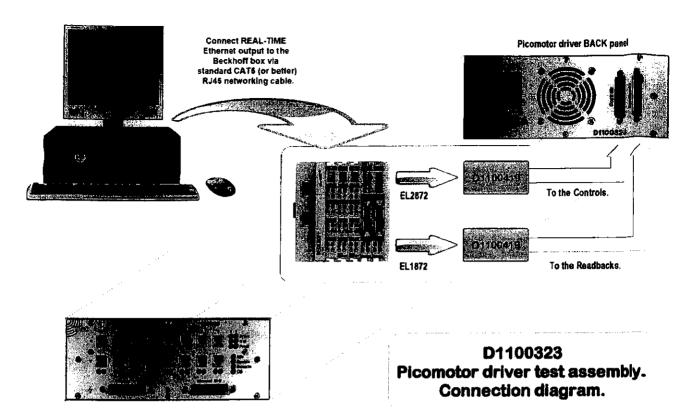
#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

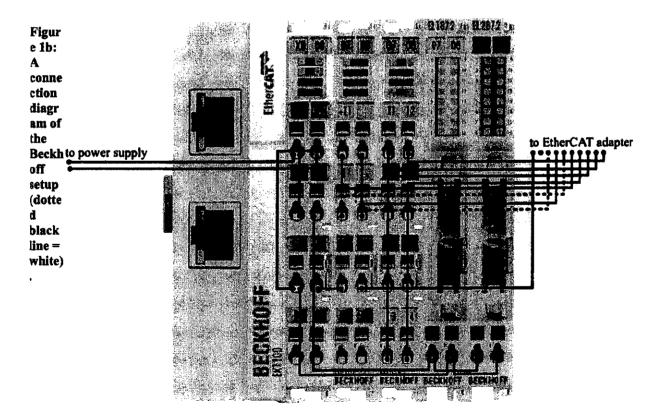
## **System requirements**

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)


#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551


### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on



Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on



### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | 5                  | off    | 9     |
| STARTING UP      | off                      | on     | flashes | flashes | OH                 | on     | 671   |
| READY            | off                      | on     | off     | off     | off                | or     | on    |
| Check if passed: | L+                       | H      | [4      | [(]     | 17                 | 11     | 14    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | <br>LED |       |  |
|----------|---------|-------|--|
|          | Left    | Right |  |
| 1        | [4]     | [4]   |  |
| 2        | [4]     | [}    |  |
| 3        | [1      | [1    |  |
| 4        | []/     |       |  |
| 5        | [4]     |       |  |
| 6        | 14      | [1    |  |
| 7        | [1]     |       |  |
| 8        | [1]     | [/    |  |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |  |
|------------------|---------|---------|-------|-------|--|--|
| ;                | Drive X | Drive Y | CW X  | CW Y  |  |  |
| DOWN             | off     | on *    | off   | on ** |  |  |
| UP               | off     | on *    | off   | off   |  |  |
| >                | on *    | off     | on ** | off   |  |  |
| <                | on *    | off     | off   | off   |  |  |
| Check if passed: | 1       | [4      | [4]   |       |  |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | [4             | [9                 |
| MEDIUM (100)   | [4             | [ ]                |
| MAGNUM (10000) | [9             | 14                 |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | [1]                |  |
| JOG (50Hz)     | [ ]            | [4]                |  |
| SPRINT (500Hz) | [ ]            | []                 |  |

#### LIGO

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temp           | erature            |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 28.09          | 29.87              |
| 2                | 29,17          | 31.00              |
| 3                | 30.24          | 32 20              |
| 4                | 31 22          | 33 . 17            |
| 5                | 32.09          | 34.16              |
| Check if passed: | M              | H                  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | M              | W/                 |  |  |  |
| 2        | [4]            | (Y                 |  |  |  |
| 3        | [Y]            | []                 |  |  |  |
| 4        | [4]            | 14                 |  |  |  |
| 5        | M              | [4                 |  |  |  |
| 6        | [4]            | [4]                |  |  |  |
| 7        | T (Y)          | [ ]                |  |  |  |
| 8        | ۲              | []                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

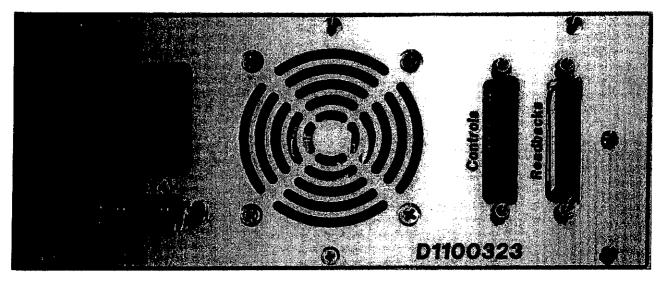
| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [i]            | [/                 |  |  |  |
| 2        | [9             | []                 |  |  |  |
| 3        | i/             | [1                 |  |  |  |
| 4        |                | []                 |  |  |  |
| 5        |                | [/                 |  |  |  |
| 6        |                | [1]                |  |  |  |
| 7        | [1]            | [1                 |  |  |  |
| 8        |                | [1                 |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Front panel LEDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass     | [ ] Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sep sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pass     | [] Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Speeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ ] Pass | [ ] Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cutput terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ ] Pass | [ ] Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A second part of the second part |          | The state of the s |
| Overall picomotor driver testing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass     | [ ] Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Test Engineer: Zab Co


Additional Comments:

## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

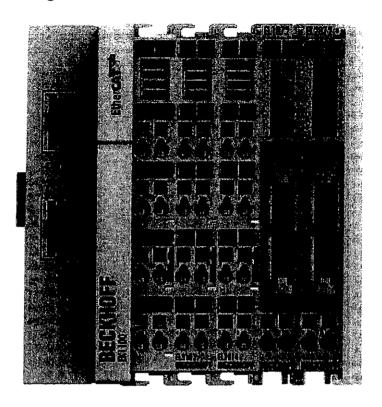



Figure 3: Picomotor driver chassis rear panel



MGO

Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

13GO

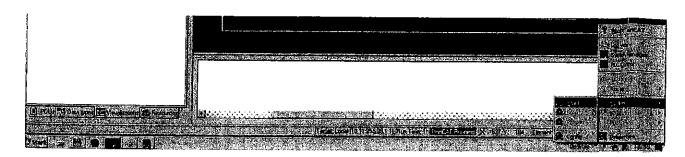
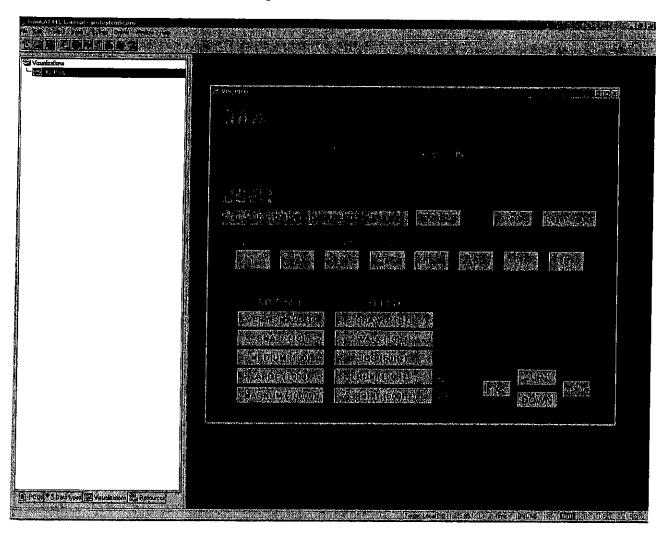




Figure 6: Step 5 of PLC controls setup





# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu



Picomotor controller chassis LIGO DCC#

D1100323-v1

**EtherCAT Adapters LIGO DCC#** 

D1100419-v3

Controller Serial #

**Test Engineer:** 

**Test Date:** 

11/21/11

Overall picomotor chassis testing:

[ ] FAIL

Signature/Initials:

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals



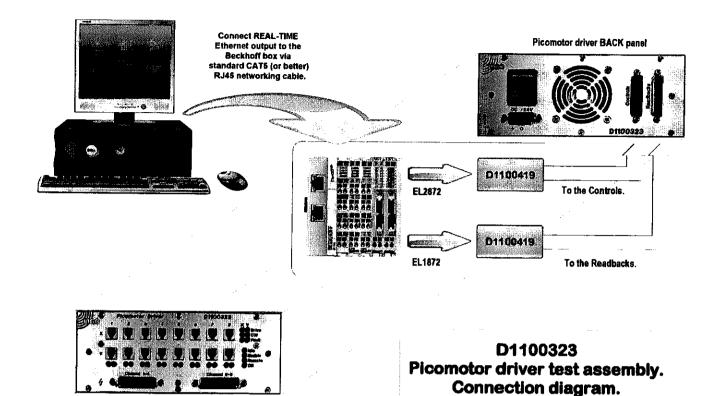
#### System requirements

#### Hardware:

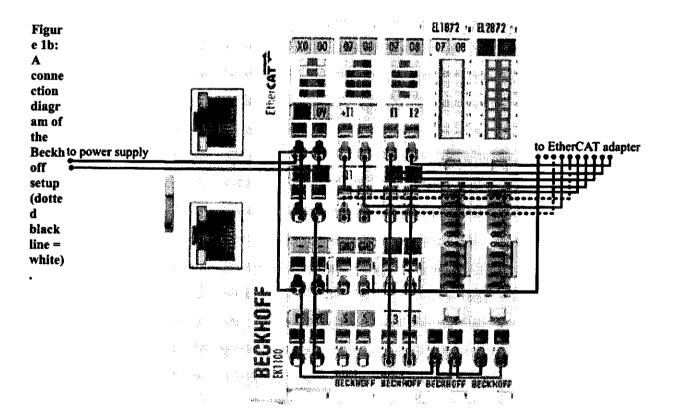
- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### **Software:**

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551




#### Setting up


#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on





Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.





#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on



## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- [ ] Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [/ Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |          |                  |       |
|------------------|--------------------------|--------|---------|--------------------|----------|------------------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE     | Enable           | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                |          |                  |       |
| STARTING UP      | off                      | on     | flashes | flashes            |          |                  |       |
| READY            | off                      | on     | off     | off                | <u> </u> |                  |       |
| Check if passed: | []                       |        | []      | []                 | []       | <del>  [</del> ] | []    |

Table 1: LED response to picomotor status

- [Y Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.



Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

- [ ] Check that the fan is running and blowing air out of the box (rear panel).
- [ ] Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |            | ED    |
|----------|------------|-------|
|          | Left       | Right |
| 1        | [4]        | [1    |
| 2        | [ <i>Y</i> | 1     |
| 3        |            | [1    |
| 4        |            | [/]   |
| 5        |            | [1    |
| 6        | [1]        | [1]   |
| 7        | _ [1]      | [1]   |
| 8        | [1]        | [1]   |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | []      | [1]   | [1    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)



#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | <u> </u>       | [ ]                |
| MEDIUM (100)   | [4]            | [Y                 |
| MAGNUM (10000) | [1             | [}                 |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | <u> </u>       | []                 |  |
| JOG (50Hz)     | [4             | [1]                |  |
| SPRINT (500Hz) | [1             | [1                 |  |



#### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
| F                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 22.67          | 22.84              |  |
| 2                | 24.07          | 24.28              |  |
| 3                | 25.25          | 95.55              |  |
| 4                | 26.42          | 26.78              |  |
| 5                | 27.42          | 29.81              |  |
| Check if passed: |                | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.



## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        |                | [4]                |
| 2        | M              | [4]                |
| 3        | M              | [4/                |
| 4        | [1             | [1]                |
| 5        | [J             | 1                  |
| 6        |                | [1]                |
| 7        | []             | [1]                |
| 8        |                |                    |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
|          | [1]            |                    |
| 2        |                |                    |
| 3        |                | 11                 |
| 4        |                | 11                 |
| 5        |                | [1]                |
| 6        | []             | [1]                |
| 7 — — —  | [8]            | [1]                |
| 8        | <br>[1         | ιſ                 |



## **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | Pass     | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Outrook to a six 1                | r        |          |
| Speeds                            | [ / Pass | [ ] Fail |
| Step sizes                        | [ Pass   | [ ] Fail |
| Front panel LEDs                  | [ ] Pass | [ ] Fail |

Test Engineer: Zach G

Test Date: 11/21/11

Additional Comments:



## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

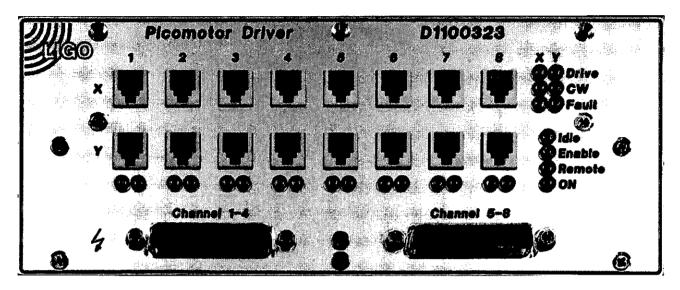



Figure 3: Picomotor driver chassis rear panel

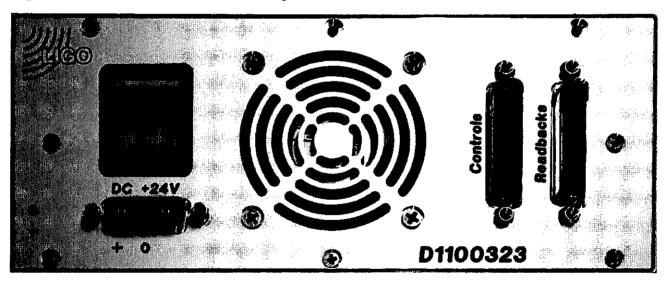
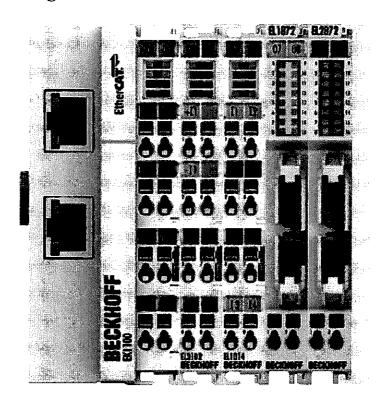






Figure 4: EtherCAT configuration





## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

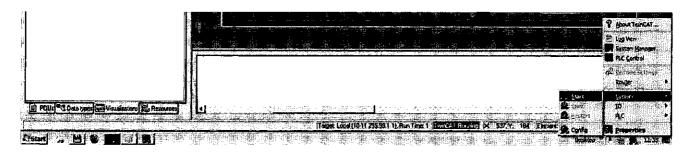
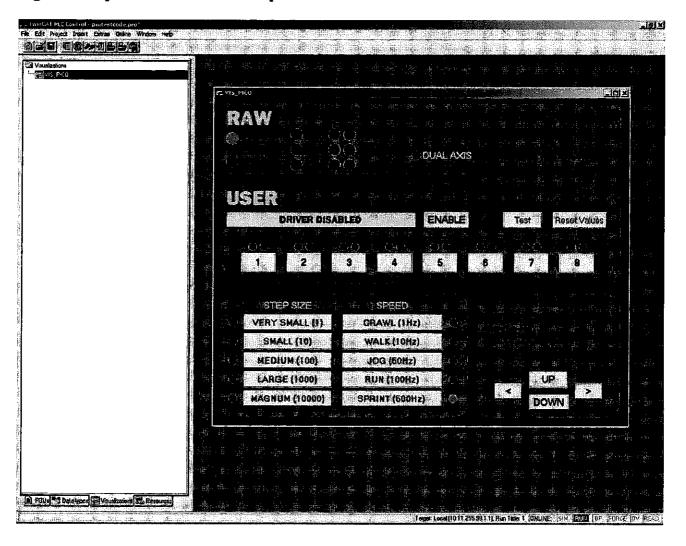




Figure 6: Step 5 of PLC controls setup



## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

-LIGO-

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: <a href="http://www.ligo.caltech.edu">http://www.ligo.caltech.edu</a>

| licomotor controller chassis LIGO DCC# | D1100323-v1             |
|----------------------------------------|-------------------------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3             |
| Controller Serial #                    | <del>203</del> 51107544 |
| Test Engineer:                         | Zach G                  |
| Test Date:                             | 1/21/11                 |
| Overall picomotor chassis testing:     | [JPASS []FAIL           |
| Signature/Initials:                    |                         |
|                                        |                         |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals



## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551



### **Setting up**

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

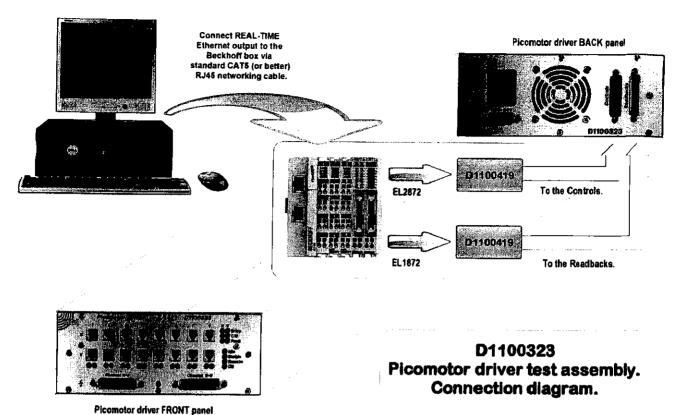
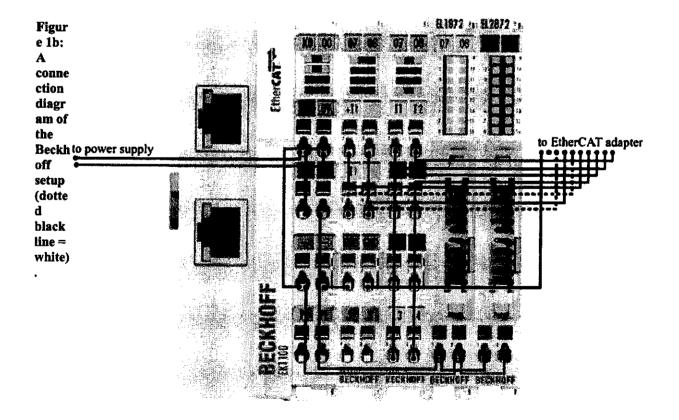




Figure 1a: A connection diagram of the picomotor setup.





### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

| Check that the "ON" LED is lit if the power cable is connected and the power switch | L |
|-------------------------------------------------------------------------------------|---|
| is on, and that it goes off when the power switch is off.                           |   |
| is on, and that it goes off when the power switch is off.                           |   |

[ ] Check that the "ON" indicator on the visualization also responds to the power switch.

Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | $\sigma$           | 686    | 07    |
| STARTING UP      | off                      | on     | flashes | flashes | off                | SN     | 9     |
| READY            | off                      | on     | off     | off     | 085                | σ^     | on    |
| Check if passed: | [4]                      | M      | [4      | [J      | [4                 | W      | [4    |

Table 1: LED response to picomotor status

Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

[V] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.



Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |       |  |
|----------|------|-------|--|
|          | Left | Right |  |
| 1        | [4]  | [4]   |  |
| 2        | [4   | [4]   |  |
| 3        |      | [1]   |  |
| 4        | [1   | []    |  |
| 5        | [1]  | [1    |  |
| 6        | [1]  | [1]   |  |
| 7        | [1   | 1     |  |
| 8        | [1]  | [1]   |  |

Select output terminal 1 and do the following:

[4]

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: |         | [ ]     | [4]   | M     |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)



On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | [4]            | [4]                |  |  |
| MEDIUM (100)   | [4             | ĺν                 |  |  |
| MAGNUM (10000) | [4]            | 14                 |  |  |

## 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | d Axis         |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| CRAWL (1Hz)    | [7             | 14                 |  |  |
| JOG (50Hz)     | A              | 19                 |  |  |
| SPRINT (500Hz) | [/             | [1                 |  |  |



## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 28.55          | 28.77              |  |  |
| 2                | 29.65          | 29.90              |  |  |
| 3                | 30.66          | 31.02              |  |  |
| 4                | 31.60          | 32.00              |  |  |
| 5                | 32.49          | 32.99              |  |  |
| Check if passed: | W              | L)                 |  |  |

Check the "pass" box for each above if the temperature increases over time.



Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | [4]                |  |  |
| 2        | [4]            | [1]                |  |  |
| 3        | [9]            | [4]                |  |  |
| 4        | [4]            | [1]                |  |  |
| 5        | - M            | [4                 |  |  |
| 6        | [1             | [4                 |  |  |
| 7        | []             | []                 |  |  |
| 8        | [1             | [1                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [1             | []                 |  |  |  |
| 2        |                | [ ]                |  |  |  |
| 3        | [1             | [1                 |  |  |  |
| 4        |                |                    |  |  |  |
| 5        |                | 1/                 |  |  |  |
| 6        | [1             | 11                 |  |  |  |
| 7        |                | []                 |  |  |  |
| 8        |                |                    |  |  |  |



## **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | []Pass   | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [ Pass   | [ ] Fail |

Test Engineer: Zach C

Test Date: 11/21/11

Additional Comments:



## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

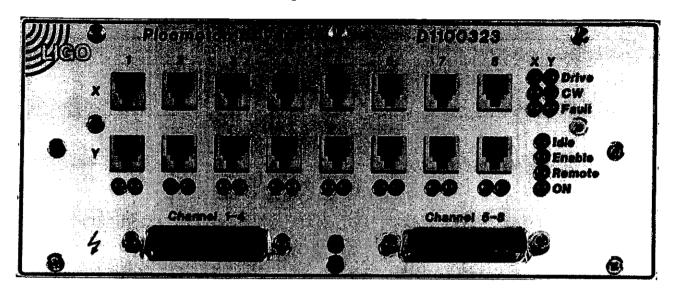



Figure 3: Picomotor driver chassis rear panel

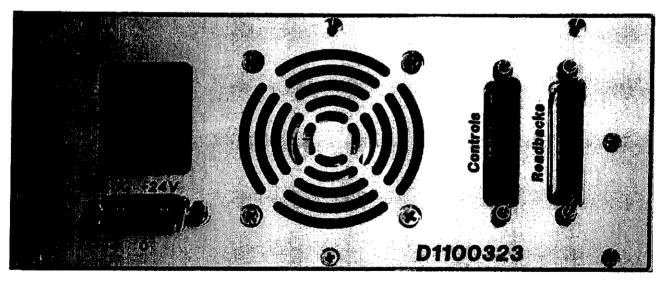
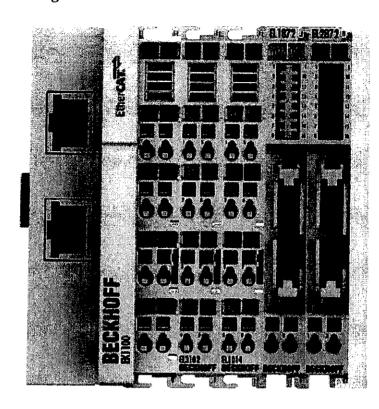






Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

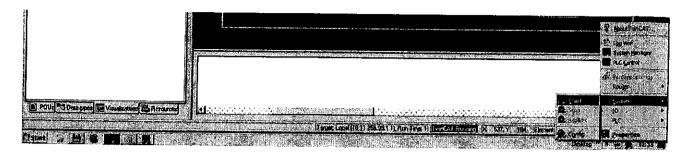
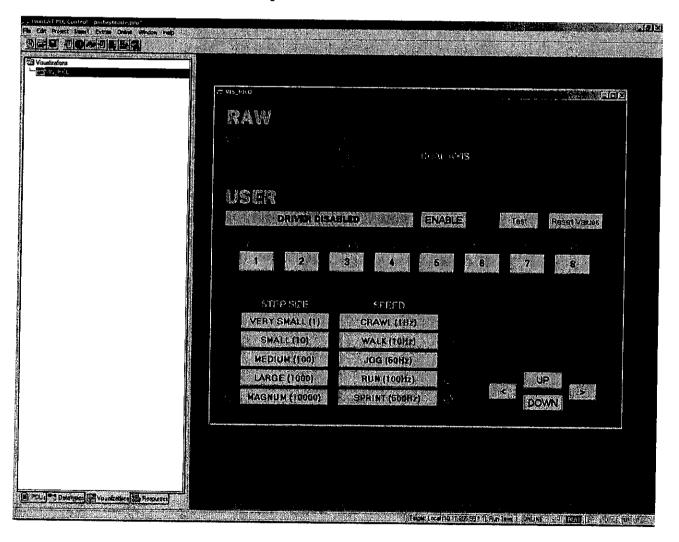




Figure 6: Step 5 of PLC controls setup



## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals



## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551



## Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

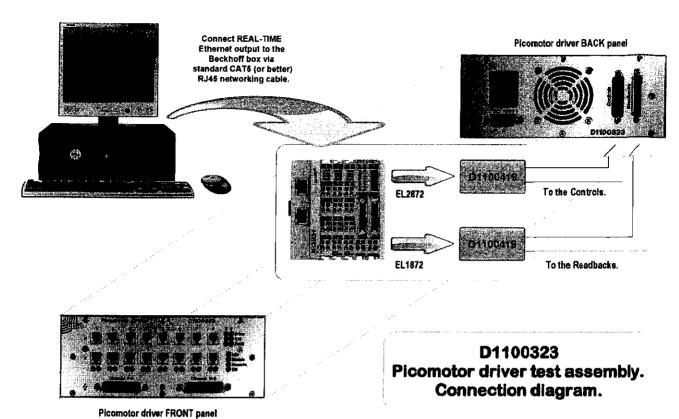
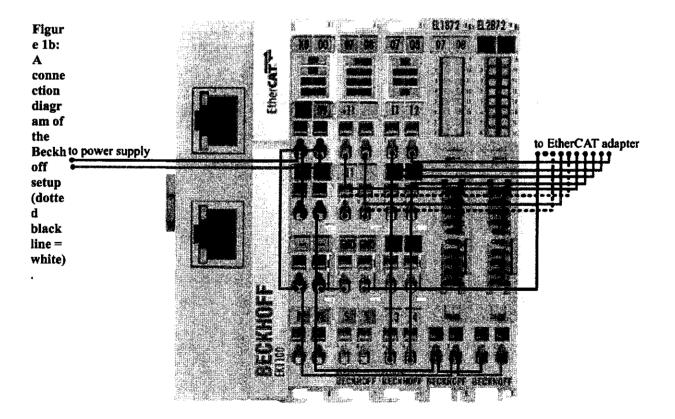




Figure 1a: A connection diagram of the picomotor setup.





## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)

Click "Yes" at the dialog:

"No program on the controller! Download the new program?"

Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [ 4 Before the next step, check that the fan (rear panel) is off.
- [ ] Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | on                 | off    | (77)  |
| STARTING UP      | off                      | on     | flashes | flashes | 08-8               | C2 ,   | 94    |
| READY            | off                      | on     | off     | off     | off                | ch     | 04    |
| Check if passed: | [4                       | []     | []      | [վ      | [-]                | -11    | [-    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.



Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[ Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |            | LED             |  |
|----------|------------|-----------------|--|
|          | Left       | Right           |  |
| 1        |            | [1              |  |
| 2        | [1         | [1              |  |
| 3        | [/         | H               |  |
| 4        | - I        |                 |  |
| 5        | [ <i>Y</i> | [1]             |  |
| 6        | [1         | [/              |  |
| 7        | [1         |                 |  |
| 8        | [/]        | $\overline{11}$ |  |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off - | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [4      | [4]   | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)



## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [Y             | 14                 |  |
| MEDIUM (100)   | [4             | [4                 |  |
| MAGNUM (10000) | [4]            | آ                  |  |

## 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4             | [9]                |  |
| JOG (50Hz)     | []             |                    |  |
| SPRINT (500Hz) |                | []                 |  |



## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 26.60          | 2 590              |
| 2                | 29.68          | 26.96              |
| 3                | 30.75          | 29.99              |
| 4                | 31.68          | <b>29</b> .97      |
| 5                | 32.59          | 29.89              |
| Check if passed: | [4             | W                  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | M                  |  |  |
| 2        |                | [4]                |  |  |
| 3        | [1             | [/                 |  |  |
| 4        |                | [1]                |  |  |
| 5        | [y             | [1]                |  |  |
| 6        | [J             | [1]                |  |  |
| 7        | [Y             | [ ]                |  |  |
| 8        | [4]            | [1                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [1]            | [1]                |  |
| 2        |                | [1                 |  |
| 3        |                |                    |  |
| 4        |                | []                 |  |
| 5        |                | [/                 |  |
| 6        | [1]            | [1                 |  |
| 7        | [1]            | [1]                |  |
| 8        | [1             | [1                 |  |



## **Testing Summary**

For each test, indicate the results in the table below:

| Front panel LEDs                  | [ Pass   | [ ] Fail |
|-----------------------------------|----------|----------|
| Step sizes                        | [ ] Pass | [ ] Fail |
| Speeds                            | [ Pass   | [ ] Fail |
| Output terminals                  | [ / Pass | [ ] Fail |
| · —                               |          |          |
| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |

Test Engineer: 21/11

Additional Comments:



## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

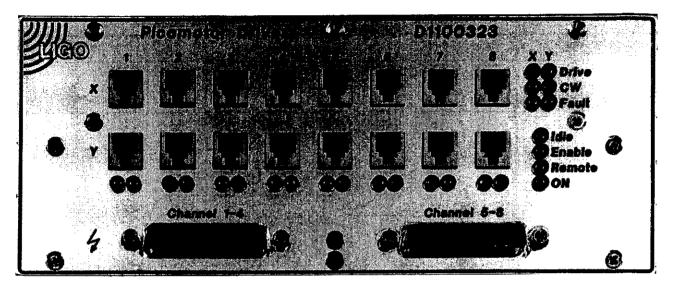



Figure 3: Picomotor driver chassis rear panel

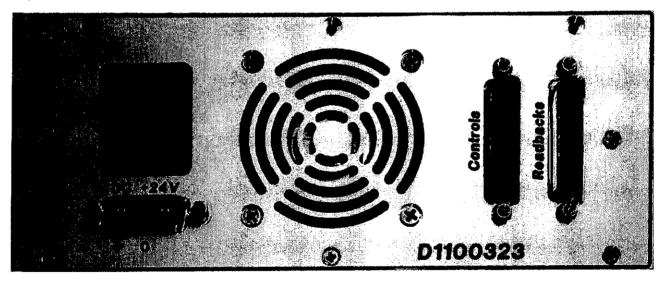
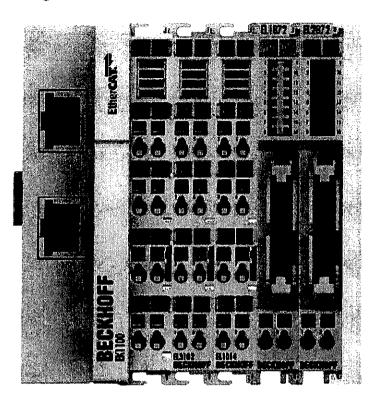






Figure 4: EtherCAT configuration





## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

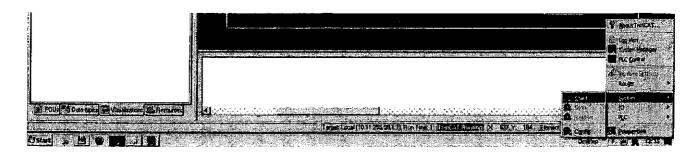
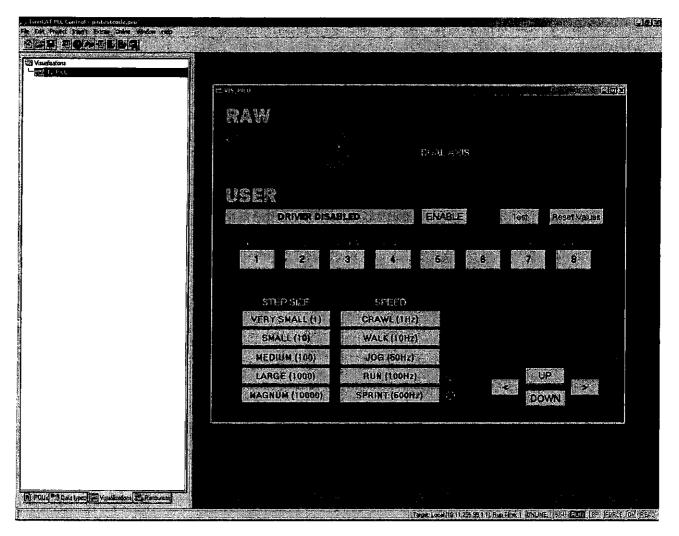




Figure 6: Step 5 of PLC controls setup



## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014

E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854 8200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |
|----------------------------------------|--------------------|
| ltherCAT Adapters LIGO DCC#            | D1100419-v3        |
| Controller Serial #                    | S1107546           |
| Test Engineer:                         | Zach               |
| Test Date:                             | 1/21/11            |
| Overall picomotor chassis testing:     | [ ] PASS [ ] FAIL  |
| Signature/Initials:                    |                    |
|                                        |                    |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
- 5. Output terminals



## **System requirements**

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

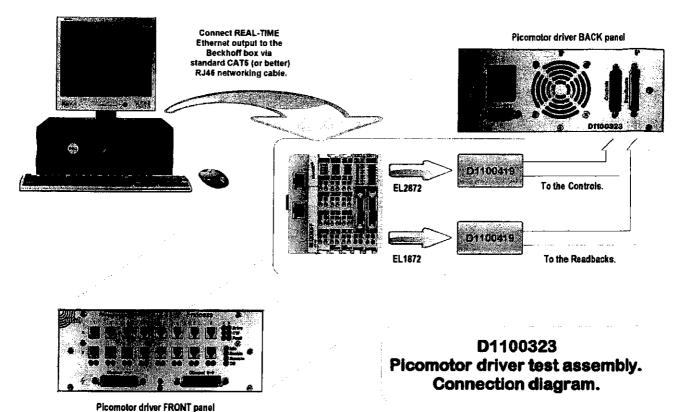
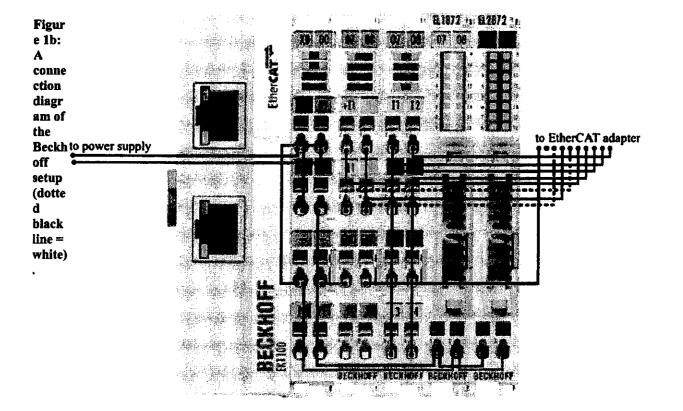




Figure 1a: A connection diagram of the picomotor setup.





#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | (30)               | 068    | 9     |
| STARTING UP      | off                      | on     | flashes | flashes | 9                  | on     | on    |
| READY            | off                      | on     | off     | off     | \$                 | ON     | 6n    |
| Check if passed: | []                       | []     | []      | []      |                    | []     | []    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |       |  |
|----------|------|-------|--|
|          | Left | Right |  |
| 1        | M    | [4]   |  |
| 2        | [4]  | _ [4] |  |
| 3        | M    |       |  |
| 4        |      | . [1] |  |
| 5        |      | [1    |  |
| 6        | M M  | [1]   |  |
| 7        |      |       |  |
| 8        |      | [1    |  |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        |         | Ds      |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [1]     | [4]   | [/    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | U _            | [4]                |  |  |
| MEDIUM (100)   | [4]            | IX,                |  |  |
| MAGNUM (10000) | [J             | [4]                |  |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| CRAWL (1Hz)    | [4]            | [4]                |  |  |
| JOG (50Hz)     | [4]            | [4]                |  |  |
| SPRINT (500Hz) | [ 🗸            | [ U                |  |  |

#### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 27.01          | 27.98              |  |  |
| 2                | 27.54          | 29,12              |  |  |
| 3                | 28.85          | 30,15              |  |  |
| 4                | 24.85          | 31.13              |  |  |
| 5                | 30.66          | 31 90              |  |  |
| Check if passed: | [4             | [4                 |  |  |

Check the "pass" box for each above if the temperature increases over time.



## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under 'SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [4]            | [4]                |  |  |  |  |
| 2        | M              | 14                 |  |  |  |  |
| 3        | [4]            | [J                 |  |  |  |  |
| 4        | [4]            | [J/                |  |  |  |  |
| 5        | [J             | [4]                |  |  |  |  |
| 6        | [Y             | [J                 |  |  |  |  |
| 7        |                | [Y]                |  |  |  |  |
| 8        | [1]            | [4                 |  |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [Y]            |                    |
| 2        | N              | [1                 |
| 3        | [4]            | [4]                |
| 4        | u/,            | M                  |
| 5        | [4]            | [4/                |
| 6        | [1]            | IJ                 |
| 7        | [4]            | 14                 |
| 8        | [4             | [4                 |

# **Testing Summary**

For each test, indicate the results in the table below:

| Front panel LEDs                  | [4] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Step sizes                        | Pass     | [] Fail  |
| Speeds                            | [JPass   | [ ] Fail |
| Output terminals                  | [ Pass   | [ ] Fail |
|                                   |          |          |
| Overall picomotor driver testing: | [ ] Pass | []Fail   |

Test Engineer:

Test Date:

Additional Comments:



## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

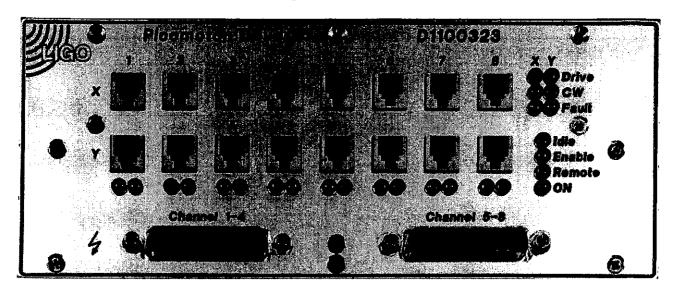



Figure 3: Picomotor driver chassis rear panel

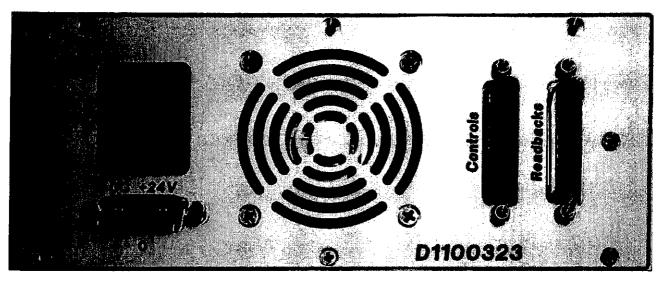
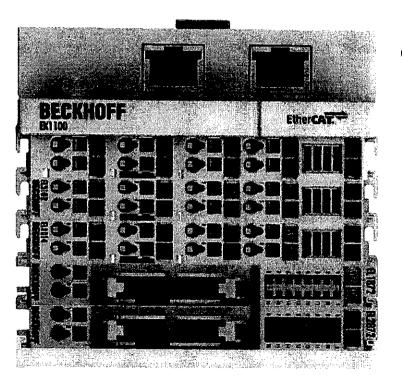




Figure 4: EtherCAT configuration





#### **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

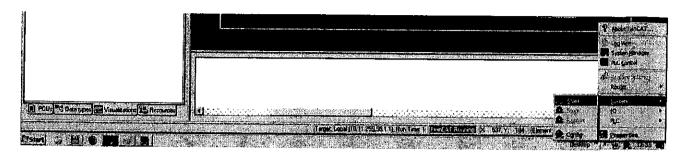
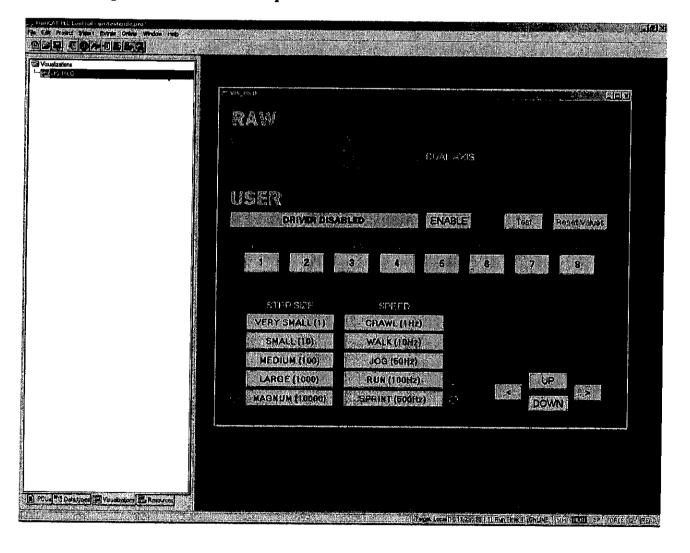




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

#### **System requirements**

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551



#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

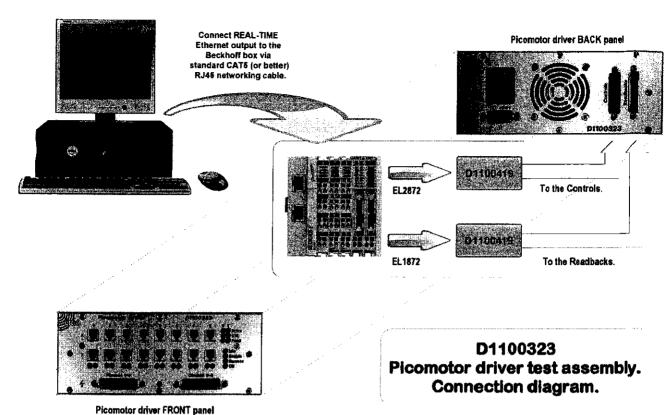
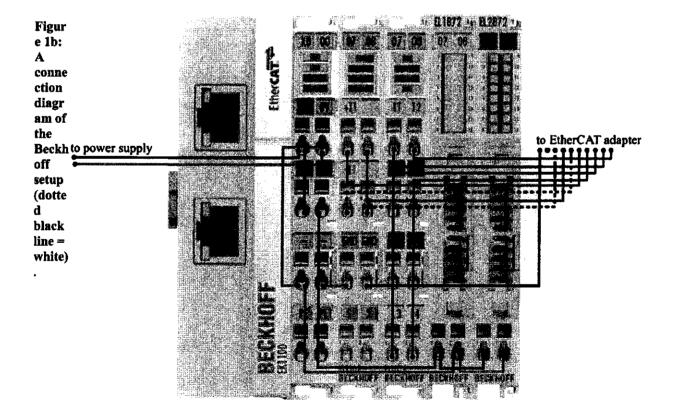




Figure 1a: A connection diagram of the picomotor setup.





#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ W Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | on   | 086-   | on    |
| STARTING UP      | off                      | on     | flashes | flashes            | 086  | Sn     | on    |
| READY            | off                      | on     | off     | off                | 088  | on     | on    |
| Check if passed: |                          | [1]    | [1]     | N                  | H    | 1      |       |

Table 1: LED response to picomotor status

- [4] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[/] Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |       |  |
|----------|------|-------|--|
|          | Left | Right |  |
| 1        | [1]  | [/]   |  |
| 2        | [1]  | [1]   |  |
| 3        | [4]  | [1]   |  |
| 4        |      | [A]   |  |
| 5        | [1   | [1]   |  |
| 6        | [1]  | [1]   |  |
| 7        |      | [ /ʃ/ |  |
| 8        | [ ]  | [ / ] |  |

Select output terminal 1 and do the following:

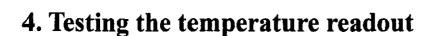
[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | Ŋ       | [4      | [4]   | [+    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes


On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [1]            | [4                 |  |
| MEDIUM (100)   | [1]            | [ <del>Y</del> /   |  |
| MAGNUM (10000) | [4             | (4                 |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | W.                 |  |
| JOG (50Hz)     | $\mathbf{M}$   | [4]                |  |
| SPRINT (500Hz) | [7]            | [4                 |  |



On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 27.43          | 27.18              |  |
| 2                | 28.49          | 2850               |  |
| 3                | 29.58          | 29.53              |  |
| 4                | 30.57          | 30.65              |  |
| 5                | 31.42          | 31.51              |  |
| Check if passed: | []             | . [4]              |  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [Y             | [-]                |  |  |  |
| 2        |                | []                 |  |  |  |
| 3        | [4]            | [4]                |  |  |  |
| 4        | [4]            | []/                |  |  |  |
| 5        | [1]            | []/                |  |  |  |
| 6        | [4]            | []                 |  |  |  |
| 7        | [4/            | [ ]                |  |  |  |
| 8        | [1             | [/                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [4]            | []                 |
| 2        |                | [/                 |
| 3        | [ ]            |                    |
| 4        | [ ]            | [}                 |
| 5        |                | []                 |
| 6        | [ ]            | [}                 |
| 7        |                | []                 |
| 8        | [1             |                    |

## **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [] Fail  |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [] Fail  |
| Speeds                            | [ ]Pass  | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [ ] Pass | [ ] Fail |

Test Engineer: Zach C
Test Date: 1/21/11

Additional Comments:

## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

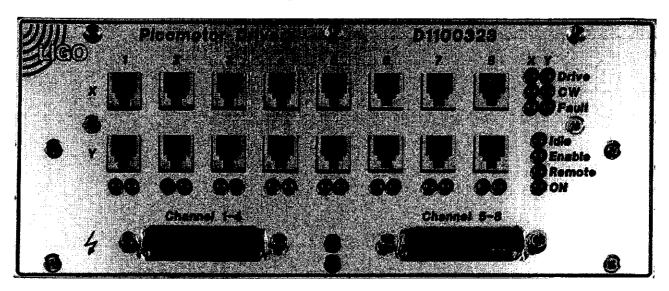
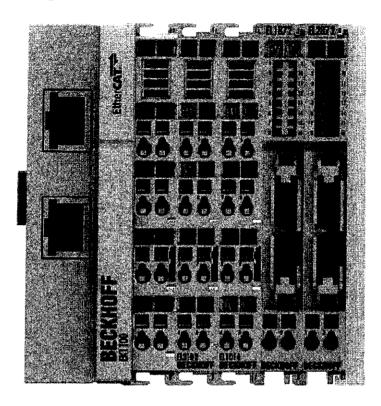




Figure 3: Picomotor driver chassis rear panel



Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

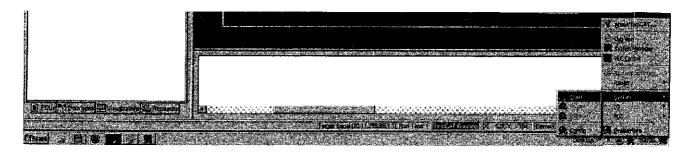
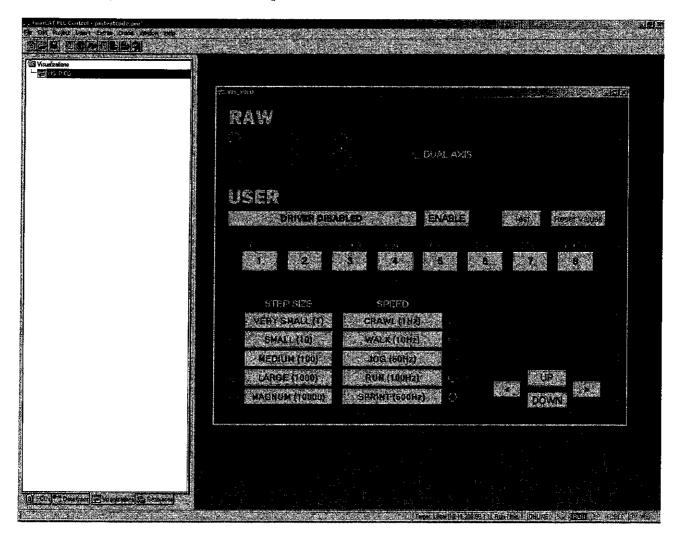




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824
Fax (617) 253 7014
E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121 E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |
|----------------------------------------|--------------------|
| ltherCAT Adapters LIGO DCC#            | <u>D1100419-v3</u> |
| Controller Serial #                    | S1107548           |
| Test Engineer:                         | Zach C             |
| Test Date:                             | <u> 1/22/11</u>    |
| Overall picomotor chassis testing:     | PASS []FAIL        |
| Signature/Initials:                    |                    |
|                                        |                    |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

#### 14G0

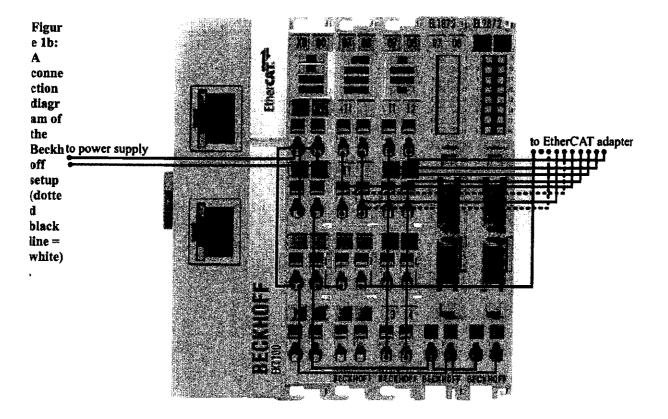
## **System requirements**

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551




### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



## **Setting up**

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- [ Y Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Cl   | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | on                 | e8F    | CSV   |
| STARTING UP      | off  | on                       | flashes | flashes | 68                 | SN     | on    |
| READY            | off  | on                       | off     | off     | of                 | on     | on    |
| Check if passed: | [7]  | [4]                      | N       | M       | 14                 | 14     | W     |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4]  | M     |
| 2        | - W  | · (4) |
| 3        | [4]  | [4]   |
| 4        | W/   | [4]   |
| 5        | [J   | [4]   |
| 6        |      | [4]   |
| 7        |      | [-]/  |
| 8        | [-]  | [√]   |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [ 4     | [ ]     | []    |       |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | [U]            |                    |
| MEDIUM (100)   | M              | [ ]                |
| MAGNUM (10000) | [1             | []                 |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | ľ              | IX ,               |  |
| JOG (50Hz)     | []             | [1]                |  |
| SPRINT (500Hz) | []             | [1                 |  |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 36.67          | 29.93              |  |
| 2                | 31.01          | 30.93              |  |
| 3                | 31.89          | 31.82              |  |
| 4                | 32.71          | 32.70              |  |
| 5                | 33.51          | 33.50/             |  |
| Check if passed: | [4             | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | []             | [,]/               |  |  |
| 2        | [4]            | Ĭ.                 |  |  |
| 3        | W/             |                    |  |  |
| 4        | [4]            |                    |  |  |
| 5        | [4]            | [4                 |  |  |
| 6        | W W            | [4]                |  |  |
| 7        | [4]            | [4]                |  |  |
| 8        | [4             | M                  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [N]            | U                  |  |  |
| 2        | T IY           | [4]                |  |  |
| 3        | [4]            | [4]                |  |  |
| 4        | [4]            | []                 |  |  |
| 5        |                | [4]                |  |  |
| 6        | []             | []                 |  |  |
| 7        | [4/            | []                 |  |  |
| 8        |                | H                  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | Pass    | [ ] Fail |
|-----------------------------------|---------|----------|
| Output terminals                  | [] Pass | []Fail   |
| Speeds                            | [ Pass  | [ ] Fail |
| Step sizes                        | [] Pass | [ ] Fail |
| Front panel LEDs                  | [YPass  | [ ] Fail |

Test Engineer: Zach C

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

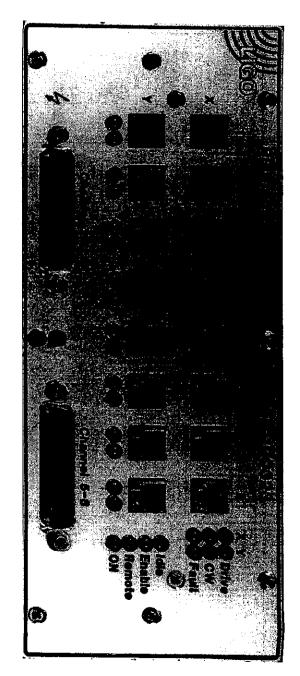



Figure 3: Picomotor driver chassis rear panel

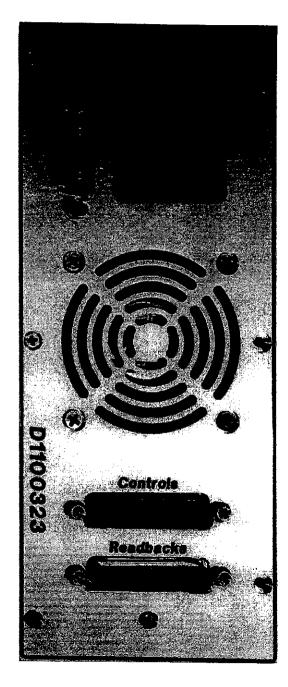
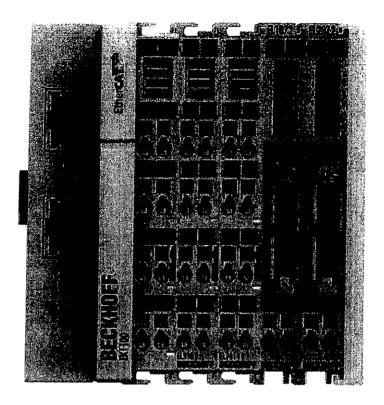
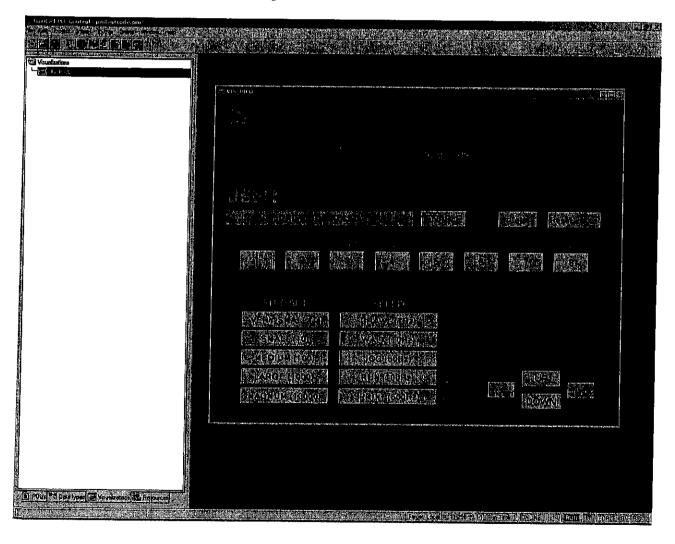




Figure 4: EtherCAT configuration




# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup



Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA.

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: <a href="http://www.ligo.caltech.edu">http://www.ligo.caltech.edu</a>

| licomotor controller chassis LIGO DCC# | D1100323-v1   |          |                                         |
|----------------------------------------|---------------|----------|-----------------------------------------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3   |          |                                         |
| Controller Serial #                    | <u> 5 110</u> | 7549     |                                         |
| Test Engineer:                         | Zach          | G        |                                         |
| Test Date:                             | 11/22/        | <u> </u> |                                         |
| Overall picomotor chassis testing:     | [4PASS        | [ ] FAIL |                                         |
| Signature/Initials:                    |               |          |                                         |
|                                        |               |          |                                         |
|                                        |               |          | *************************************** |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

## System requirements

#### <u>Hardware:</u>

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

# Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

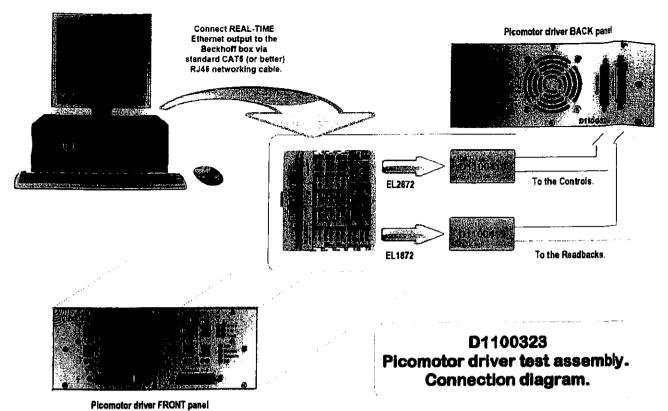
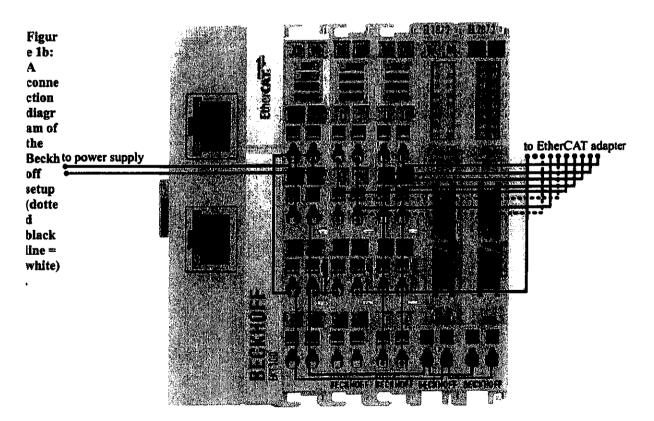




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | M                  | 08     | 071   |
| STARTING UP      | off  | on                       | flashes | flashes | 2                  | d)     | m     |
| READY            | off  | on                       | off     | off     | 05                 | 9      | On    |
| Check if passed: | [1   | [9]                      | [1      |         | [4]                | [4     | []    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LI   | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4]  | [4]   |
| 2        | [Y   | [4]   |
| 3        | [J   | [4]   |
| 4        | [4]  | [4]   |
| 5        | [J   | [4]   |
| 6        | [J]  | H     |
| 7        |      | H     |
| 8        | [4]  | []    |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [4      | [4]     | [4    | M     |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### DST.

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a set size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

|                     | <u>/t]</u>     | (00001) MUNDAM      |
|---------------------|----------------|---------------------|
| [ بلر               | <u>√</u> 61    | <b>MEDIUM</b> (100) |
|                     | <u>_</u> 61    | AEKK SWYLL (1)      |
| X ("Nb., or "DOWN") | X ("<" or ">") |                     |
| sixA                |                | Step Size           |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | <i>[</i> -}                    | <u></u>            |
|----------------|--------------------------------|--------------------|
| 10G (50Hz)     | [A]                            | لير                |
| CKAWL (1Hz)    | <i>[</i> *1]                   | h                  |
|                | $(^{n}<^{n}$ to $^{n}>^{n})$ X | X ("UP" or "DOWN") |
| Speed          |                                | sixA               |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 26.90          | 28.70              |  |
| 2                | 27.98          | 29,65              |  |
| 3                | 29.12          | 30-87              |  |
| 4                | 30.05          | 31.83              |  |
| 5                | 30-99          | 32.7               |  |
| Check if passed: | H              | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | M              | [1                 |  |  |
| 2        | [4]            | [4]                |  |  |
| 3        | [4             | U,                 |  |  |
| 4        | [4]            | [4                 |  |  |
| 5        |                | []                 |  |  |
| 6        | [4]            | []                 |  |  |
| 7        |                | [4]                |  |  |
| 8        | [4]            | []                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4             | [4                 |  |  |
| 2        | [ <del>]</del> | H                  |  |  |
| 3        |                | [-                 |  |  |
| 4        | H              | []                 |  |  |
| 5        |                | [4                 |  |  |
| 6        |                | 4                  |  |  |
| 7        | [4]            | [ ]                |  |  |
| 8        | [1             |                    |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | Pass   | [ ] Fail |
|-----------------------------------|--------|----------|
| Output terminals                  | Pass   | [ ] Fail |
| Speeds                            | [ Pass | [ ] Fail |
| Step sizes                        | [ Pass | [] Fail  |
| Front panel LEDs                  | [ Pass | [ ] Fail |

Test Engineer: Zad Test Date: 1/22/11

**Additional Comments:** 

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel




Figure 3: Picomotor driver chassis rear panel

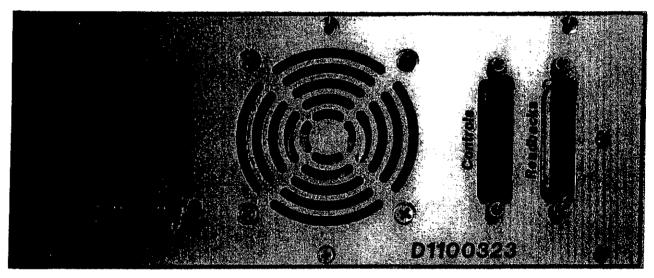
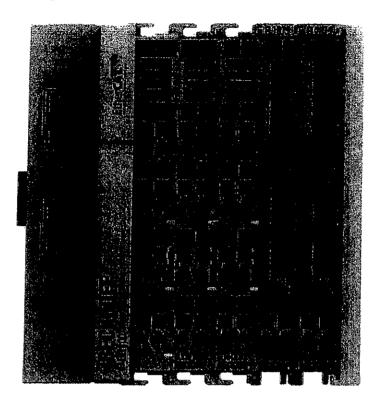




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

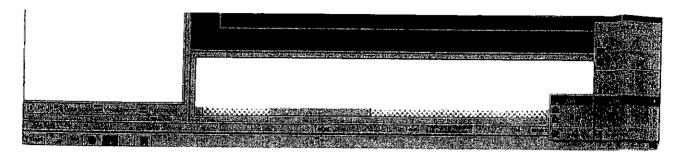
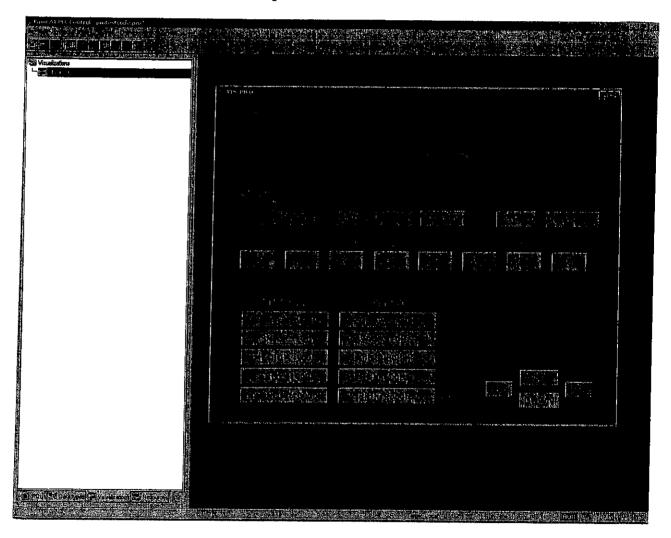




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854,8200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>D1100323-v1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ItherCAT Adapters LIGO DCC#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1100419-v3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Controller Serial #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51107550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zach G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/22/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Overall picomotor chassis testing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [4] PASS [ ] FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signature/Initials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TATABAT HARRISTAN (SANTANIA) PROBERTIAN (SANTANIA) PROBERTIAN IN THE MANAGEMENT OF THE SANTANIA STATEMENT AND THE SANTANIA STATEMENT OF THE SANTANIA | and the fine of the first of th |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

# System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551



#### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

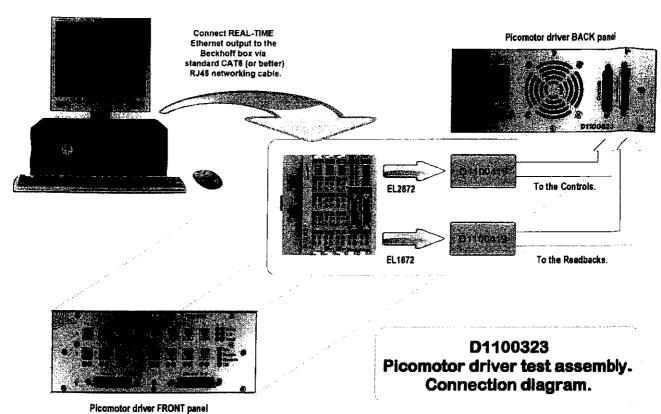
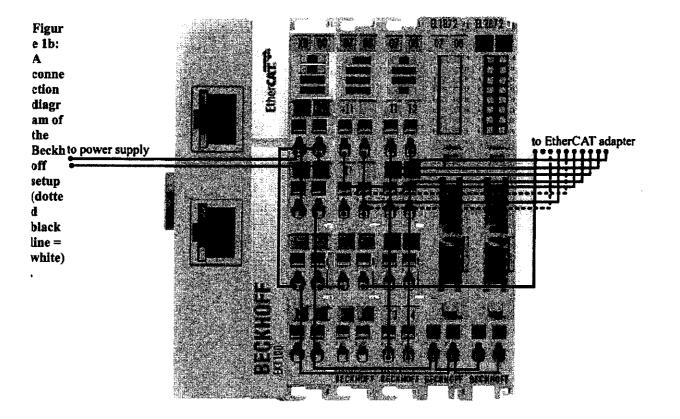




Figure 1a: A connection diagram of the picomotor setup.



#### MGO

#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | On                 | 380    | on    |
| STARTING UP      | off                      | on     | flashes | flashes | off                | on     | or'   |
| READY            | off                      | on     | off     | off     | 64                 | on     | on    |
| Check if passed: | W                        | [4]    | 14      | H       | H                  | 14     | [4]   |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | I    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | H    | H     |
| 2        | [1   | [7    |
| 3        | [Y   | []    |
| 4        | 门    | 17    |
| 5        |      | [1    |
| 6        |      | [}    |
| 7        | [/   | [1]   |
| 8        | [1   | [1    |

Select output terminal 1 and do the following:

[4] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [十      | [+      | [/    | [-]-  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [X]            | 14                 |  |
| MEDIUM (100)   | [4]            | 14                 |  |
| MAGNUM (10000) | [4]            |                    |  |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | M              | [4]                |  |
| JOG (50Hz)     | [ ]            | 17                 |  |
| SPRINT (500Hz) | []             | 11                 |  |



# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 25.87          | 28.51              |  |
| 2                | 27.14          | 29.97              |  |
| 3                | 28.20          | 31-22              |  |
| 4                | 29.35          | 32.41              |  |
| 5                | 30.23          | 33.45              |  |
| Check if passed: | H              | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4-            | [4                 |  |  |
| 2        | [4             | [4]                |  |  |
| 3        | [4             | []                 |  |  |
| 4        | [4]            | [+]                |  |  |
| 5        | [ 9            | H                  |  |  |
| 6        | []             | []                 |  |  |
| 7        |                | [1                 |  |  |
| 8        | <u> </u>       | [1                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [1]            | [/                 |  |  |
| 2        |                | [1                 |  |  |
| 3        |                |                    |  |  |
| 4        | [1]            | [1                 |  |  |
| 5        |                | [/                 |  |  |
| 6        | [1             | [}                 |  |  |
| 7        |                | [/]                |  |  |
| 8        | [1             | 17                 |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [YPass     | []Fail   |
|-----------------------------------|------------|----------|
| Output terminals                  | [ Pass     | []Fail   |
| Speeds                            | [ the Pass | [ ] Fail |
| Step sizes                        | [ ] Pass   | [] Fail  |
| Front panel LEDs                  | [ 9 Pass   | [ ] Fail |

Test Engineer: Zah G
Test Date: 11/22/11

Additional Comments:

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

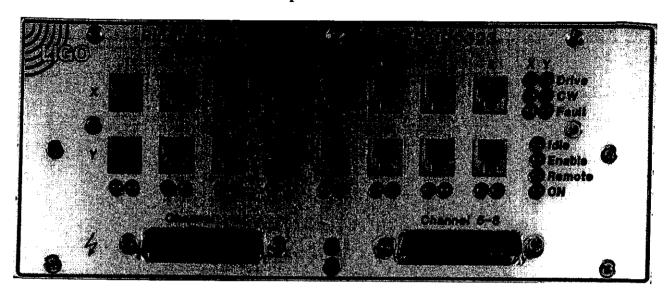
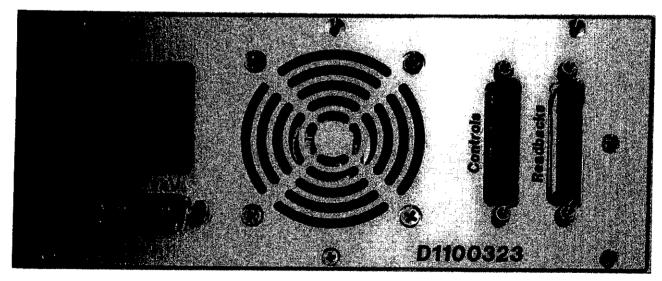
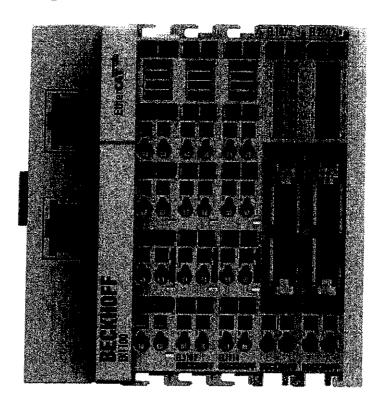





Figure 3: Picomotor driver chassis rear panel



JAGO!

Figure 4: EtherCAT configuration



### **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

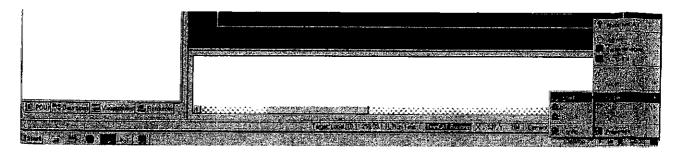
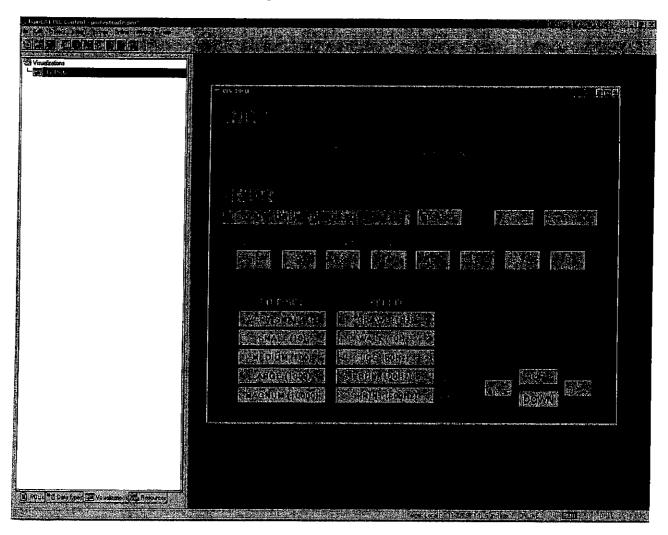




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129

Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| icomotor controller chassis LIGO DCC# | D1100323-v1 |  |
|---------------------------------------|-------------|--|
| htherCAT Adapters LIGO DCC#           | D1100419-v3 |  |
| Controller Serial #                   | 31107551    |  |
| Test Engineer:                        | Zach G      |  |
| Test Date:                            | 11/22/11    |  |
| Overall picomotor chassis testing:    | [ ] FAIL    |  |
| Signature/Initials:                   |             |  |
|                                       |             |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature5. Output terminals

#### **System requirements**

#### <u>Hardware:</u>

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

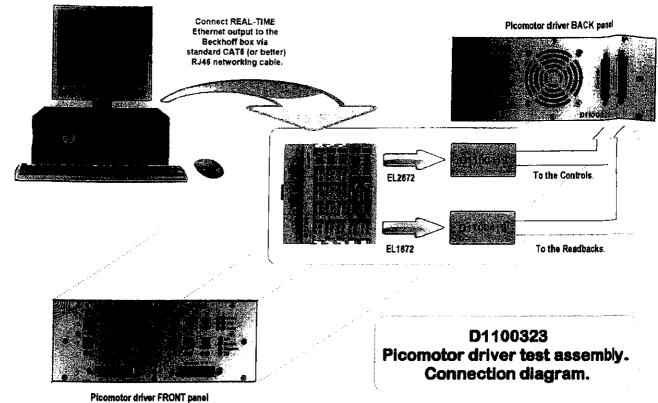
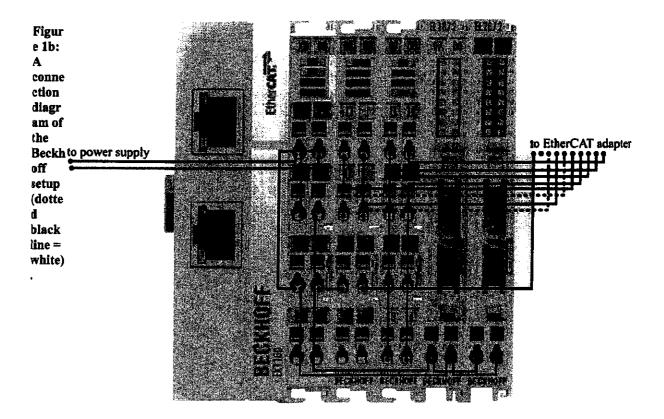




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [ Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Cl   | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | SM                 | off    | m     |
| STARTING UP      | off  | on                       | flashes | flashes | off                | on     | m     |
| READY            | off  | on                       | off     | off     | off                | on     | on    |
| Check if passed: | [4]  |                          | []      | [-}     | [9                 | []     |       |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

- Check that the fan is running and blowing air out of the box (rear panel).
- Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | Ll   | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [V]  | M     |
| 2        | [4]  | [4    |
| 3        | [4   | [4    |
| 4        | [+]  | 14    |
| 5        | []   | []    |
| 6        | [1   | [1    |
| 7        |      | [1]   |
| 8        | N    | [/    |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off off | off   | off   |
| Check if passed: | []      | []      | 1     | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# l. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and thete visualization screen, make sure then select "SPRINT (500Hz)" under "SPEED". Select a select that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a set is size and then a direction. Check that the motor runs for a longer time (the motor clicks and furns when it runs) as you increase the step size for each axis (X and Y):

|                    | /6]            | (10000) WUNDAM |
|--------------------|----------------|----------------|
| <i>[</i>           |                | MEDIUM (100)   |
| [ 7:1              | المر           | VERY SMALL (1) |
| Y ("UP" or "DOWN") | X ("<" or ">") |                |
| sixA               |                | Step Size      |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE", Select a speed and then a direction, Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| PRINT (500Hz) | <i>[</i> -]    | <u></u>            |
|---------------|----------------|--------------------|
| (SH02) DC     | [المر          |                    |
| RAWL (1Hz)    | <i>[</i> -]    | [ ]                |
|               | X ("<" or ">") | Y ("UP" or "DOWN") |
| beeq          |                | sixA               |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 25.25          | 26.20              |  |
| 2                | 26.43          | 27.65              |  |
| 3                | 27.57          | 28.83              |  |
| 4                | 28.72          | 29.7               |  |
| 5                | 29.65          | 31.62              |  |
| Check if passed: | [4             | 12/                |  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

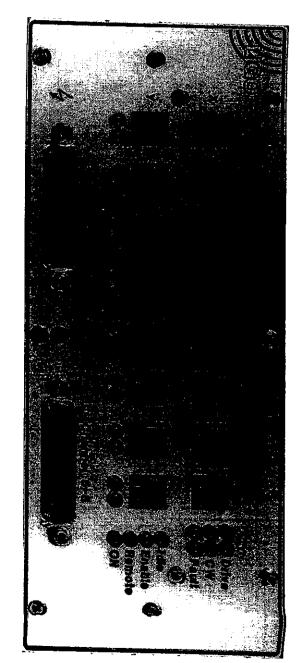
| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [4             | [7                 |
| 2        | [4             | [1                 |
| 3        | [X             | [ <del>]</del>     |
| 4        | [4             | [.]                |
| 5        |                | [1/]               |
| 6        | T (1)          | []                 |
| 7        | [1]            | [1]                |
| 8        | [ ]            | [1                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [4             | [1]                |
| 2        | 14             | И                  |
| 3        |                | [/                 |
| 4        |                | [4]                |
| 5        | [4]            | []                 |
| 6        | [1]            | [1]                |
| 7        |                | IX.                |
| 8        |                |                    |

# **Testing Summary**

for each test, indicate the results in the table below:


| Overall picomotor driver testing: | [YPass  | [ ] Fail |
|-----------------------------------|---------|----------|
| Output terminals                  | [-]Pass | [ ] Fail |
| Speeds                            | [ Pass  | [ ] Fail |
| Sep sizes                         | [ Pass  | [ ] Fail |
| Front panel LEDs                  | [ Pass  | [ ] Fail |

Test Engineer: Zoch 6
Test Date: 11/22/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel



Mgure 3: Picomotor driver chassis rear panel

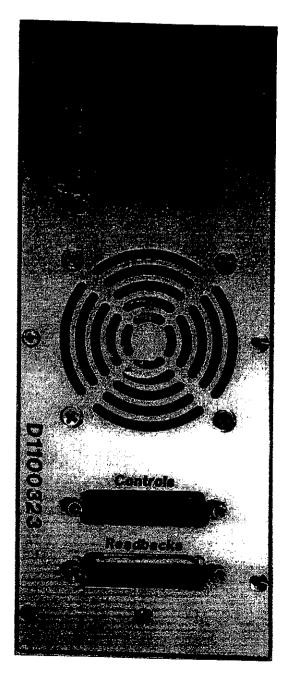
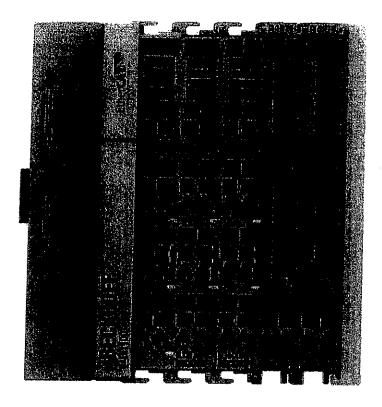




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

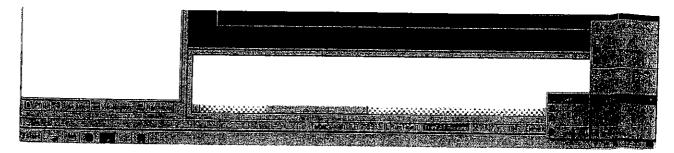
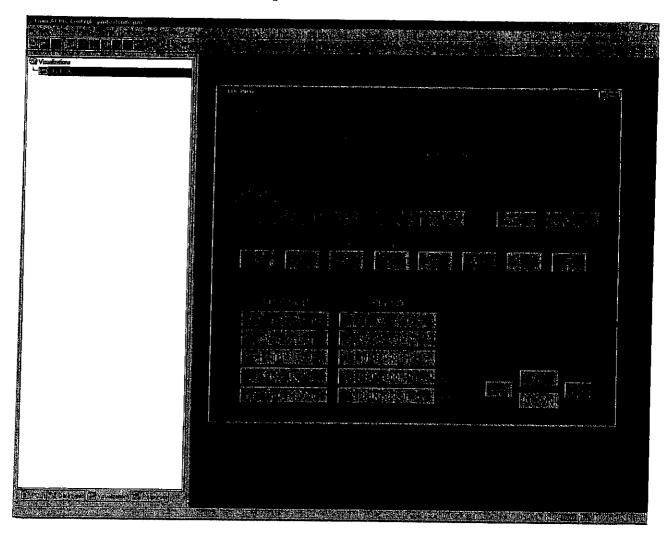




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: <a href="http://www.ligo.caltech.edu">http://www.ligo.caltech.edu</a>

| hicomotor controller chassis LIGO DCC# | D1100323-v1 |
| htterCAT Adapters LIGO DCC# | D1100419-v3 |
| Controller Serial # | S107552 |
| Test Engineer: | Zado C |
| Test Date: | | Y22/11 |
| Overall picomotor chassis testing: | YASS | FAIL |
| Signature/Initials:

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C1   | Chassis Front Panel LEDs |         |          | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|----------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y  | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off      | on                 | AF.    | 6n    |
| STARTING UP      | off  | on                       | flashes | flashes  | Off                | 622    | on6   |
| READY            | off  | on                       | off     | off      | of                 | en     | on    |
| Check if passed: | М    | N                        | [4]     | <u> </u> | [1]                | []     | [-]   |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | M    | 4     |
| 2        | [4]  | [4]   |
| 3        | [4   | []    |
| 4        | [Y   | [4]   |
| 5        | [4]  | [1]   |
| 6        | [4   | [1]   |
| 7        |      | [4]   |
| 8        | [1   | 1     |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | M       | [4      | [1    | M     |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [1]            |                    |  |
| MEDIUM (100)   | $\omega$       | 1                  |  |
| MAGNUM (10000) | [4             | []                 |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | [1]                |  |
| JOG (50Hz)     | [1             | rs (               |  |
| SPRINT (500Hz) | [ ]            | [1                 |  |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 29.33          | 27.19              |  |
| 2                | 30.32          | 29.29              |  |
| 3                | 31.46          | 29.43              |  |
| 4                | 32.37          | 30 31              |  |
| 5                | 33.30          | 31.28              |  |
| Check if passed: | [4]            | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

#### 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DQWN") |  |  |
| 1        | [Y             | [U]                |  |  |
| 2        | [4]            | [4                 |  |  |
| 3        | [4]            | [4]                |  |  |
| 4        | [4]            | [4]                |  |  |
| 5        | [4]            | [-}                |  |  |
| 6        | [4]            | [4]                |  |  |
| 7        |                | [/                 |  |  |
| 8        |                | [/                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | []             | [1                 |  |
| 2        |                | [1                 |  |
| 3        |                | [/]                |  |
| 4        | [1             | [1]                |  |
| 5        | [/             | [1]                |  |
| 6        | [1]            | [1                 |  |
| 7        | [1]            | [1]                |  |
| 8        | [/]            | [1                 |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Sep sizes                         | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [   Pass | [ ] Fail |

Test Engineer: Z. C

Test Date: 1/24/1

Additional Comments:

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

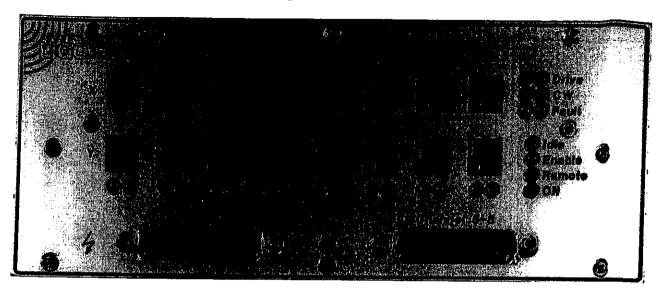



Figure 3: Picomotor driver chassis rear panel

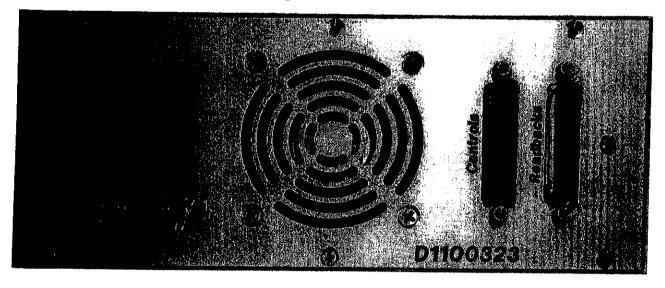
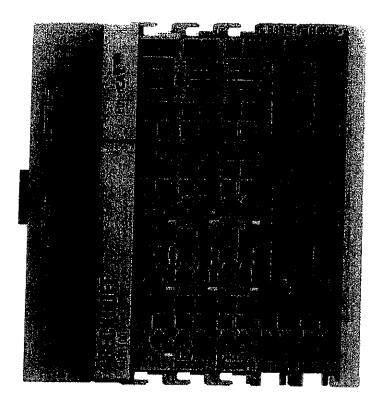




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

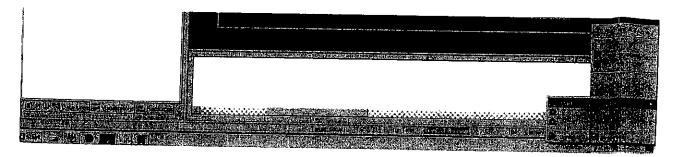
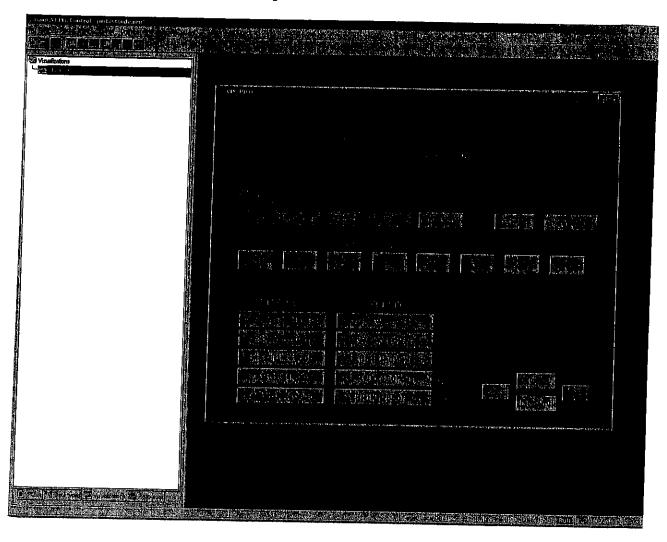




Figure 6: Step 5 of PLC controls setup



LSU

# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129

Fax (626) 304-9834 E-mail: <u>info@ligo.caltech.edu</u> Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |        |
|----------------------------------------|-------------|--------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |        |
| Controller Serial #                    | 51107:      | 553    |
| Test Engineer:                         | Zach        | G      |
| Test Date:                             | 1/22/1      |        |
| Overall picomotor chassis testing:     | [JPASS      | []FAIL |
| Signature/Initials:                    |             |        |
|                                        |             |        |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes

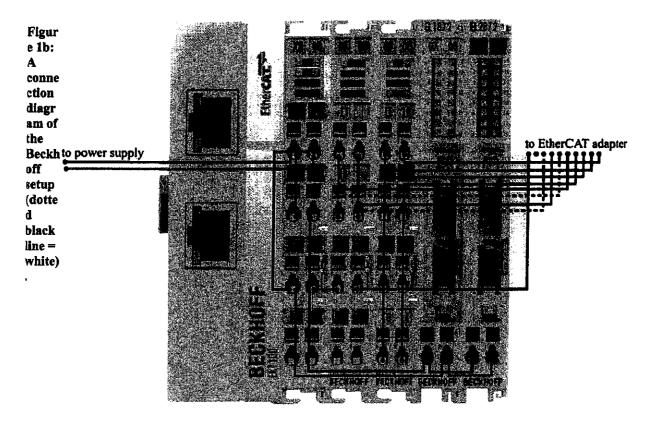
- 3. Speeds4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- **5** DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:


- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

Picomotor driver FRONT panel
Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

|   | Check that the "ON" LED is lit if the power cable is connected and the power switch |
|---|-------------------------------------------------------------------------------------|
| , | is on, and that it goes off when the power switch is off.                           |

Check that the "ON" indicator on the visualization also responds to the power switch.

[ \int Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

[ ] Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | 00   | 0 F    | on    |
| STARTING UP      | off                      | on     | flashes | flashes            | off  | con    | m     |
| READY            | off                      | on     | off     | off                | off  | 01     | 57    |
| Check if passed: | [1]                      | [-]    | H       | []                 | H    |        | [}    |

Table 1: LED response to picomotor status

Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[ Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | LED   |  |  |
|----------|------|-------|--|--|
|          | Left | Right |  |  |
| 1        | W    | [4    |  |  |
| 2        | [4]  | [1    |  |  |
| 3        | [4   | []    |  |  |
| 4        | []   | [X]   |  |  |
| 5        | [4]  | [4]   |  |  |
| 6        | [4]  | [1]   |  |  |
| 7        | [4   | [1/   |  |  |
| 8        | []   | [1    |  |  |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: |         | [-]     | M     | [1]   |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a set is size and then a direction. Check that the motor runs for a longer time (the motor clicks and rurns when it runs) as you increase the step size for each axis (X and Y):

| <i>F</i> 1         | <i>[</i> 1]                     | (10000) MUNDAM |
|--------------------|---------------------------------|----------------|
| المر               | [الحر                           | MEDIUM (100)   |
| [ ]                | [المر                           | VERY SMALL (1) |
| Y ("UP" or "DOWN") | $X^{(n < n \text{ of } n > n)}$ |                |
| sixA               | Step Size                       |                |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| sixA               |                | Speed          |
|--------------------|----------------|----------------|
| Y ("UP" or "DOWN") | ("<" 10 ">") X |                |
| <u>[</u>           | <u> [4]</u>    | CRAWL (1Hz)    |
| / <u> </u>         | <b>/</b> -1    | JOG (50Hz)     |
| <u></u>            | <i>[</i> -1]   | SPRINT (500Hz) |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 31.55          | 30.02              |  |
| 2                | 32.61          | 31.19              |  |
| 3                | 33.77          | 32.40              |  |
| 4                | 34.81          | 33.50              |  |
| 5                | 35.72          | 34.47              |  |
| Check if passed: | [4]            | W                  |  |

Check the "pass" box for each above if the temperature increases over time.

### 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [Y]            | [17]               |
| 2        | [4]            | [4                 |
| 3        |                | $[\mathcal{X}]$    |
| 4        | [4]            | [ ]                |
| 5        | [1]            | [ 1                |
| 6        | [4]            | [1]                |
| 7        | [4]            | [1]                |
| 8        | [4]            | [1                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [4]            | []                 |  |
| 2        | T              | [ <del>]</del>     |  |
| 3        | [4             | [4]                |  |
| 4        | [4]            | [4                 |  |
| 5        |                | []                 |  |
| 6        | [4]            | [9]                |  |
| 7        | []             | [4]                |  |
| 8        |                | [4]                |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [.] Pass | [] Fail  |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [ /Pass  | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zach G
Test Date: 11/22/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

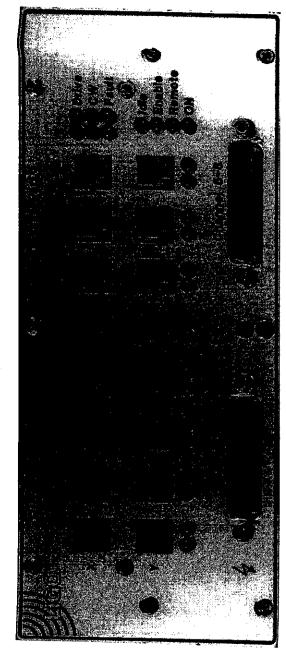



Figure 3: Picomotor driver chassis rear panel

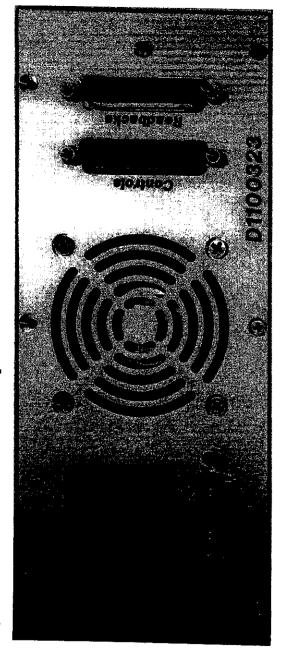
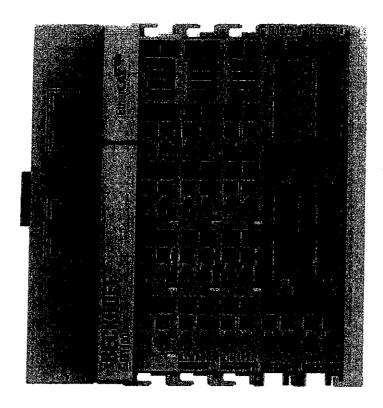




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

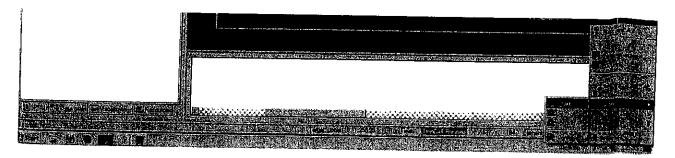
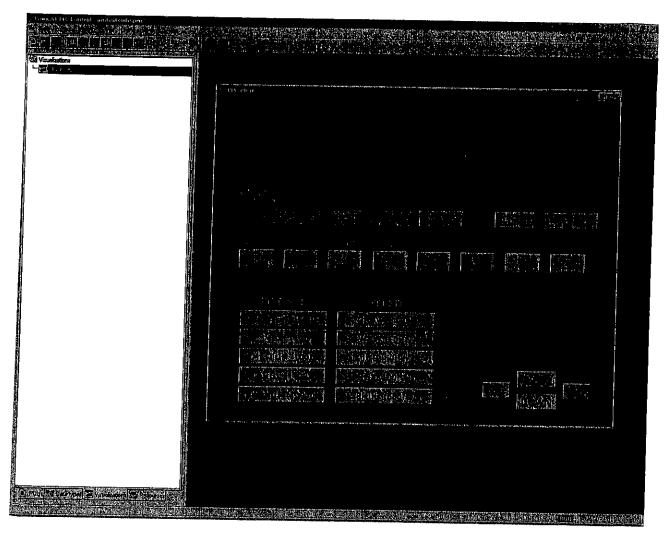




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8209

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |          |  |
|----------------------------------------|-------------|----------|--|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |          |  |
| €ontroller Serial #                    | 5110        | 7 554    |  |
| Test Engineer:                         | Zac         | h 6      |  |
| Test Date:                             | 11/22       | /11      |  |
| Overall picomotor chassis testing:     | [YPASS      | [ ] FAIL |  |
| Signature/Initials:                    |             |          |  |
|                                        |             |          |  |
|                                        |             |          |  |

### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
  5. Output terminals

## System requirements

### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- Hook-up wiresBrown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

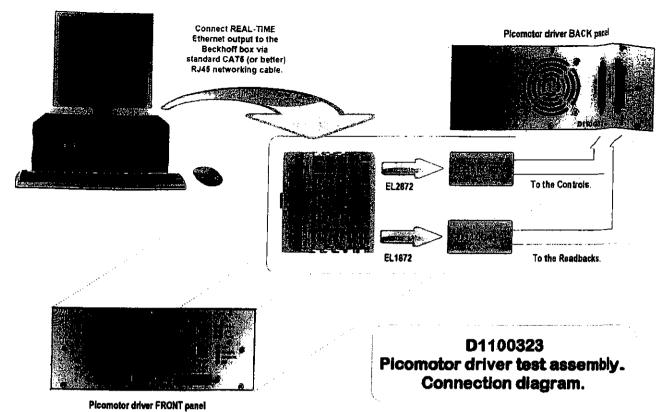
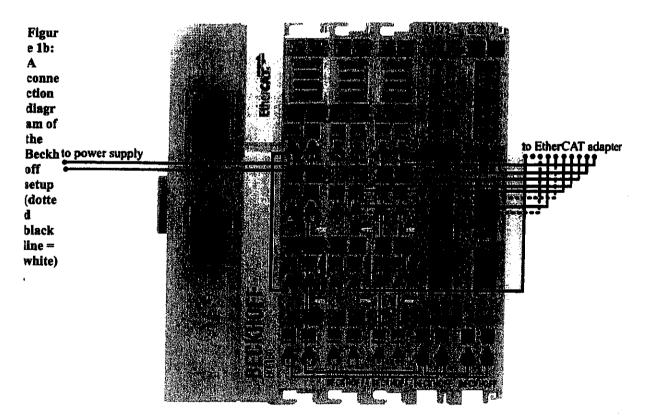




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

### Steps for setting up the PLC controls:

Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

| Check that the "ON" LED is lit if the power cable is connected and the power switch |
|-------------------------------------------------------------------------------------|
| is on, and that it goes off when the power switch is off.                           |

Check that the "ON" indicator on the visualization also responds to the power switch.

Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | 571  | df     | 611   |
| STARTING UP      | off                      | on     | flashes | flashes            | aff  | (DY    | W     |
| READY            | off                      | on     | off     | off                | off  | 5      | 55    |
| Check if passed: | [4]                      | [-]    | []      | [/                 | 11   | [/]    | 17    |

Table 1: LED response to picomotor status

Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | I    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4   | [ 4/  |
| 2        | [Y   | W     |
| 3        | []   | []    |
| 4        | [4   | [4]   |
| 5        | [ ]  | [4]   |
| 6        |      | [4/   |
| 7        | [1]  | [X]   |
| 8        | [-]  | [1    |

Select output terminal 1 and do the following:

[] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [1]     | W     | [4    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [4]            | [4                 |  |
| MEDIUM (100)   | [4             | 14                 |  |
| MAGNUM (10000) | [Y             | i.                 |  |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| CRAWL (1Hz)    | [4             | 14                 |
| JOG (50Hz)     | [9             | ĬŢ.                |
| SPRINT (500Hz) | []             | i d                |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)  | Temperature    |                    |  |
|-----------------|----------------|--------------------|--|
|                 | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1               | 34.57          | 33.77              |  |
| 2               | 35.56          | 34.89              |  |
| 3               | 36.44          | 35.81              |  |
| 4               | 37.21          | 36.64              |  |
| 5               | 37.91          | 37.40              |  |
| Check if passed | : [4           | [Y                 |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

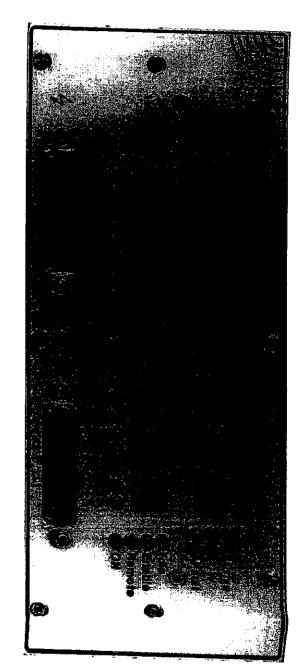
| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [4]            |                    |  |  |  |
| 2        | ["]            | [ ]                |  |  |  |
| 3        | [4]            | [1                 |  |  |  |
| 4        |                | [ <del>/</del>     |  |  |  |
| 5        | []             | [ 1                |  |  |  |
| 6        |                | il                 |  |  |  |
| 7        |                | ił                 |  |  |  |
| 8        |                | 11                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [1             | [1                 |  |  |  |  |
| 2        | [1             | [1                 |  |  |  |  |
| 3        | [1             | [1                 |  |  |  |  |
| 4        | []             | [/                 |  |  |  |  |
| 5        |                | 1 1                |  |  |  |  |
| 6        | [1]            | [}                 |  |  |  |  |
| 7        |                | [1/                |  |  |  |  |
| 8        |                | [ ]                |  |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:


| Front panel LEDs                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ ] Fail |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Step sizes                        | [ Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ ] Fail |
| Speeds                            | [   Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | []Fail   |
| Output terminals                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ ] Fail |
|                                   | AND AN IN MATERIAL SERVICES AND THE PARTY OF |          |
| Overall picomotor driver testing: | [ ] Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ ] Fail |

Test Engineer: Zah 6
Test Date: 1/22/11

Additional Comments:

# Appendix A: Physical Components

figure 2: Picomotor driver chassis front panel



Mgure 3: Picomotor driver chassis rear panel

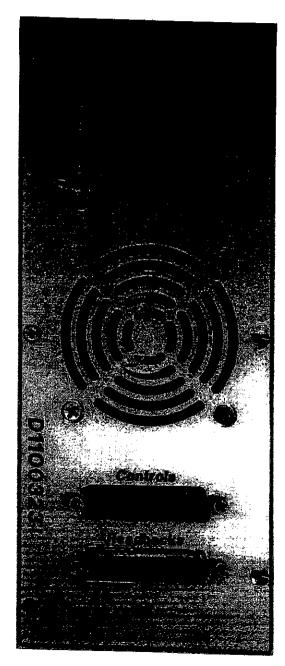
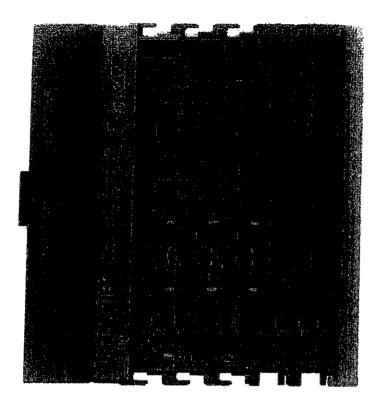




Figure 4: EtherCAT configuration



### **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

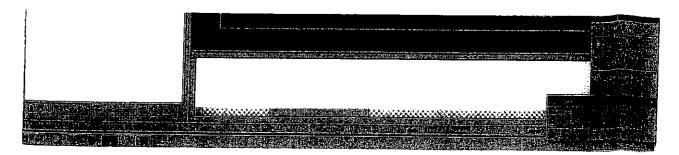
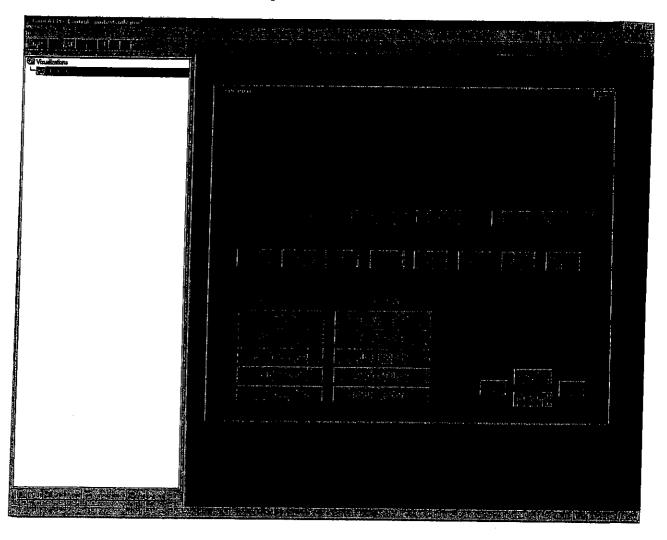




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

### CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| icomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |
|---------------------------------------|--------------------|
| ItherCAT Adapters LIGO DCC#           | D1100419-v3        |
| Controller Serial #                   | 51107555           |
| Test Engineer:                        | Zach G             |
| Test Date:                            | W22/11             |
| Overall picomotor chassis testing:    | [YPASS []FAIL      |
| Signature/Initials:                   |                    |
|                                       |                    |

### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### Testing Schedule:

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

### System requirements

### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

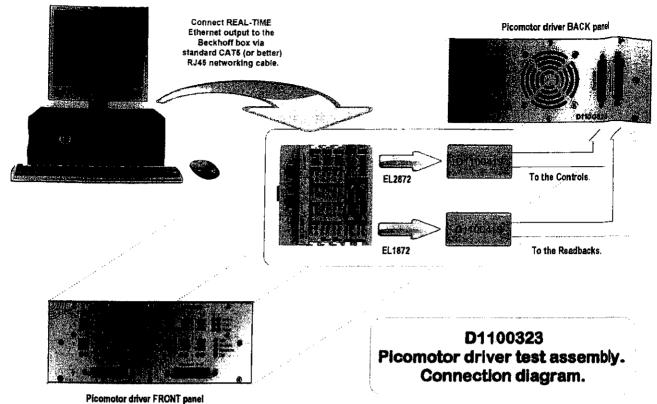
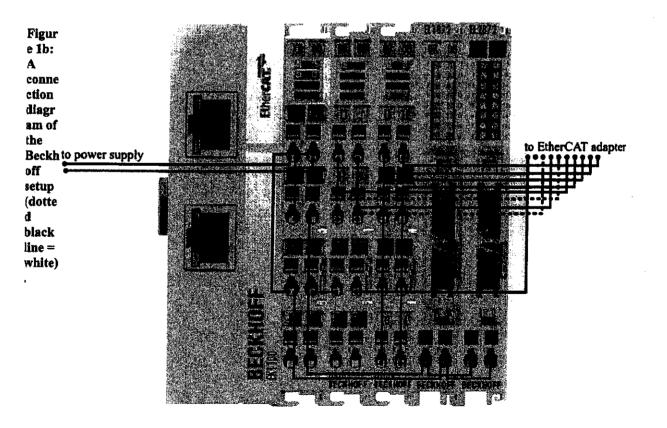




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ ] Check that the "ON" indicator on the visualization also responds to the power switch.
- [ 1 Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | $\infty$           | A      | Gn    |
| STARTING UP      | off  | on                       | flashes | flashes | off                | M      | on    |
| READY            | off  | on                       | off     | off     | of                 | 5      | on.   |
| Check if passed: |      | []                       | [7      | [/]     | ľ                  | [1]    | 17    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | Ll   | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [ ]  | [1]   |
| 2        | [4]  | 14    |
| 3        | [4]  | [}    |
| 4        | [4]  | [1]   |
| 5        | []   | [/    |
| 6        |      | [/]   |
| 7        | [-]  | 1/    |
| 8        | []   | [1]   |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [ ]     | []      | []    |       |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### l. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and thetek that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a set is size and then a direction. Check that the motor runs for a longer time (the motor clicks and rurns when it runs) as you increase the step size for each axis (X and Y):

| <u></u>            | ۲)                             | (10000) MUNDAM      |
|--------------------|--------------------------------|---------------------|
| المر               | [کمر                           | <b>WEDIOM</b> (100) |
| [-]                | <i>[</i> *]                    | VERY SMALL (1)      |
| Y ("UP" or "DOWN") | $X (^{n} <^{n} or ^{n} >^{n})$ |                     |
| sixA               |                                | Step Size           |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | [7]            |                    |
|----------------|----------------|--------------------|
| 10G (20Hz)     | <i>[</i> k]    | [4                 |
| CRAWL (1Hz)    | [~]            | [A]                |
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| Speed          | sixA           |                    |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 27.94          | 27.99              |  |
| 2                | 28.40          | 28.48              |  |
| 3                | 28.86          | 28.91              |  |
| 4                | 29.35          | 29.40              |  |
| 5                | 29.77          | 25.77/             |  |
| Check if passed: | [4             | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

### 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [Y             | [1]                |  |  |
| 2        | M/             | [1                 |  |  |
| 3        |                | $\mathcal{A}$      |  |  |
| 4        | [1             | [1                 |  |  |
| 5        |                | ſΊ                 |  |  |
| 6        | [1]            | 1/                 |  |  |
| 7        | [1             |                    |  |  |
| 8        |                | [1                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | [1]                |  |  |
| 2        | [4]            | [1                 |  |  |
| 3        | [-             | [1                 |  |  |
| 4        |                | []                 |  |  |
| 5        |                | [1                 |  |  |
| 6        | [/             | [1]                |  |  |
| 7        | [1]            |                    |  |  |
| 8        | [1             | [1]                |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ]Pass  | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [   Pass | [ ] Fail |
| Step sizes                        | [ / Pass | [ ] Fail |
| Front panel LEDs                  | [ ] Pass | [ ] Fail |

Test Engineer: Zall

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

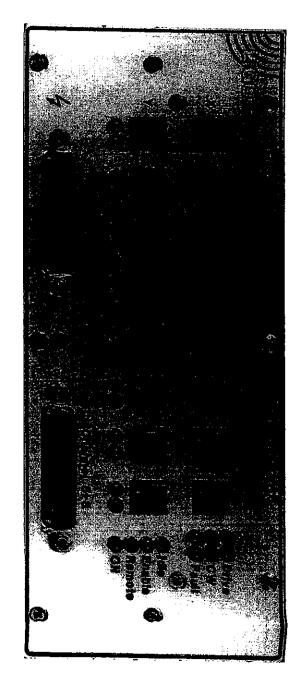



Figure 3: Picomotor driver chassis rear panel

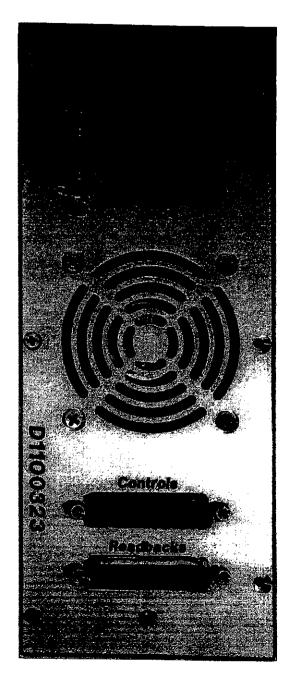
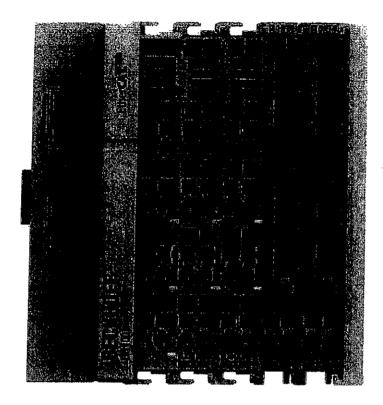




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

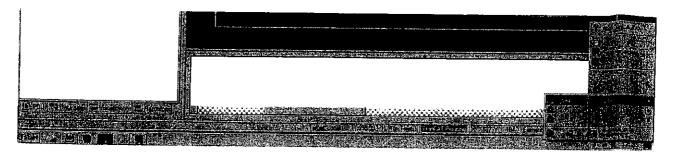
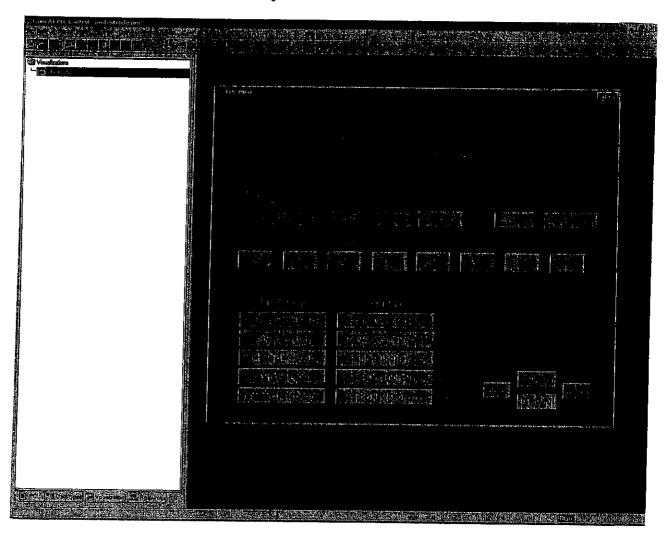




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1                            |  |
|----------------------------------------|----------------------------------------|--|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3                            |  |
| Controller Serial #                    | 51107556                               |  |
| Test Engineer:                         | Zach 6                                 |  |
| Test Date:                             | 11/22/11                               |  |
| Overall picomotor chassis testing:     | [ ] FAIL                               |  |
| Signature/Initials:                    |                                        |  |
|                                        |                                        |  |
|                                        | ************************************** |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20 Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature5. Output terminals

# **System requirements**

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

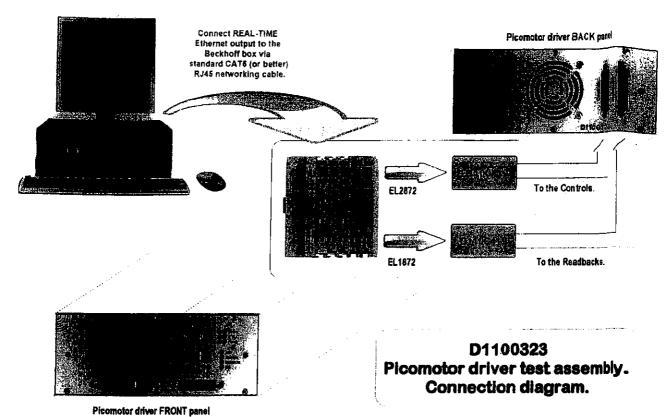
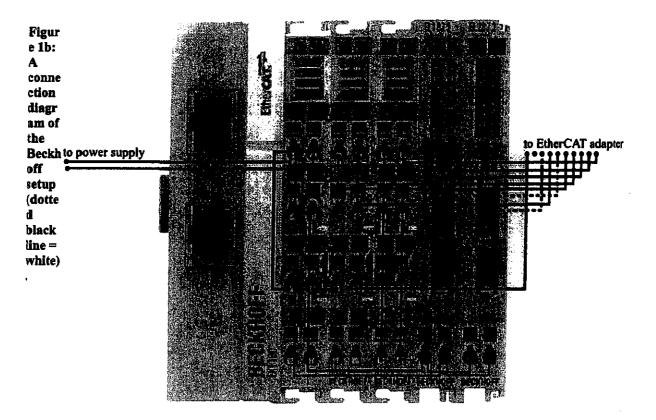




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | on                 | (3)F   | on    |
| STARTING UP      | off                      | on     | flashes | flashes | 285                | on     | on    |
| READY            | off                      | on     | off     | off     | 6SF                | on     | 57    |
| Check if passed: | W                        | W      | [4      | [4]     | [4]                | []     | [4]   |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L          | LED   |  |  |
|----------|------------|-------|--|--|
|          | Left       | Right |  |  |
| 1        | [4]        | H     |  |  |
| 2        | [4]        | [4]   |  |  |
| 3        |            | [4]   |  |  |
| 4        | M          | [4]   |  |  |
| 5        | [1]        | []    |  |  |
| 6        | [1]        |       |  |  |
| 7        |            | 1/    |  |  |
| 8        | [ <b>1</b> | [X]   |  |  |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | M       | []      |       | [-]   |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization sereen, make sure the picomotor is enabled and that the status is "READY", and thetek that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Seled a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and furns when it runs) as you increase the step size for each axis (X and Y):

| [7]                | [1]            | (10000) MAGNUM      |
|--------------------|----------------|---------------------|
|                    | <i>[</i> ]     | <b>MEDINM</b> (100) |
| [ کمر              | [طر            | VERY SMALL (1)      |
| Y ("UP" or "DOWN") | X ("<" or ">") |                     |
| sixA               | ,              | Step Size           |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | [عر                                    | J.l                |
|----------------|----------------------------------------|--------------------|
| (zH0c) ĐO1     | /rl                                    | J-1                |
| CRAWL (1Hz)    | <b>[</b>                               | المر               |
|                | $X (^{n} <^{n} \text{ or }^{n} >^{n})$ | Y ("UP" or "DOWN") |
| Speed          |                                        | sixA               |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 32.47          | 29.61              |  |  |
| 2                | 33.54          | 30.69              |  |  |
| 3                | 34.57          | 31.72              |  |  |
| 4                | 35.46          | 32.69              |  |  |
| 5                | 36.30          | 33.45              |  |  |
| Check if passed: | [4             | M                  |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [4]            | []                 |  |  |  |
| 2        | M              |                    |  |  |  |
| 3        | [/             | [1                 |  |  |  |
| 4        | [4]            | [ <del>]</del>     |  |  |  |
| 5        | [1]            | [/                 |  |  |  |
| 6        | [1             | [1                 |  |  |  |
| 7        |                | [1/.               |  |  |  |
| 8        |                |                    |  |  |  |

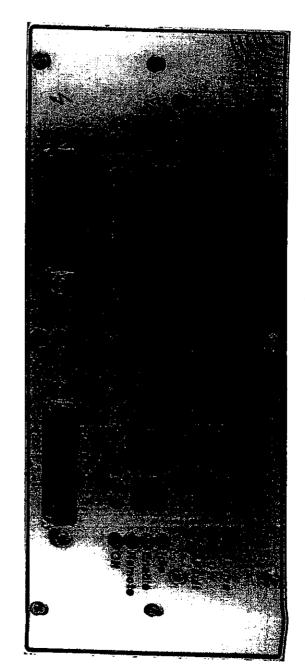
Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [1]            | [1                 |  |  |  |  |
| 2        |                |                    |  |  |  |  |
| 3        |                | []                 |  |  |  |  |
| 4        |                | [/                 |  |  |  |  |
| 5        | [1             | 11                 |  |  |  |  |
| 6        |                |                    |  |  |  |  |
| 7        |                | 17                 |  |  |  |  |
| 8        |                | [ ]                |  |  |  |  |

# Testing Summary

For each test, indicate the results in the table below:

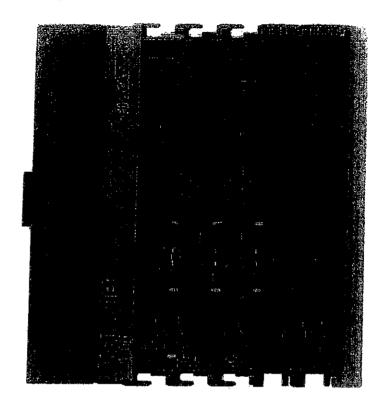
| Overall picomotor driver testing: | [/] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [   Pass | [] Fail  |
| Speeds                            | [   Pass | [ ] Fail |
| Step sizes                        | [ J Pass | [ ] Fail |
| Front panel LEDs                  | [4] Pass | [ ] Fail |
| Front panel LEDs                  | [42 Page | f less   |


Test Engineer: Zad C

Test Date: 11/23/11

Additional Comments:

# Appendix A: Physical Components

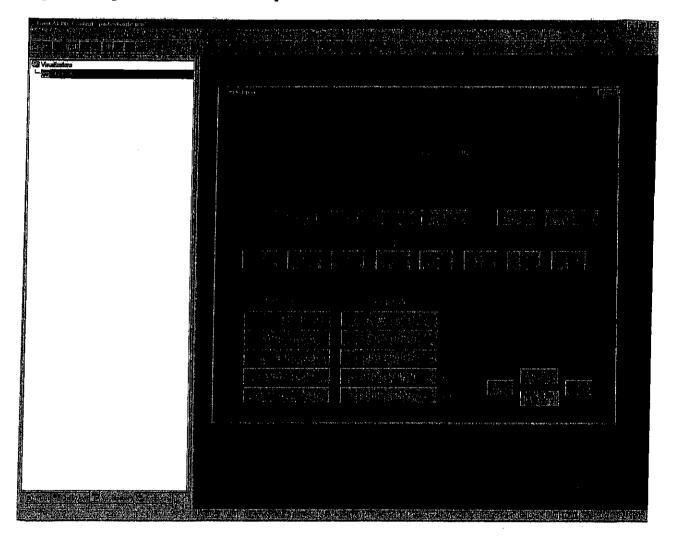

Figure 2: Picomotor driver chassis front panel



Mgure 3: Picomotor driver chassis rear panel



Figure 4: EtherCAT configuration




# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup



Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| icomotor controller chassis LIGO DCC# | D1100323-v1        |          |
|---------------------------------------|--------------------|----------|
| ItherCAT Adapters LIGO DCC#           | <u>D1100419-v3</u> |          |
| Controller Serial #                   | 51107557           |          |
| lest Engineer:                        | Zach G             |          |
| Test Date:                            | 1/22/11            |          |
| Overall picomotor chassis testing:    | [YPASS             | [ ] FAIL |
| Signature/Initials:                   |                    |          |
|                                       |                    |          |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

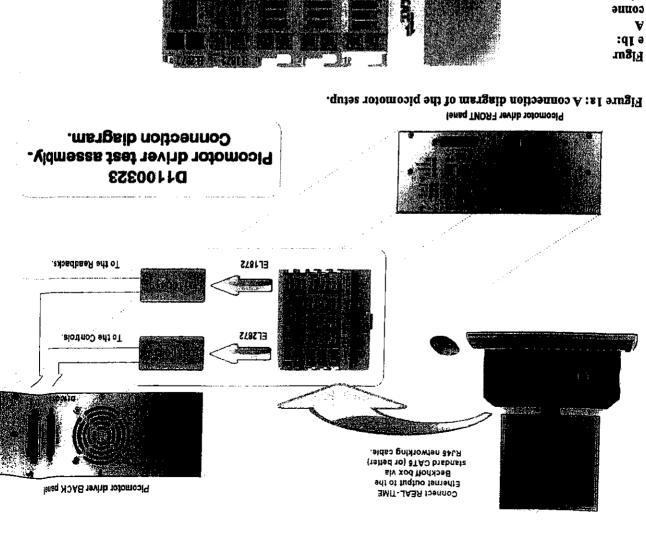
#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)


#### **Software:**

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

# Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on



white)

Seck to power supply

diager

diager

e 1b:

A

Seck to power supply

fine

conne

conne

diager

A

fine

# Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | 971                | off    | on    |
| STARTING UP      | off                      | on     | flashes | flashes | 04                 | 02     | on    |
| READY            | off                      | on     | off     | off     | off                | 500    | 00    |
| Check if passed: | [4]                      | [1]    | [4      | [-]     | [4                 |        | [-    |

Table 1: LED response to picomotor status

- [ Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[V] Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |  | LED Left Right |     |  |
|----------|--|----------------|-----|--|
|          |  |                |     |  |
| 1        |  | M              | [4] |  |
| 2        |  | W.             | 14  |  |
| 3        |  | M              | []  |  |
| 4        |  | M              | [4] |  |
| 5        |  | M              | [4] |  |
| 6        |  | [4]            | M   |  |
| 7        |  | [4]            | [4] |  |
| 8        |  | [4             | 4   |  |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | M       | [ ]     | []    | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and furms when it runs) as you increase the step size for each axis (X and Y):

| [h]                |                | (00001) MUNDAM |
|--------------------|----------------|----------------|
| [1                 | /h]            | MEDIUM (100)   |
|                    | Jh]            | VERY SMALL (1) |
| Y ("UP" or "DOWN") | ("<" to ">") X |                |
| sixA               | 7              | Step Size      |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | /1          | <u></u>            |
|----------------|-------------|--------------------|
| (SH02) DOI     | <i>[</i> *] | H                  |
| CRAWL (1Hz)    | [بر]        | ۴ì                 |
|                | X (" < "    | Y ("UP" or "DOWN") |
| Speed          | sixA        |                    |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 29.36          | 27.29              |  |
| 2                | 29.54          | 28.52              |  |
| 3                | 30.67          | 29.71              |  |
| 4                | 31. (do        | 30.69              |  |
| 5                | 32.6           | 31.49              |  |
| Check if passed: | - iv           | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | W              | [/                 |  |  |
| 2        |                | [1                 |  |  |
| 3        |                | $\square$          |  |  |
| 4        | [4             | [1                 |  |  |
| 5        |                | [1                 |  |  |
| 6        |                | []                 |  |  |
| 7        | [1]            |                    |  |  |
| 8        |                | 1                  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | N              | [/                 |  |  |
| 2        | 1              | [1                 |  |  |
| 3        | [/             | [ ]                |  |  |
| 4        | [/             | [/                 |  |  |
| 5        | [/             |                    |  |  |
| 6        |                | []                 |  |  |
| 7        |                | [1                 |  |  |
| 8        |                | [1                 |  |  |

# Testing Summary

For each test, indicate the results in the table below:

| Front panel LEDs [ ] Pass [ ] Fail  Step sizes [ ] Pass [ ] Fail  Speeds [ ] Pass [ ] Fail  Output terminals [ ] Pass [ ] Fail | Overall picomotor driver testing: | [ ] Pass | [ ] Fail |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|----------|
| Step sizes [ ] Fail                                                                                                            | Output terminals                  | Pass     | [ ] Fail |
| Step sizes [ ] Fail                                                                                                            | Speeds                            | [   Pass | [ ] Fail |
| Front panel LEDs [ ] Fail                                                                                                      | Step sizes                        | £/3      | [] Fail  |
|                                                                                                                                | Front panel LEDs                  | [ ] Pass | [ ] Fail |

Test Engineer: Zach G
Test Date: 11/24/11

Additional Comments:

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

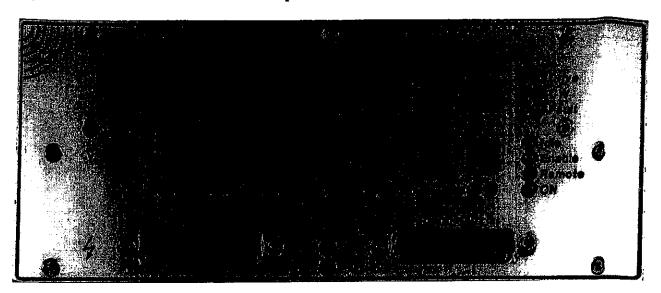



Figure 3: Picomotor driver chassis rear panel

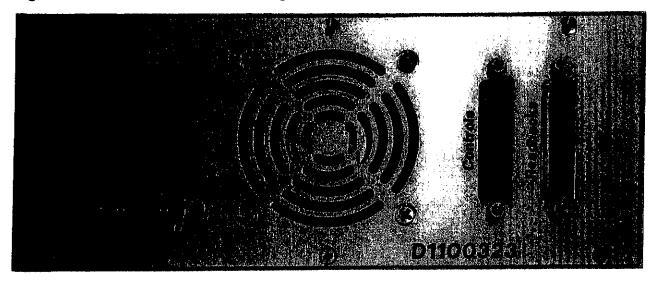
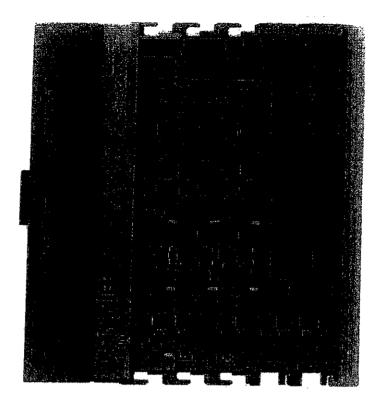




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

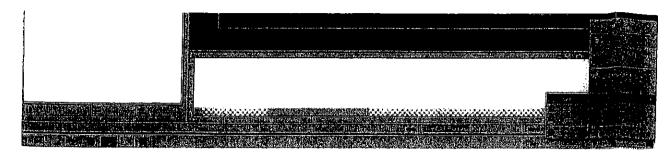
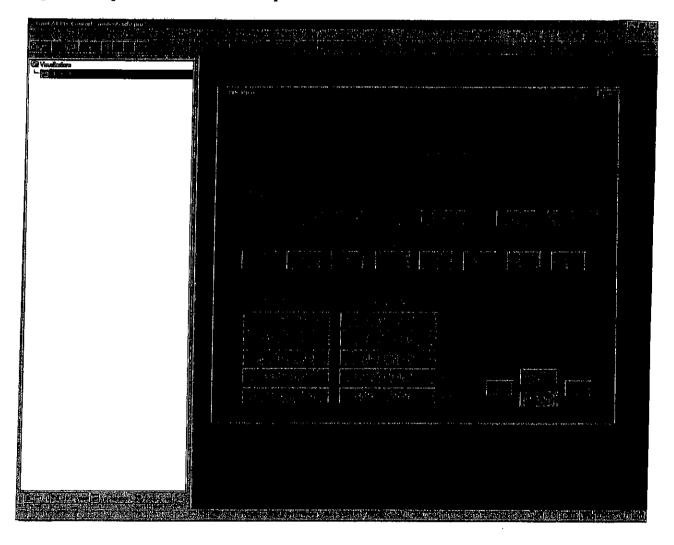




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC#                                                                                   | D1100323-v1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ItherCAT Adapters LIGO DCC#                                                                                              | D1100419-v3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Controller Serial #                                                                                                      | 511075      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Test Engineer:                                                                                                           | Zach        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Test Date:                                                                                                               | 11/22/11    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Overall picomotor chassis testing:                                                                                       | [ YPASS     | [ ] FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Signature/Initials:                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| уу г түй тоой тоон шишин шашин үй дүүнөө төөнө шашышушуу да үй мүнүнүн тоон бүй Мүнүн тоон тоон тоон тоон тоон тоон тоон |             | The state of the s |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature5. Output terminals

# System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

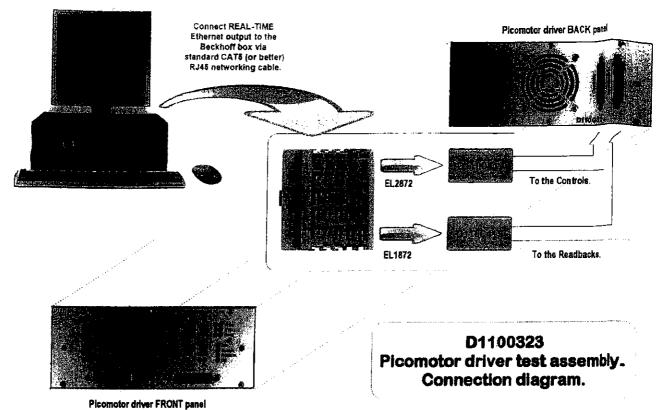
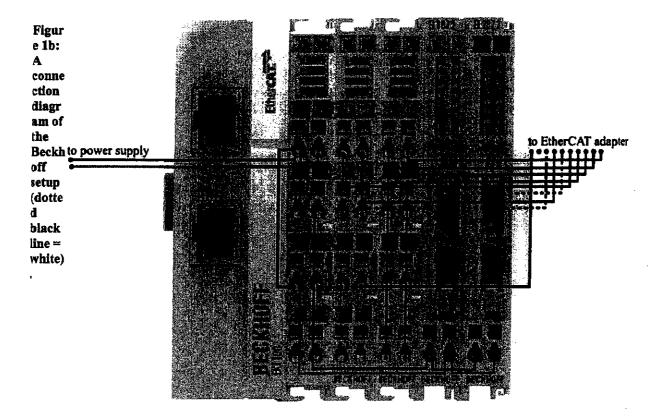




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | hassis Front | Panel LEI | Os      | Software Readback |        |       |
|------------------|------|--------------|-----------|---------|-------------------|--------|-------|
|                  | IDLE | Enable       | Fault X   | Fault Y | IDLE              | Enable | Power |
| DRIVER DISABLED  | on   | off          | off       | off     | 01                | 280    | on    |
| STARTING UP      | off  | on           | flashes   | flashes | off               | 100    | on    |
| READY            | off  | on           | off       | off     | <i>6</i>          | on     | on    |
| Check if passed: | [4]  | []           | [1]       | [/      | [9                | []     | [9]   |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | 1    | LED                       |
|----------|------|---------------------------|
|          | Left | Right                     |
| 1        | [4/  | [4]                       |
| 2        |      | , H                       |
| 3        | - M  | [ ]                       |
| 4        | [1]  | $\mathbf{H}_{\mathbf{A}}$ |
| 5        | [1]  | [4]                       |
| 6        | [/]  | [1]                       |
| 7        | [1]  | [1]                       |
| 8        | [/]  | [1]                       |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | []      | []      | []    | [1]   |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there visualization screen, make sure the picomotor is enabled and that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| [ الر              | <u>[1</u>      | (00001) MUNDAM |
|--------------------|----------------|----------------|
| [ \f\              | (1)            | MEDIUM (100)   |
| h                  | Æ]             | VERY SMALL (1) |
| Y ("UP" or "DOWN") | X ("<" or ">") |                |
| sixA               | sixA           |                |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | <i>J</i> -1    | <u>[</u> ]         |  |  |
|----------------|----------------|--------------------|--|--|
| 10G (50Hz)     | \\P\]          | <b>[</b> ]         |  |  |
| CKAWL (1Hz)    | <i>\f</i> !    |                    |  |  |
| -              | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| Speed          | sixA           |                    |  |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 33.30          | 34.41              |  |  |
| 2                | 33.99          | 35.24              |  |  |
| 3                | 34.77          | 36.05              |  |  |
| 4                | 35.57          | 36.86              |  |  |
| 5                | 36.16          | 37.53              |  |  |
| Check if passed: | []             | H                  |  |  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | M              | [4                 |  |  |  |  |
| 2        | [4]            | [ ]                |  |  |  |  |
| 3        | [1             | [4                 |  |  |  |  |
| 4        | []             | []                 |  |  |  |  |
| 5        | [4]            | []                 |  |  |  |  |
| 6        | [1]            | [1]                |  |  |  |  |
| 7        | []             | []                 |  |  |  |  |
| 8        |                |                    |  |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | M              | [4]                |  |  |  |
| 2        | [4]            | [1                 |  |  |  |
| 3        | [9]            | [1                 |  |  |  |
| 4        | [4]            | [1                 |  |  |  |
| 5        | [4             | [ ]                |  |  |  |
| 6        | [4]            | [1                 |  |  |  |
| 7        |                | [1                 |  |  |  |
| 8        |                | ſΊ                 |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ †Pass  | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | []Pass   | [ ] Fail |
| Speeds                            | [ Pass   | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [ YPass  | [ ] Fail |

Test Engineer: Z. L. C.
Test Date: 11/2 7/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

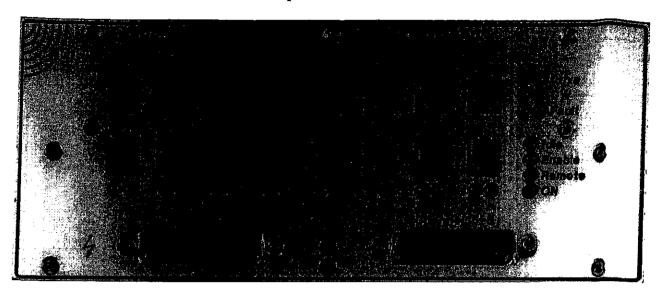



Figure 3: Picomotor driver chassis rear panel

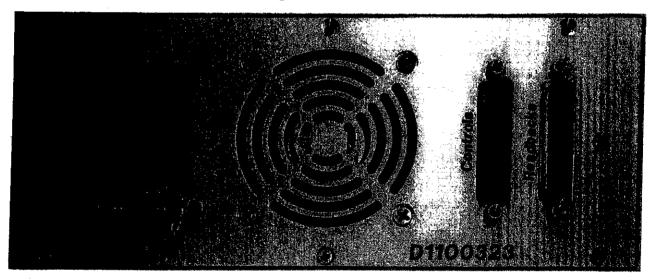
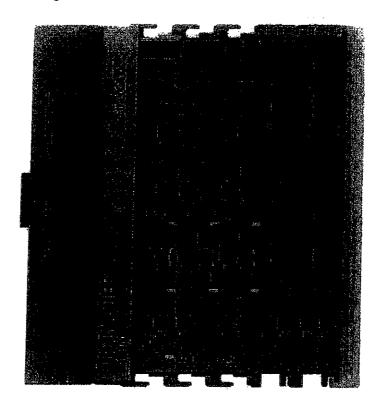




Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

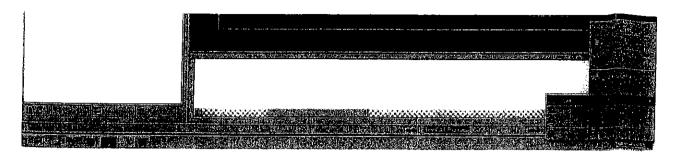
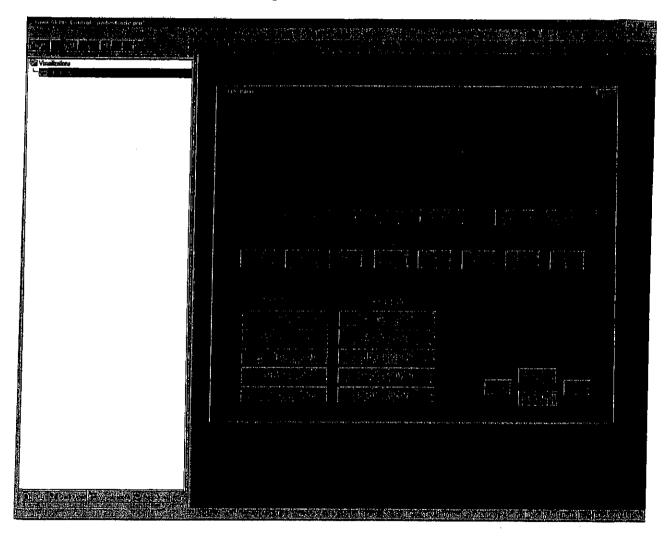




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121 E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1     |             |  |
|----------------------------------------|-----------------|-------------|--|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3     |             |  |
| Controller Serial #                    | 51107559        |             |  |
| lest Engineer:                         | Zach G          | <del></del> |  |
| Test Date:                             | 1/22/11         |             |  |
| Overall picomotor chassis testing:     | [ YPASS [ ] FAI | Ĺ           |  |
| Signature/Initials:                    |                 |             |  |
|                                        |                 |             |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

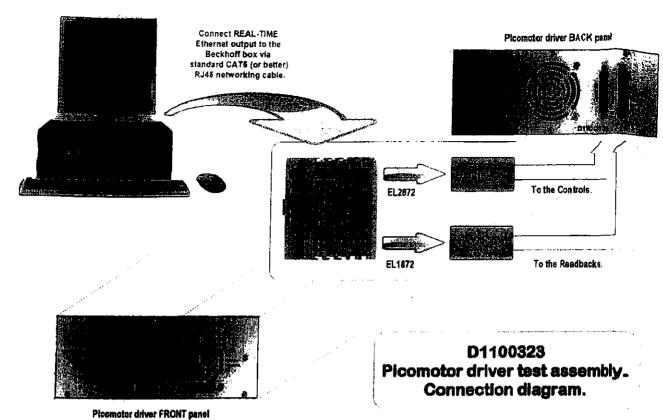
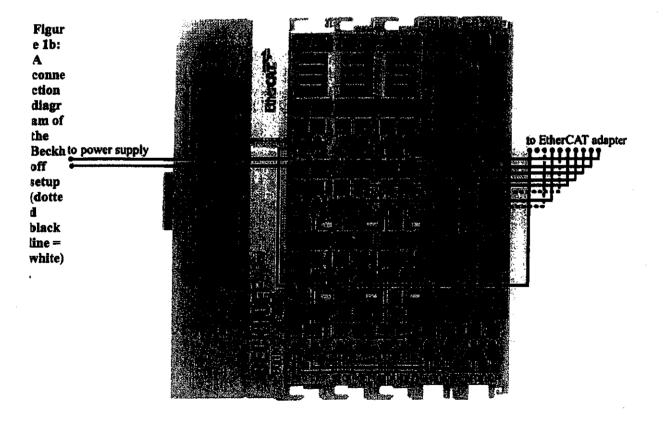




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [ d Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Softw   | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | 001                | Off    | 621   |
| STARTING UP      | off                      | on     | flashes | flashes | SE                 | on     | 90    |
| READY            | off                      | on     | off     | off     | DO                 | m      | on    |
| Check if passed: | [1]                      | []     | W       | 1       | []                 | 19     | 17    |

Table 1: LED response to picomotor status

- [ Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the vicomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |   | LED  |       |  |
|----------|---|------|-------|--|
|          |   | Left | Right |  |
| 1        |   | [4   | M     |  |
| 2        |   | 4    | 4     |  |
| 3        |   | 14   | [4]   |  |
| 4        |   | 4    | H     |  |
| 5        |   | [U/  | 1     |  |
| 6        |   | M    | [1]   |  |
| 7        |   | M    | / H/  |  |
| 8        | - | [4   | [1]   |  |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        |         | LE      | Ds    |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [1      | [ ]   | [/    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | M              | i I                |
| MEDIUM (100)   | [4]            | M                  |
| MAGNUM (10000) | M              | 19                 |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| CRAWL (1Hz)    | [9]            | [1]                |
| JOG (50Hz)     | [4]            | 19                 |
| SPRINT (500Hz) | []             | 14                 |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Tem            | perature           |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 27.41          | 27.26              |
| 2                | 20.55          | 28.41              |
| 3                | 29. 82         | 29 63              |
| 4                | 30.77          | 30.66              |
| 5                | 31.74          | 31.57              |
| Check if passed: | [Y             |                    |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | H              | N/                 |
| 2        | H              | [ 9                |
| 3        | [4]            | U/                 |
| 4        |                |                    |
| 5        | [1]            | [7]                |
| 6        | 1              | [1]                |
| 7        |                | [/                 |
| 8        | [1]            | []                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [1]            | 19                 |
| 2        |                | []                 |
| 3        |                | [ ]                |
| 4        |                | []                 |
| 5        | [1]            | []                 |
| 6        | [1             |                    |
| 7        | [1             |                    |
| 8        |                | []                 |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [ ] Fail | and distribution of the second |
|-----------------------------------|----------|----------|--------------------------------|
| Output terminals                  | []Pass   | [ ] Fail |                                |
| Speeds                            | [ Pass   | [ ] Fail |                                |
| Step sizes                        | [ YPass  | [ ] Fail |                                |
| Front panel LEDs                  | Pass     | [ ] Fail |                                |

Test Engineer: Zech Co
Test Date: 11/22/11

Additional Comments:

## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

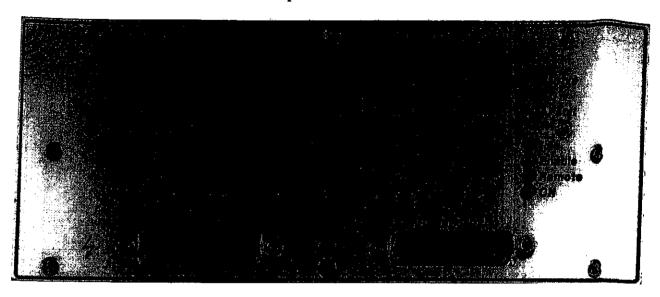



Figure 3: Picomotor driver chassis rear panel

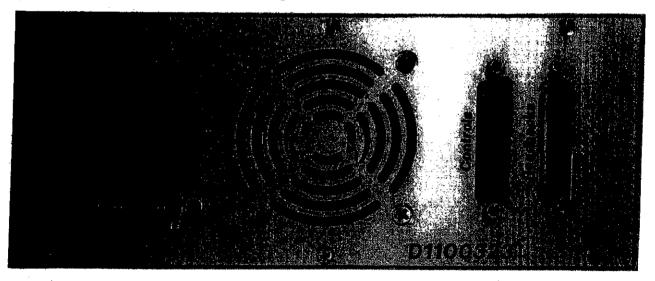
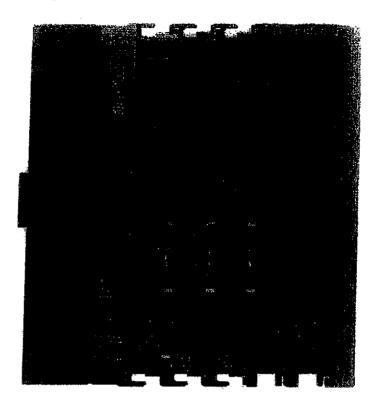




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

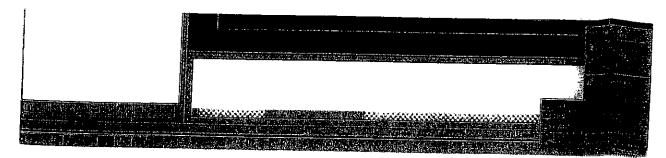
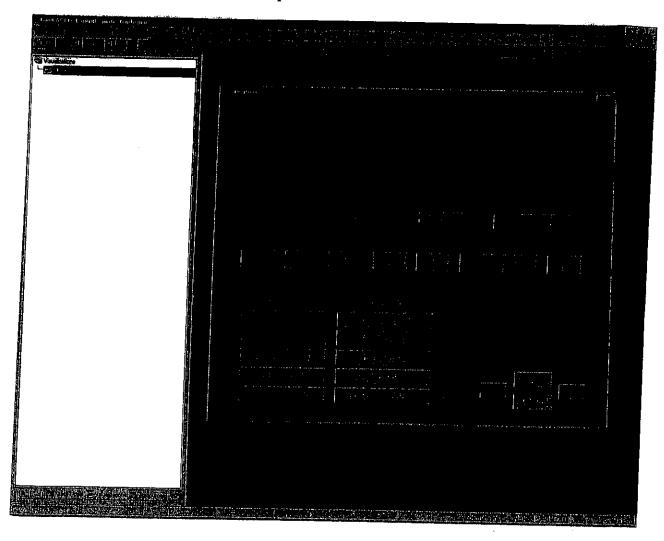




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| icomotor controller chassis LIGO DCC# | D1100323-v1    |  |
|---------------------------------------|----------------|--|
| EtherCAT Adapters LIGO DCC#           | D1100419-v3    |  |
| Controller Serial #                   | 51107560       |  |
| lest Engineer:                        | Zech C         |  |
| Test Date:                            | 11/22/11       |  |
| Overall picomotor chassis testing:    | [/]PASS []FAIL |  |
| Signature/Initials:                   |                |  |
|                                       |                |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
   Speeds
   Temperature
   Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- **5** DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### <u>Steps for setting up the picomotor:</u>

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

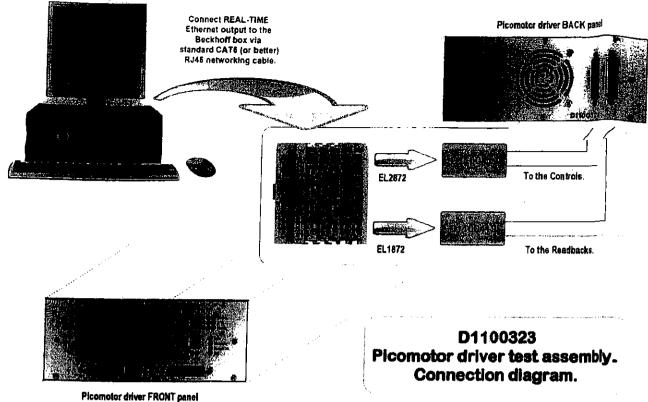
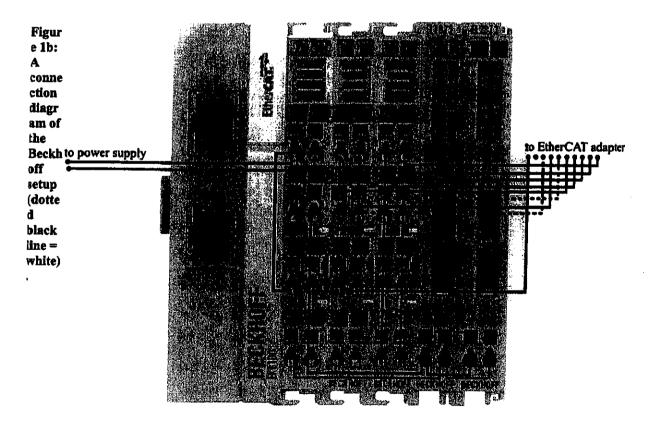




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | hassis Front | Panel LEI | )s      | Softw | are Read | backs |
|------------------|------|--------------|-----------|---------|-------|----------|-------|
|                  | IDLE | Enable       | Fault X   | Fault Y | IDLE  | Enable   | Power |
| DRIVER DISABLED  | on   | off          | off       | off     | on    | df       | 021   |
| STARTING UP      | off  | on           | flashes   | flashes | off   | 200      | 551   |
| READY            | off  | on           | off       | off     | off   | 200      | on    |
| Check if passed: | H    | [-]          | []        | []      | [-]   | []       |       |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED                           |
|----------|-------------------------------|
|          | Left Right                    |
| 1        | MM                            |
| 2        | [Y] [Y]                       |
| 3        | M H                           |
| 4        |                               |
| 5        | I H                           |
| 6        | $\square$ $\bowtie$ $\bowtie$ |
| 7        | [1]                           |
| 8        |                               |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        |         | LE      | Ds    |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [1]     | [1]     | [1]   | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## l. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there is terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a sep size and then a direction. Check that the motor runs for a longer time (the motor clicks and fulting when it runs) as you increase the step size for each axis (X and Y):

| MAGNUM (10000)      | <u></u>        |                    |
|---------------------|----------------|--------------------|
| <b>MEDIUM</b> (100) | \\ \\          | <i>[</i> -]        |
| VERY SMALL (1)      | /h]            |                    |
|                     | ("<" to ">") X | Y ("UP" or "DOWN") |
| Step Size           |                | sixA               |

## 3. Testing the speeds

| SPRINT (500Hz) | /[]                                    | []                 |
|----------------|----------------------------------------|--------------------|
| OG (SOHz)      | <i>[</i> †]                            | <b>/</b> €]        |
| CRAWL (1Hz)    |                                        | <b>1</b>           |
|                | $X (^{n} <^{n} \text{ or }^{n} >^{n})$ | Y ("UP" or "DOWN") |
| Speed          | sixA                                   |                    |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 24.48          | 24.76              |  |
| 2                | 25.80          | 26.16              |  |
| 3                | 27.01          | 27.48              |  |
| 4                | 28.17          | 28.76              |  |
| 5                | 29.09          | 29.79/             |  |
| Check if passed: | N              | ľ                  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | W,             | [4]                |
| 2        | [4]            | H,                 |
| 3        |                | [/                 |
| 4        | H              | [1                 |
| 5        |                |                    |
| 6        | i1             | 1                  |
| 7        |                | [/                 |
| 8        |                | [1                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [Y             | H                  |
| 2        | T IY           | [1                 |
| 3        | T IY           | [Y                 |
| 4        | [4'            | H                  |
| 5        | [J             |                    |
| 6        | [1/            | [}                 |
| 7        | [4]            |                    |
| 8        |                | [1]                |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ Pass   | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [JPass   | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [ UPass  | [ ] Fail |

Test Engineer:

Test Date:

Zah 6

Additional Comments:

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

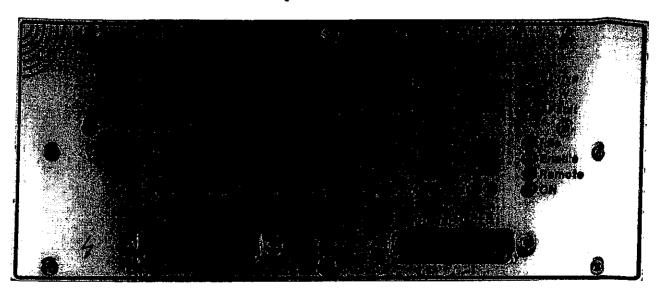



Figure 3: Picomotor driver chassis rear panel

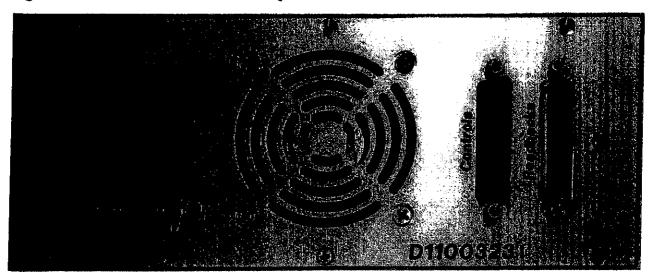
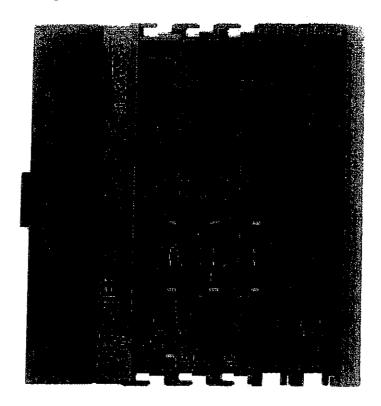




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

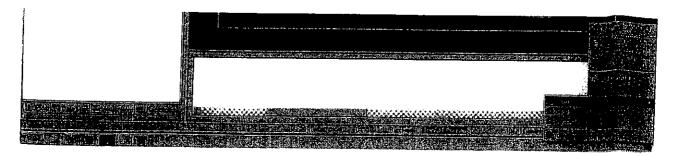
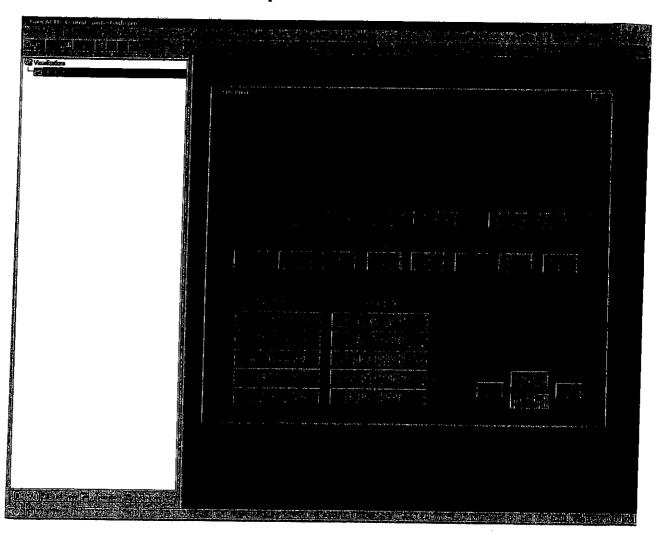




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project -- MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121 E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |
|----------------------------------------|--------------------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3        |
| Controller Serial #                    | 51107561           |
| lest Engineer:                         | Zech G             |
| Test Date:                             | 11/20/11           |
| Overall picomotor chassis testing:     | [ ] FAIL           |
| Signature/Initials:                    |                    |
|                                        |                    |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
  5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

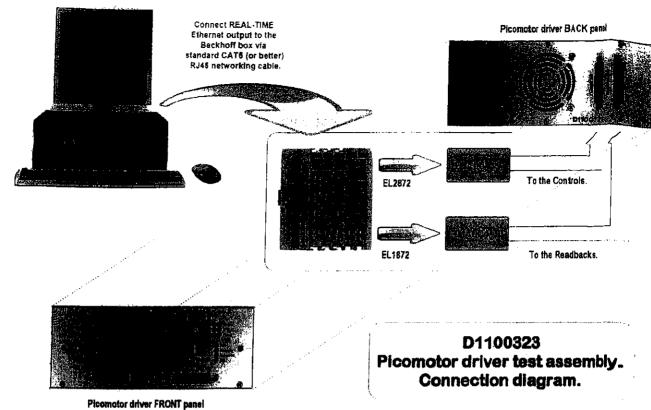
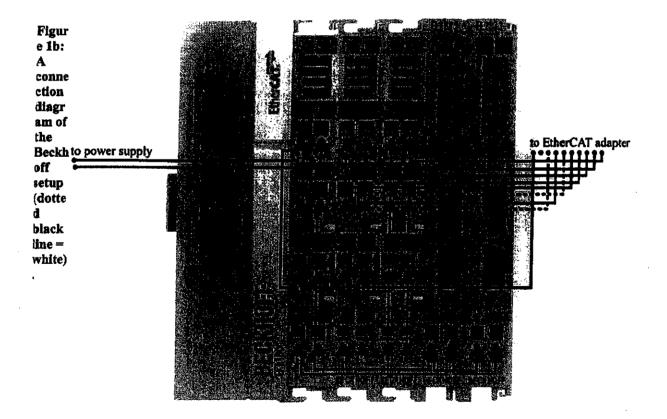




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ ] Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | ON                 | off    | 8     |
| STARTING UP      | off  | on                       | flashes | flashes | 200                | ON     | on    |
| READY            | off  | on                       | off     | off     | off                | 3      | 57    |
| Check if passed: | []   | [4]                      | IJ      | []      | []                 | [-]    | []    |

Table 1: LED response to picomotor status

- [ \( \) Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |   | LED  |       |  |
|----------|---|------|-------|--|
|          |   | Left | Right |  |
| 1        |   | W/   | [1]   |  |
| 2        |   | []/  | [1]   |  |
| 3        |   | 1/   | [1]   |  |
| 4        |   | [1]  | 11    |  |
| 5        |   | [X]  | [X]   |  |
| 6        |   | []   | [1]   |  |
| 7        |   | [1]  | [1    |  |
| 8        | - | []   | []    |  |

#### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [1]     | [1]     | [/    | 1]    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### desting the step sizes.

On the visualization screen, make sure the picomotor is enabled and that the status is "READ", and thete visualization screen, make sure then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns) as you increase the step size for each axis (X and Y):

| المر               | [طر            | (10000) MUNDAM |
|--------------------|----------------|----------------|
| المر               | [1]            | MEDIUM (100)   |
| المر               | /h]            | AEKA SWYTT (1) |
| Y ("UP" or "DOWN") | ("<" 10 ">") X |                |
| sixA               | 7              | Step Size      |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

In select a speed for each axis (X and Y):  $(X = 10^{-1})^{-1}$ 

| SPRINT (500Hz) | <i>[</i> ]     | <u>[]</u>          |
|----------------|----------------|--------------------|
| 10G (50Hz)     | <b>₹</b> ]     |                    |
| CKAWL (1Hz)    | [r]            | H                  |
| _              | X ("<" or ">") | Y ("UP" or "DOWN") |
| Speed          |                | sixA               |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 23.92          | 23.89              |  |
| 2                | 25.43          | 25.44              |  |
| 3                | 26.76          | 26.88              |  |
| 4                | 27.92          | 28.08              |  |
| 5                | 26.98          | 29.29              |  |
| Check if passed: | [1]            | H                  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [Ų             | [4                 |  |  |
| 2        |                |                    |  |  |
| 3        | [4             | []                 |  |  |
| 4        | T (y)          | [1                 |  |  |
| 5        | 14             | [Y]                |  |  |
| 6        | H              | [1                 |  |  |
| 7        | T H            | [1]                |  |  |
| 8        | [3/            | [4]                |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | U/             | []                 |  |  |
| 2        | 11/            | [V]                |  |  |
| 3        | [Y             | [/                 |  |  |
| 4        |                | [X                 |  |  |
| 5        | [1             | [ }                |  |  |
| 6        | [1]            | [1                 |  |  |
| 7        |                | [1]                |  |  |
| 8        | [4]            |                    |  |  |

## **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ]Pass  | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ LPass  | [ ] Fail |
| Step sizes                        | [ ] Pass | [] Fail  |
| Front panel LEDs                  | [ Pass   | [ ] Fail |

Test Engineer: Zach C

Test Date: 11/77/11

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

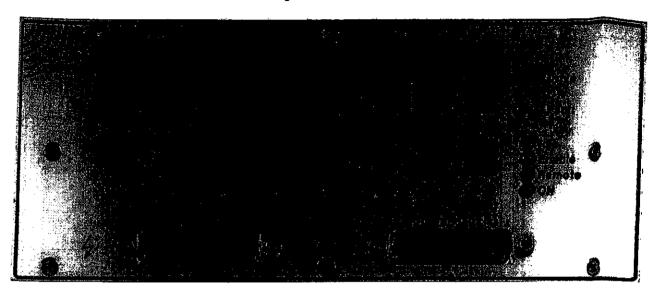



Figure 3: Picomotor driver chassis rear panel

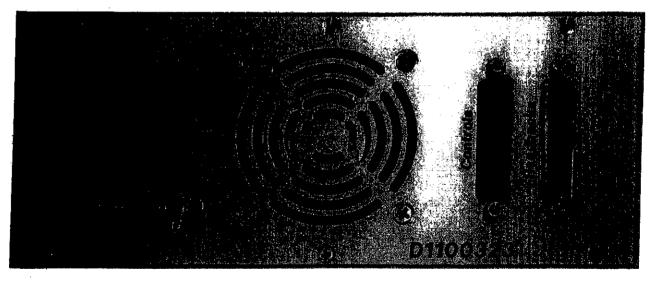
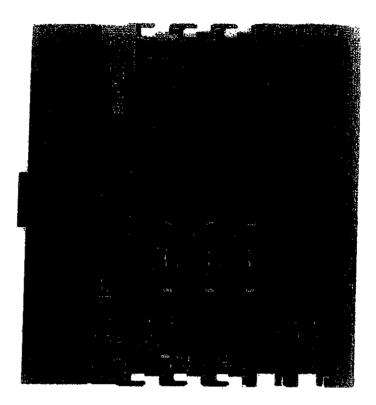




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

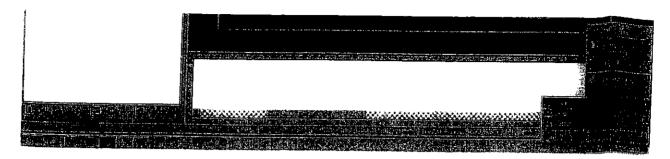
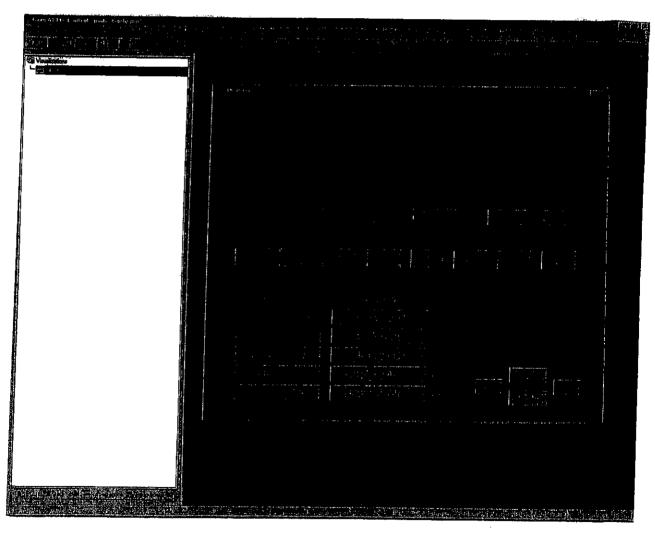




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1     |          |
|----------------------------------------|-----------------|----------|
| EtherCAT Adapters LIGO DCC#            | D1100419-v3     |          |
| Controller Serial #                    | <u> 5110756</u> | 2        |
| lest Engineer:                         | Zach            | 6        |
| lest Date:                             | 11/22/          | <u> </u> |
| Overall picomotor chassis testing:     | [YPASS          | [ ] FAIL |
| Signature/Initials:                    |                 |          |
|                                        |                 |          |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
- 5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

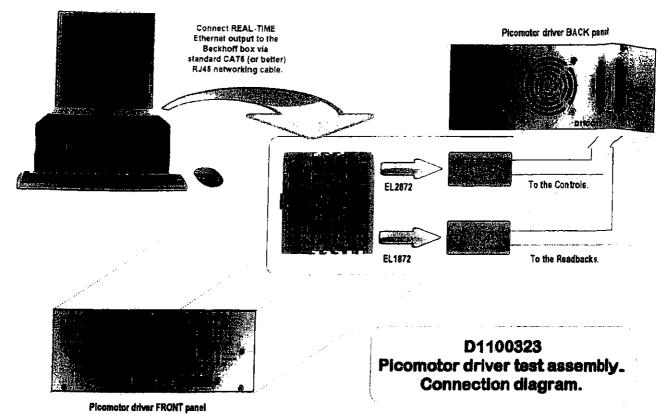
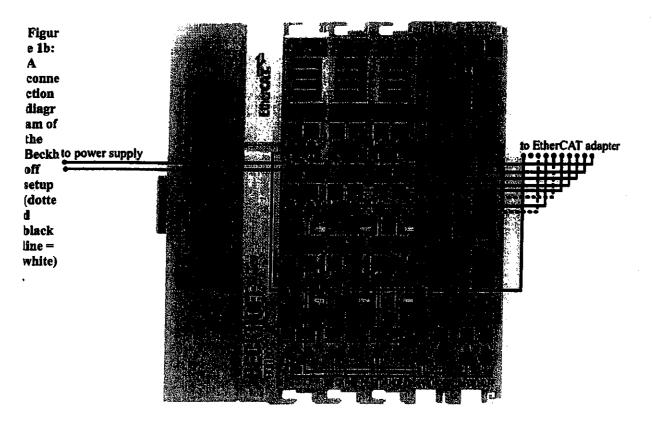




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)

Click "Yes" at the dialog:

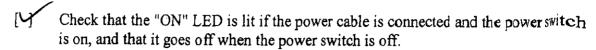
"No program on the controller! Download the new program?"

Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:


in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:



| [4 | Check that the "ON" indicator on the visualization also responds to the power switch. |
|----|---------------------------------------------------------------------------------------|
|----|---------------------------------------------------------------------------------------|

| [4 | Check that the "Remote" LED turns off if the EtherCAT adapter for controls is |
|----|-------------------------------------------------------------------------------|
|    | disconnected.                                                                 |

| [4 | Before the next step, check that the fan (rear panel) is off |
|----|--------------------------------------------------------------|
|----|--------------------------------------------------------------|

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | atus Chassis Front Panel |        |         | Os      | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | KM                 | O.T    | cm    |
| STARTING UP      | off                      | on     | flashes | flashes | de                 | on     | m     |
| READY            | off                      | on     | off     | off     | of_                | 57     | (27)  |
| Check if passed: | [U                       | [4     | [4]     | [J      | W                  | U      | 11    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | LED         |  |  |
|----------|------|-------------|--|--|
|          | Left | Right       |  |  |
| 1        | [4]  | [4]         |  |  |
| 2        | [J   |             |  |  |
| 3        | [4   | [4          |  |  |
| 4        | LY   | []          |  |  |
| 5        | [4   | [4]         |  |  |
| 6        |      | [4]         |  |  |
| 7        |      | [4]         |  |  |
| 8        |      | _[ <u>}</u> |  |  |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | U       | [ 9     | [4]   | 7     |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | [4]            | []                 |
| MEDIUM (100)   | []             | H                  |
| MAGNUM (10000) | [4             | []                 |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Selecta speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| CRAWL (1Hz)    | []             | []                 |
| JOG (50Hz)     | [-]            | []                 |
| SPRINT (500Hz) | []             | []                 |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 27.64          | 27.46              |  |  |
| 2                | 28.82          | 28.77              |  |  |
| 3                | 36.00          | 29.97              |  |  |
| 4                | 31.00          | 31.05              |  |  |
| 5                | 31-91          | 32.01              |  |  |
| Check if passed: | [9]            | 14                 |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [4]            | Ŋ                  |  |
| 2        | [4]            | H                  |  |
| 3        |                | []                 |  |
| 4        | II II          | [1                 |  |
| 5        | [9             | [1]                |  |
| 6        | H              |                    |  |
| 7        | [14]           | [/                 |  |
| 8        | T U            | [1                 |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                                       |  |
|----------|----------------|---------------------------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN")                    |  |
| 1        | [1]            | []                                    |  |
| 2        | 1              | 11                                    |  |
| 3        |                | W.                                    |  |
| 4        | ()             | ĺ                                     |  |
| 5        |                | W.                                    |  |
| 6        | W              | [1]                                   |  |
| 7        |                |                                       |  |
| 8        |                | , , , , , , , , , , , , , , , , , , , |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | []Fail   |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [ Pass   | [ ] Fail |

Test Engineer: Z. C.
Test Date: 1/22///

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

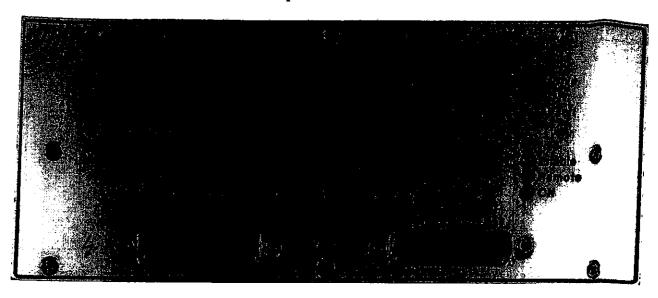



Figure 3: Picomotor driver chassis rear panel

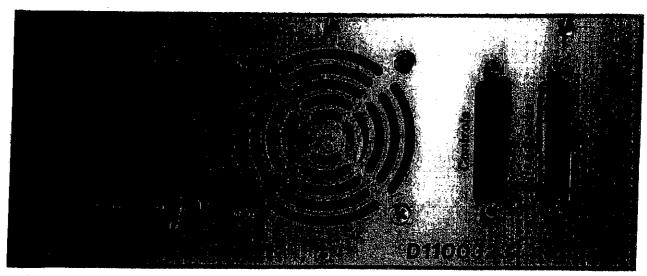
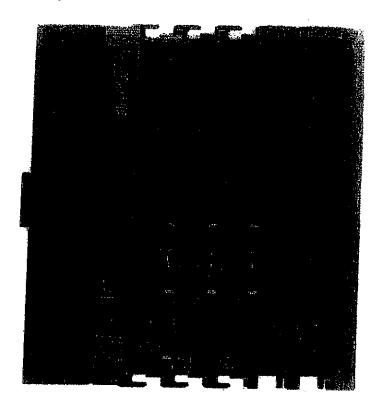




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

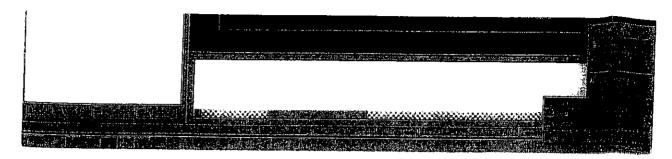
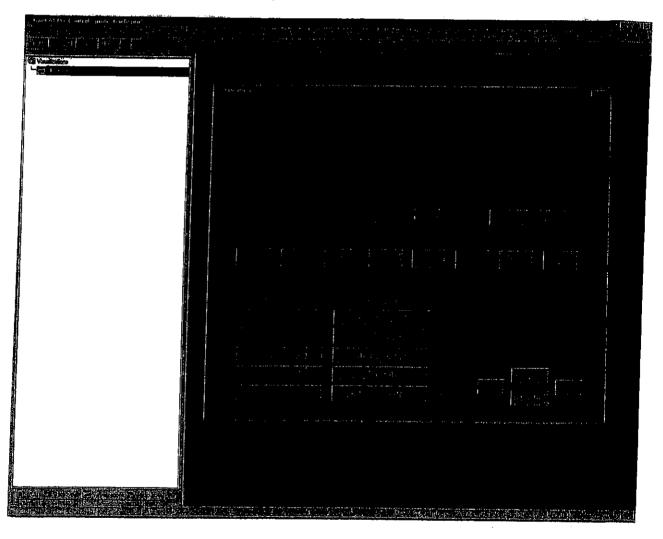




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |          |
|----------------------------------------|--------------------|----------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3        |          |
| Controller Serial #                    | 5/107              | 563      |
| Test Engineer:                         | Z.J.               | 6        |
| Test Date:                             | 11/28/             | <u>'</u> |
| Overall picomotor chassis testing:     | [4PASS             | []FAIL   |
| Signature/Initials:                    |                    |          |
|                                        |                    |          |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
  5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

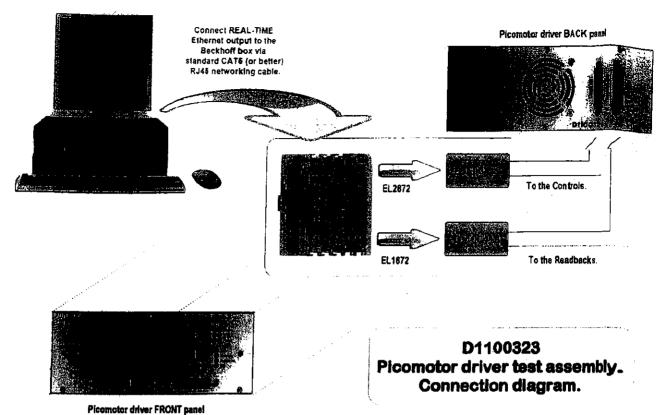
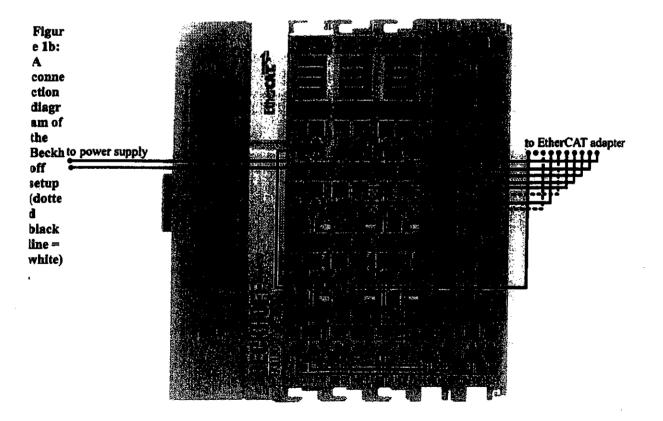




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

| [i] | Check that the "ON" LED is lit if the power cable is connected and the power switch |
|-----|-------------------------------------------------------------------------------------|
|     | is on, and that it goes off when the power switch is off.                           |

Check that the "ON" indicator on the visualization also responds to the power switch.

[ Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

[ ] / Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | (57) | 68     | SU    |
| STARTING UP      | off                      | on     | flashes | flashes            | 5 Pt | on     | (2)   |
| READY            | off                      | on     | off     | off                | A    | S      |       |
| Check if passed: | [1]                      |        | []      | 11                 |      | []     | 1     |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [U]  | M     |
| 2        | [4]  | M     |
| 3        |      | 1     |
| 4        |      | 1     |
| 5        | []   | [1    |
| 6        |      | [/]   |
| 7        | [-]  | []    |
| 8        | [1   | []    |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [4]     | M       | []    |       |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [1]            | 19                 |  |
| MEDIUM (100)   | [4]            | H                  |  |
| MAGNUM (10000) | [4             | []                 |  |

## 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | []                 |  |
| JOG (50Hz)     | IY/            | M                  |  |
| SPRINT (500Hz) | [-]            | 1                  |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Tem            | perature           |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 26.75          | 24.88              |
| 2                | 28.03          | 26.23              |
| 3                | 29.19          | 27.99              |
| 4                | 30.24          | 28.63              |
| 5                | 31.18          | 29,61              |
| Check if passed: | [4]            | []                 |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | []             | [4                 |  |
| 2        | W.             | [ ]                |  |
| 3        | [9]            |                    |  |
| 4        | [9             |                    |  |
| 5        |                |                    |  |
| 6        | [ ]            | [1                 |  |
| 7        |                | [/                 |  |
| 8        |                | 11                 |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [1/            | [1                 |
| 2        |                | []                 |
| 3        | [1             | 11                 |
| 4        |                | [X                 |
| 5        |                | i/                 |
| 6        | [1             | [ <i>X</i>         |
| 7        | И              | 1.7                |
| 8        |                | [/                 |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |  |
|-----------------------------------|----------|----------|--|
| Output terminals                  | [ ] Pass | [ ] Fail |  |
| Speeds                            | [ ] Pass | [ ] Fail |  |
| Step sizes                        | [ ] Pass | [ ] Fail |  |
| Front panel LEDs                  | Pass     | [ ] Fail |  |

Test Engineer: Zeb 6
Test Date: 1/28/11

Additional Comments:

## **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

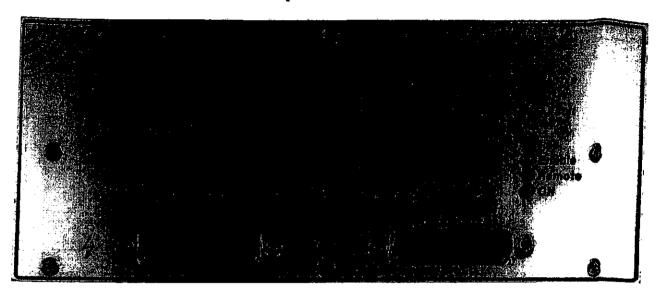



Figure 3: Picomotor driver chassis rear panel

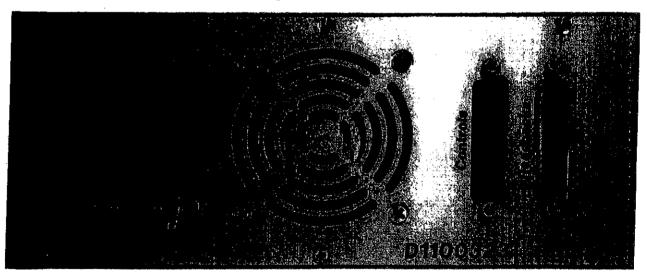
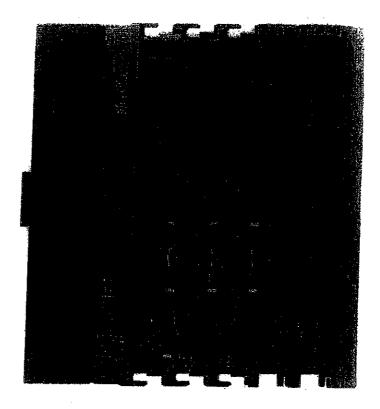




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

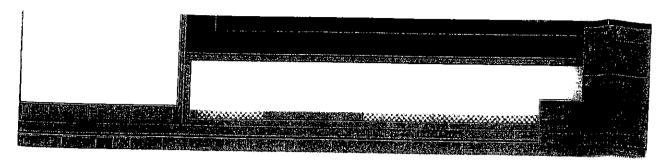
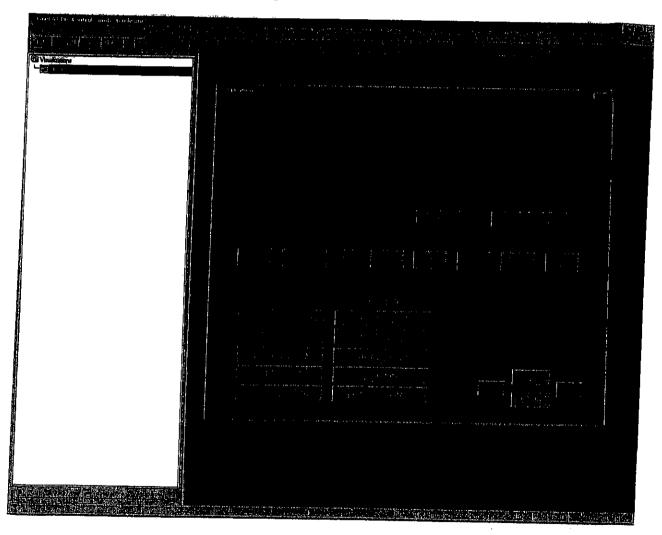




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129

Fax (626) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824
Fax (617) 253 7014
E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |          |  |
|----------------------------------------|-------------|----------|--|
| ltherCAT Adapters LIGO DCC#            | D1100419-v3 |          |  |
| Controller Serial #                    | 511075      | 69       |  |
| lest Engineer:                         | Zuch        | C=       |  |
| Test Date:                             | 1/28/11     |          |  |
| Overall picomotor chassis testing:     | PASS        | [ ] FAIL |  |
| Signature/Initials:                    |             |          |  |
|                                        |             |          |  |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### Testing Schedule:

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
- 5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

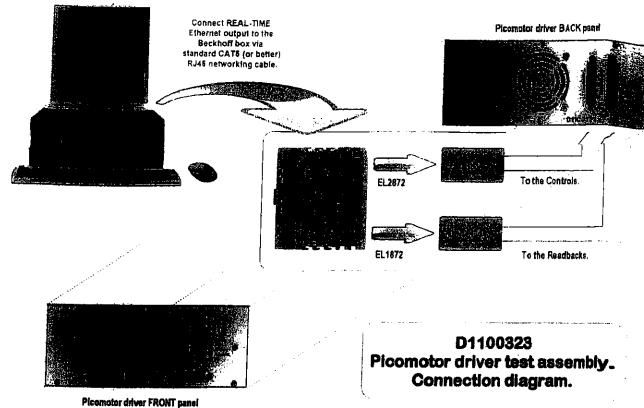
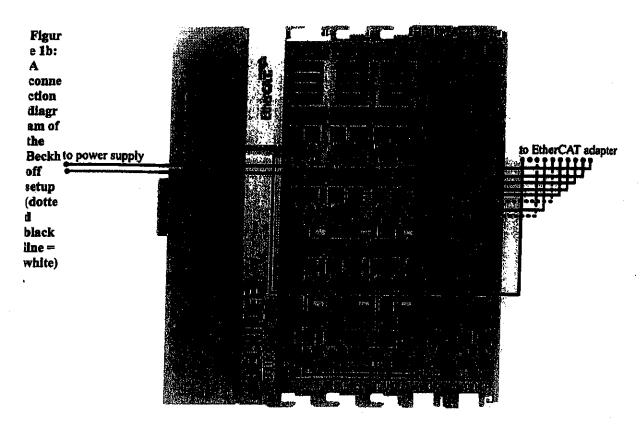




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- [ ] Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | Onc  | off    | 021   |
| STARTING UP      | off                      | on     | flashes | flashes            | 08   | CM     | 02    |
| READY            | off                      | on     | off     | off                | G    | 5      | (51)  |
| Check if passed: | [1]                      | [1     | 1       | [1]                | [1   | 1      | H     |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- ['] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the icomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED             |       |  |
|----------|-----------------|-------|--|
|          | Left            | Right |  |
| 1        | [4              | [4]   |  |
| 2        | 14              | [4]   |  |
| 3        | [1]             | [4]   |  |
| 4        | [4 <sup>'</sup> | [4    |  |
| 5        | [4]             | [4]   |  |
| 6        | I I I           | W     |  |
| 7        |                 | [4]   |  |
| 8        | []              | [1]   |  |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [1]     | []    | [9    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and sheck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | []             | []                 |  |
| MEDIUM (100)   | [ }_           | []                 |  |
| MAGNUM (10000) | [1             | []                 |  |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | · ·                |  |
| JOG (50Hz)     | []             | []                 |  |
| SPRINT (500Hz) | [-]            | 19                 |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 23,92          | 25.16              |  |
| 2                | 25.22          | 26.56              |  |
| 3                | 26.40          | 27.90              |  |
| 4                | 27.44          | 28.94              |  |
| 5                | 28, 42         | 30.02              |  |
| Check if passed: | H              | H                  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | N                  |  |  |
| 2        | [4]            | F4                 |  |  |
| 3        |                |                    |  |  |
| 4        |                | [2]                |  |  |
| 5        | [19]           |                    |  |  |
| 5        | M.             | (1/                |  |  |
| 7        |                | 19                 |  |  |
| 3        |                | 14                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal 1 | Axis           |                    |  |  |
|------------|----------------|--------------------|--|--|
|            | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
|            | [4]            | 14                 |  |  |
| 2          | [4]            | [ <del>]</del>     |  |  |
| 3          | [4]            | 1/                 |  |  |
| 4          | [4]            | 17                 |  |  |
| 5          | 14             |                    |  |  |
| 6          | 11/            | 17                 |  |  |
| 7          |                |                    |  |  |
| 3          |                | 11                 |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ / Pass | []Fail   |  |
|-----------------------------------|----------|----------|--|
| Output terminals                  | [ ] Pass | [ ] Fail |  |
| Speeds                            | [ ] Pass | [ ] Fail |  |
| Step sizes                        | [ ] Pass | [ ] Fail |  |
| Front panel LEDs                  | [ ] Pass | [ ] Fail |  |

Test Engineer: Zah C
Test Date: 1/28///

Additional Comments:

## Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

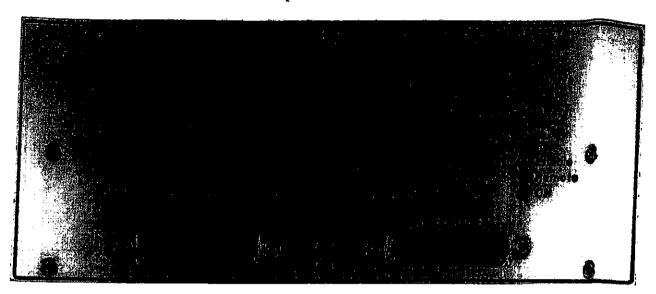



Figure 3: Picomotor driver chassis rear panel

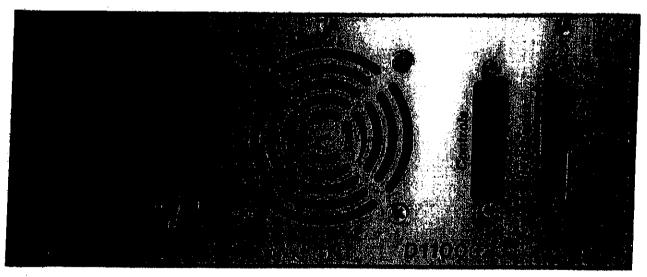
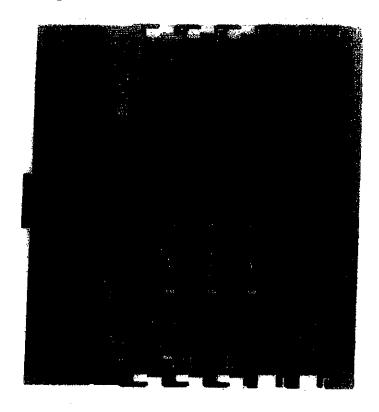




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

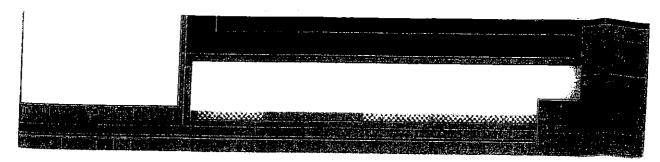
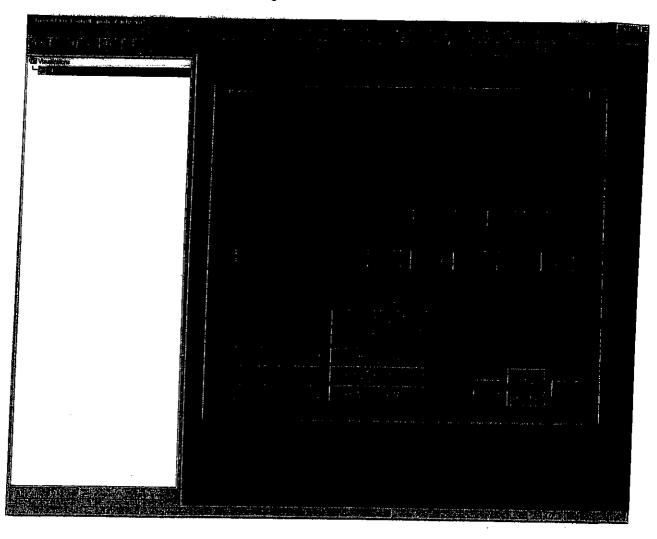




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |             |
|----------------------------------------|-------------|-------------|
| ltherCAT Adapters LIGO DCC#            | D1100419-v3 |             |
| Controller Serial #                    | 51107565    |             |
| lest Engineer:                         | Zach G      | <del></del> |
| lest Date:                             | 11/28/11    |             |
| Overall picomotor chassis testing:     | [ ] PASS    | [ ] FAIL    |
| Signature/Initials:                    |             |             |
|                                        |             |             |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20 Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear partel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

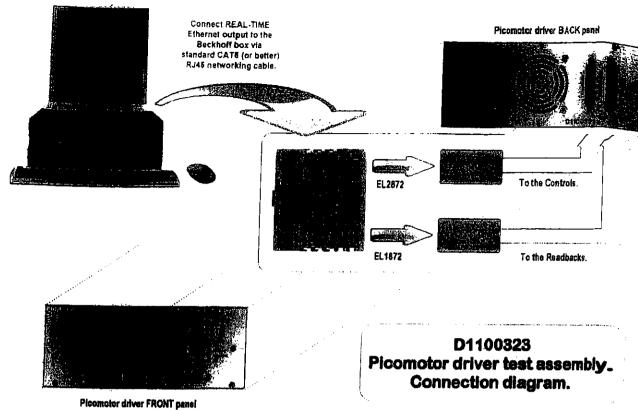
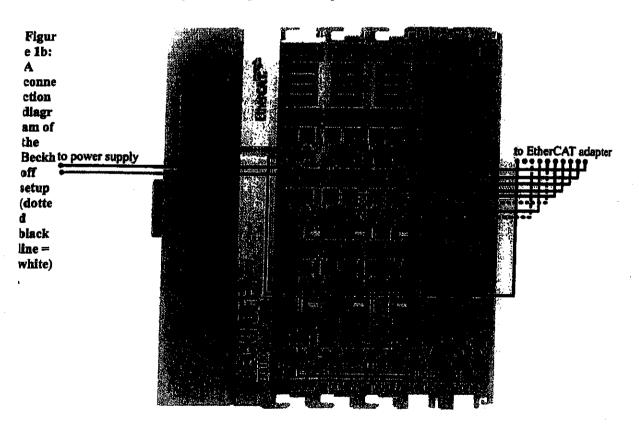




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | on   | 04     | (M    |
| STARTING UP      | off                      | on     | flashes | flashes            | OF.  | on     | OM    |
| READY            | off                      | on     | off     | off                | off  | on     | (7)   |
| Check if passed: | [1]                      | []     | [1]     |                    |      |        |       |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4]  | [4    |
| 2        | [4   | [-]   |
| 3        | [4]  | [1    |
| 4        | []   | 1     |
| 5        | [Y   | [1]   |
| 6        |      | [1    |
| 7        | [4]  | [1    |
| 8        | [}   | [1    |

### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |  |
|------------------|---------|---------|-------|-------|--|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |  |
| DOWN             | off     | on *    | off   | on ** |  |  |
| UP               | off     | on *    | off   | off   |  |  |
| >                | on *    | off     | on ** | off   |  |  |
| <                | on *    | off     | off   | off   |  |  |
| Check if passed: | [4]     | []      | []    | []    |  |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there is terminal I is selected, then select "SPRINT (500Hz)" under "SPED". Select a tep size and then a direction. Check that the motor runs for a longer time (the motor clicks and  $tu_1n_2$ ) when it runs) as you increase the step size for each axis (X and Y):

|                    | <u></u>        | (10000) MUNDAM |
|--------------------|----------------|----------------|
| <i>[</i>           | [H             | MEDIUM (100)   |
| [1]                | $\mathcal{H}$  | AEKA ZWYLT (1) |
| Y ("UP" or "DOWN") | ("<" 10 ">") X |                |
| sixA               | ,              | Step Size      |

# 3. Testing the speeds

| SPRINT (500Hz) | [F]            | XI                 |
|----------------|----------------|--------------------|
| (SH08) ĐOU     | <i>[</i> -     | المر               |
| CKAWL (IHz)    | <b>1</b>       |                    |
| -              | X ("<" or ">") | Y ("UP" or "DOWN") |
| Speed          | ,              | sixA               |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 24.76          | 24.21              |  |  |
| 2                | 26.00          | 25.62              |  |  |
| 3                | 27.31          | 26.89              |  |  |
| 4                | 28.49          | 28.09              |  |  |
| 5                | 29.43          | 29.19              |  |  |
| Check if passed: | [4             | M                  |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | W              |                    |  |  |  |
| 2        | W              | [1]                |  |  |  |
| 3        | [4]            |                    |  |  |  |
| 4        | [4]            | [7]                |  |  |  |
| 5        | [Y]            | 17                 |  |  |  |
| 6        | [4]            | 11                 |  |  |  |
| 7        | [1]            | [1                 |  |  |  |
| 3        |                | ī <b>1</b>         |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [1             | [/                 |  |  |  |  |
| 2        | [1             | 11                 |  |  |  |  |
| 3        | [/]            | 11                 |  |  |  |  |
| 4        | [1             | 11                 |  |  |  |  |
| 5        | [X             | ĺ                  |  |  |  |  |
| 6        |                | 11                 |  |  |  |  |
| 7        |                | 11                 |  |  |  |  |
| 8        | [1             |                    |  |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | []Pass   | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zoh Co
Test Date: 1/28/11

Additional Comments:

# Appendix A: Physical Components

Mgure 2: Picomotor driver chassis front panel

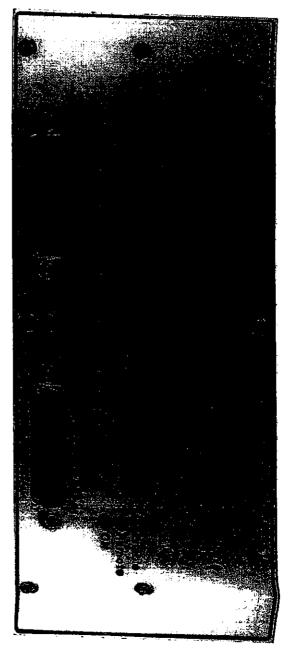
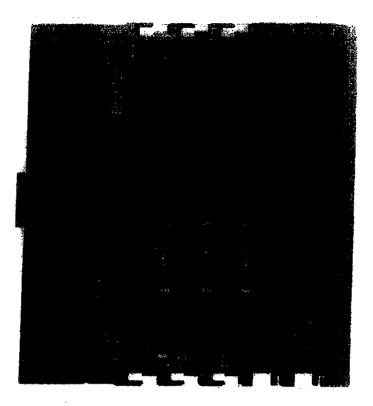




Figure 3: Picomotor driver chassis rear panel



Figure 4: EtherCAT configuration



# Appendix B: PLC Controls

Figure 5: Step 3 of PLC controls setup

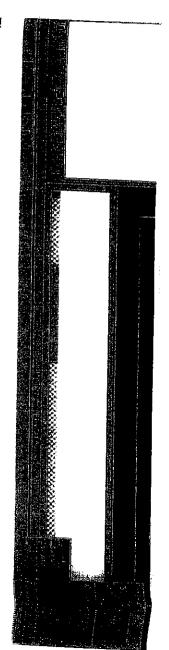
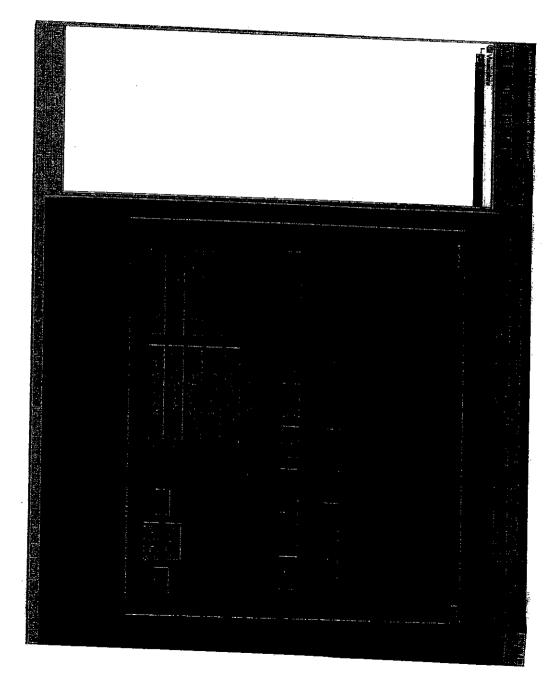




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Physics (212) 254 2200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| <u>D1100323-v1</u> |
|--------------------|
| D1100419-v3        |
| 511075ldo          |
| Zech G             |
| 11/28/11           |
| MPASS []FAIL       |
| ,                  |
|                    |

### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
  5. Output terminals

# System requirements

### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

# Setting up

### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

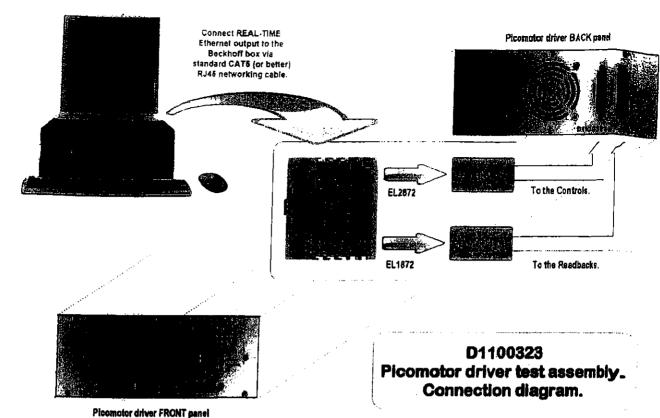
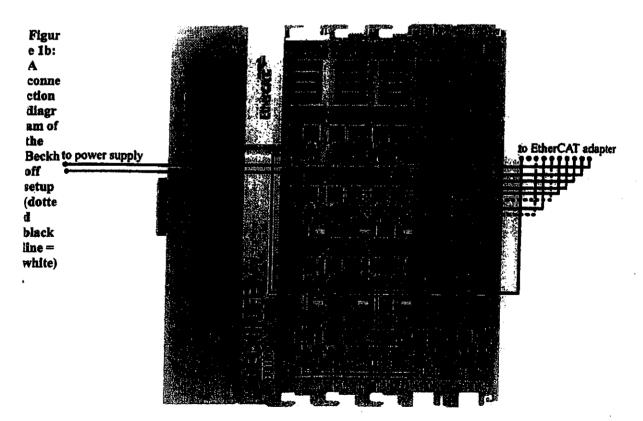




Figure 1a: A connection diagram of the picomotor setup.



# Setting up

### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:
 "No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [4] Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | on   | off    | 571   |
| STARTING UP      | off                      | on     | flashes | flashes            | off  | on     | مرن   |
| READY            | off                      | on     | off     | off                | off  | on     | 97    |
| Check if passed: | [4                       | [1     | [1      | ľ                  | [4]  | 1/     | 11    |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Inable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED  |       |  |
|----------|------|-------|--|
|          | Left | Right |  |
| 1        | [4]  | [ ]   |  |
| 2        | [4   |       |  |
| 3        | [1]  |       |  |
| 4        |      | [1]   |  |
| 5        | [1   | [1]   |  |
| 6        |      | [1]   |  |
| 7        | [1   | 17    |  |
| 8        | [/]  | [1]   |  |

### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [1]     | [1      | []    | []    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a tep size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | [Y             | [ <del>-]</del>    |  |
| MEDIUM (100)   | [4]            | 19                 |  |
| MAGNUM (10000) | 14             | ij                 |  |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| CRAWL (1Hz)    | IJ             | [4                 |
| JOG (50Hz)     | H/             | W.                 |
| SPRINT (500Hz) | [4             | 11                 |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 23.74          | 24.43              |  |
| 2                | 24.91          | 25.67              |  |
| 3                | 26.13          | 26.95              |  |
| 4                | 27.12          | 28.07              |  |
| 5                | 28.12          | 29.09              |  |
| Check if passed: | [+             | 19                 |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        |                | [/                 |
| 2        | [1]            |                    |
| 3        |                |                    |
| 4        |                | 11                 |
| 5        |                | 17                 |
|          | [/             | 17                 |
|          |                | 17                 |
|          |                | 11                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [Y             | 1/                 |
| 2        | [4]            | 11                 |
| 3        | [4]            | <br>[X             |
| 4        | [4]            | IΧ                 |
| 5        |                | 1/                 |
| 6        |                | ſχ                 |
| 7        | T W            |                    |
| 3        |                | r 1⁄               |

# Testing Summary

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [YPass   | [] Fail  |
|-----------------------------------|----------|----------|
| Output terminals                  | Pass     | [ ] Fail |
| Speeds                            | [ ) Pass | [ ] Fail |
| Sep sizes                         | [] Pass  | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zach 6

Test Date: 1/28///

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

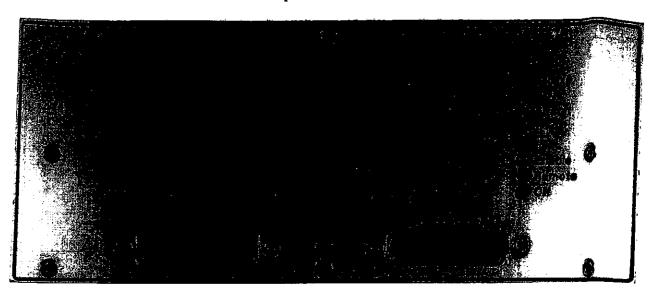



Figure 3: Picomotor driver chassis rear panel

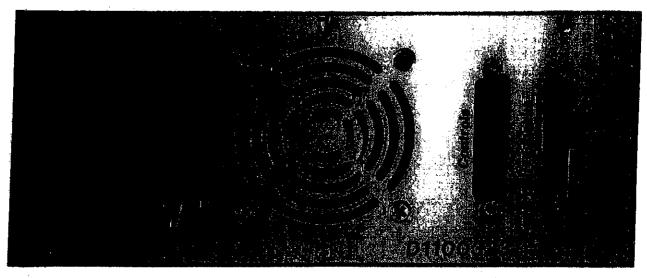
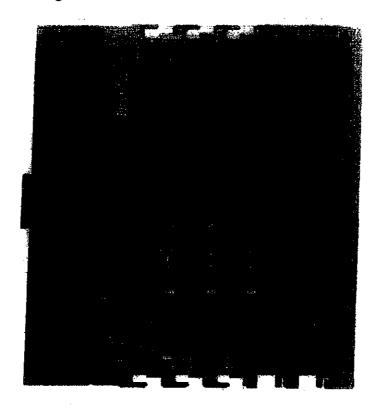




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

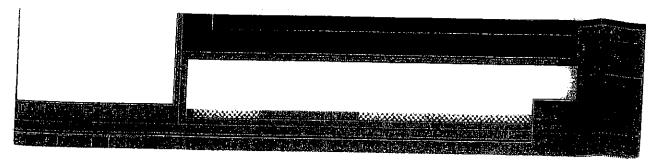
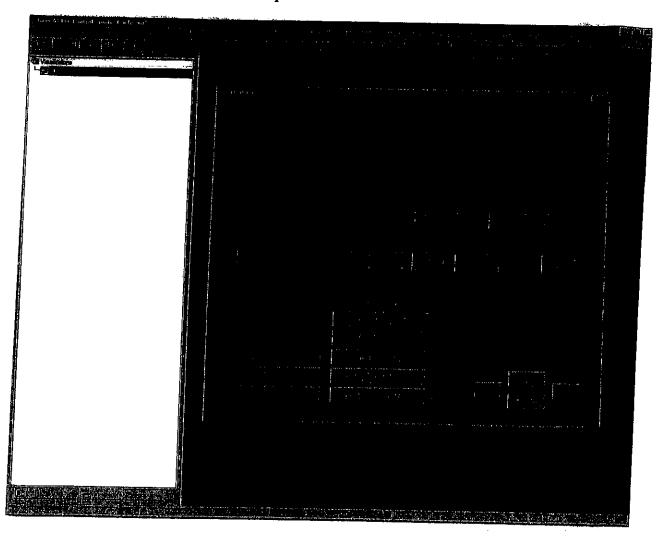




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| icomotor controller chassis LIGO DCC# | D1100323-v1 |          |
|---------------------------------------|-------------|----------|
| ltherCAT Adapters LIGO DCC#           | D1100419-v3 |          |
| Controller Serial #                   | 51107567    |          |
| lest Engineer:                        | Zach        | 6        |
| Test Date:                            | 1/28/11     |          |
| Overall picomotor chassis testing:    | []PASS      | [ ] FAIL |
| Signature/Initials:                   |             |          |
|                                       |             |          |

### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

### Testing Schedule:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

# System requirements

### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

# Setting up

### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear pariel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

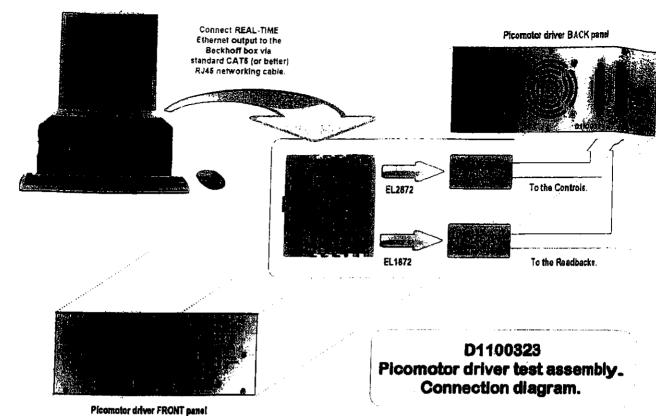
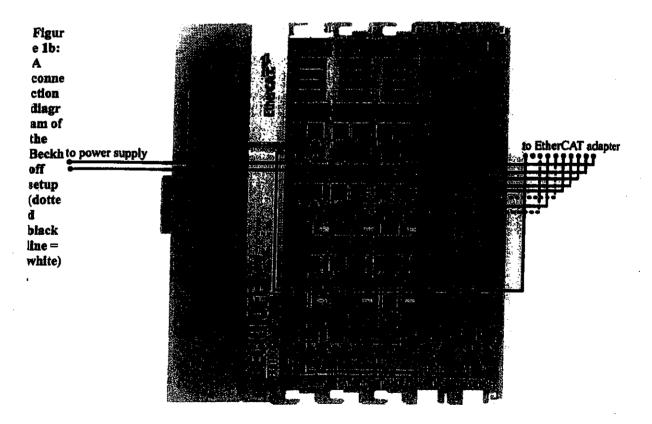




Figure 1a: A connection diagram of the picomotor setup.



# Setting up

### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

# 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Cl   | Chassis Front Panel LEDs |         |         | Software Readbacks |        |       |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | OM                 | Off    | GM    |
| STARTING UP      | off  | on                       | flashes | flashes | off                | SM     | on    |
| READY            | off  | on                       | off     | off     | of                 | on     | 07    |
| Check if passed: | [-]  |                          | 1       |         | [/]                | []     | W     |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the accomptor status is "READY", then do the following:

[ Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LED     |       |  |
|----------|---------|-------|--|
|          | Left    | Right |  |
| 1        | <br>[4] | [1]   |  |
| 2        | [4]     | [1]   |  |
| 3        | M       |       |  |
| 4        | 1       | 11    |  |
| 5        | [1]     | [ ]   |  |
| 6        | [1]     | [1    |  |
| 7        | [1]     | [1]   |  |
| 8        | [1      | []    |  |

### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: |         | [ ]     | []    | []    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# l. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there is tune the motor runs for a longer time (the motor clicks and tune) as you increase the step size for each axis (X and Y):

When it runs) as you increase the step size for each axis (X and Y):

|                    | <i>[</i> +]    | (10000) MUNDAM |
|--------------------|----------------|----------------|
|                    | $\mathcal{L}$  | MEDIUM (100)   |
|                    | hl             | VERY SMALL (1) |
| Y ("UP" or "DOWN") | ("<" 10 ">") X |                |
| sixA               | sixA           |                |

# 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) | J-1            | <u>F</u> I         |
|----------------|----------------|--------------------|
| 10G (20Hz)     | [بخر           | FI                 |
| CKAWL (1Hz)    | [A]            | J. 1               |
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| Speed          | sixA           |                    |

# 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 24.46          | 25.02              |
| 2                | 25.72          | 26.74              |
| 3                | 26.91          | 27.67              |
| 4                | 28.12          | 28.51              |
| 5                | 29.09          | 29.90              |
| Check if passed: | H              | N                  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | H              | [/                 |
| 2        |                | [+                 |
| 3        | - W            | [}                 |
| 4        | [/             | [+                 |
| 5        | [Y             | [}                 |
| 6        | [X             |                    |
| 7        | [ ]            | [/                 |
| 3        | [ ]            | []                 |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [4]            | IT                 |
| 2        | [ ]            | 11                 |
| 3        | [Y             | 11                 |
| 4        | [4]            | 11                 |
| 5        | [9             | 11                 |
| 6        | T I            | 1,                 |
| 7        |                | [/                 |
| 3        | 1              | 1                  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [] Fail  |  |
|-----------------------------------|----------|----------|--|
| Output terminals                  | Pass     | [ ] Fail |  |
| Speeds                            | [ ] Pass | []Fail   |  |
| %ep sizes                         | [] Pass  | [ ] Fail |  |
| Front panel LEDs                  | [YPass   | [ ] Fail |  |

Test Engineer: Zach C

Test Date: 11/28/11

Additional Comments:

## Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

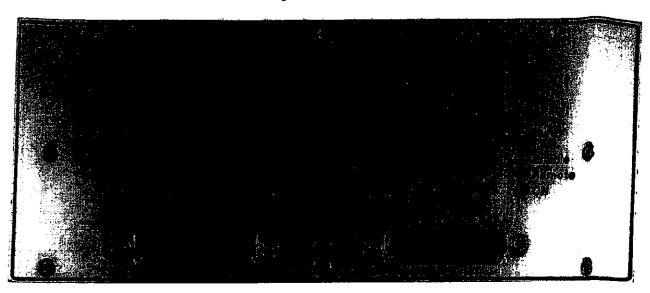



Figure 3: Picomotor driver chassis rear panel

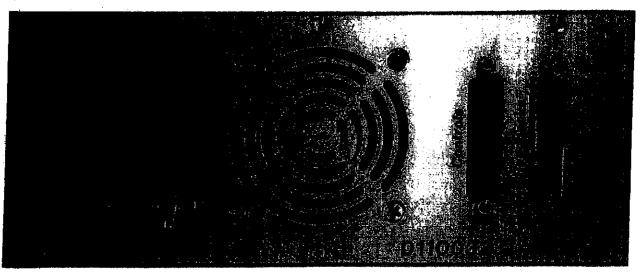
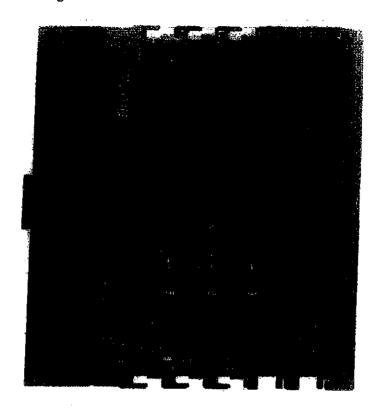




Figure 4: EtherCAT configuration



### **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

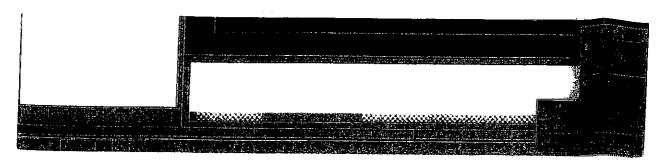
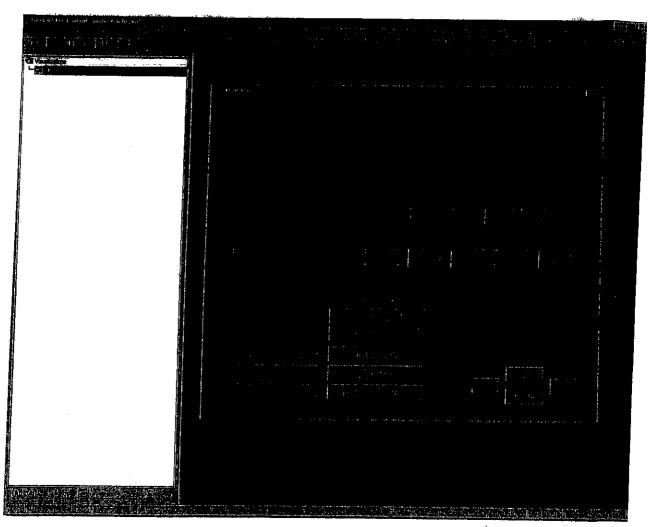




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| D1100323-v1 |                      |                                         |
|-------------|----------------------|-----------------------------------------|
| D1100419-v3 |                      |                                         |
| 5110        | 07968                |                                         |
| 2dh         | G                    |                                         |
| 11/28/      | //                   |                                         |
| PASS        | [ ] FAIL             |                                         |
|             |                      |                                         |
|             |                      |                                         |
|             | D1100419-v3 SIIC Zch | D1100419-v3  S1107968  Zech G  11/28/11 |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872

  Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

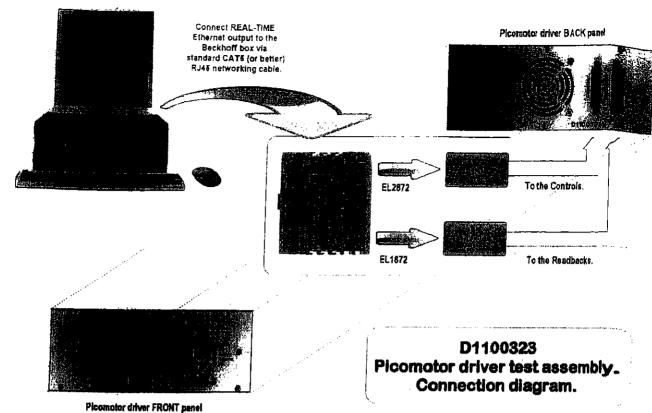
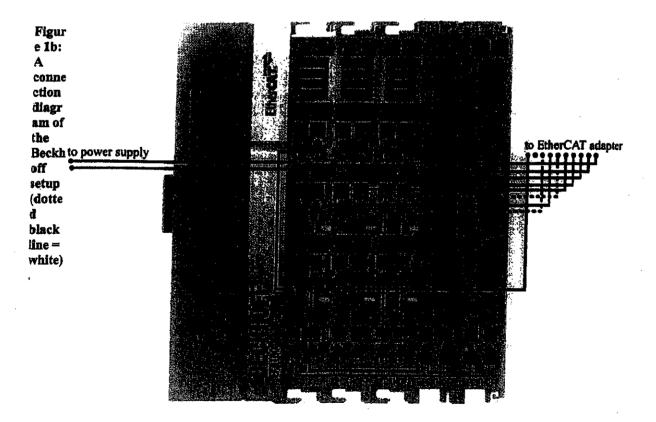




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | on   | 124    | (5/1  |
| STARTING UP      | off                      | on     | flashes | flashes            | 01   | SN     | M     |
| READY            | off                      | on     | off     | off                | off  | 600    | on    |
| Check if passed: | -<br>H                   | 11     | []      | [7]                | [1]  | 11     | 11    |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [/] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[ Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [/   | V     |
| 2        | [1   | [7    |
| 3        | [/   | [7    |
| 4        | [/   | 11    |
| 5        | [/   | H     |
| 6        | [1   |       |
| 7        |      | [1]   |
| 8        | [1]  | [1    |

#### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [/]     |         | [1    | []    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 3. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a fep size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns) as you increase the step size for each axis (X and Y):

| المر               |                  | (00001) MUNDAM |
|--------------------|------------------|----------------|
|                    | <i>[</i> *]      | MEDINM (100)   |
|                    | <b>/</b> ₹]      | VERY SMALL (1) |
| Y ("UP" OF "DOWN") | X ("<" or ">") X |                |
| sixA               | 7                | Size gətz      |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| sixA               | 7                            | Speed          |
|--------------------|------------------------------|----------------|
| Y ("UP" or "DOWN") | $(^{n}<^{n})$ Or $^{n}>^{n}$ |                |
| <u>/1</u>          | [辽                           | CKAWL (IHz)    |
| <b>J</b> 1         | <i>[</i> ]                   | 10G (50Hz)     |
| FI                 | <i>[</i> ]                   | SPRINT (500Hz) |

#### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Tem            | perature           |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 25.15          | 26.79              |
| 2                | 26.48          | 28.25              |
| 3                | 27.76          | 29.60              |
| 4                | 28.82          | 30.74              |
| 5                | 29.79          | 31.81              |
| Check if passed: | [4             | 14                 |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | CY.            | [V                 |  |  |  |
| 2        | - [Y           |                    |  |  |  |
| 3        |                | [/                 |  |  |  |
| 4        |                | 1                  |  |  |  |
| 5        |                | 17                 |  |  |  |
| 6        |                | 1/                 |  |  |  |
| 7        |                | 1/                 |  |  |  |
| 3        | [4]            | 11                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | M              | [4]                |  |  |  |
| 2        | [4             | 17                 |  |  |  |
| 3        | [4             | [1]                |  |  |  |
| 4        | [4]            | 11                 |  |  |  |
| 5        | 7 [4           | 1.7                |  |  |  |
| 6        |                | 11                 |  |  |  |
| 7        | [1]            |                    |  |  |  |
| 3        |                | [ ]                |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | []Fail   |
|-----------------------------------|----------|----------|
| Output terminals                  | [ }Pass  | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [JPass   | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zech ()
Test Date: 11/28///

Additional Comments:

## Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

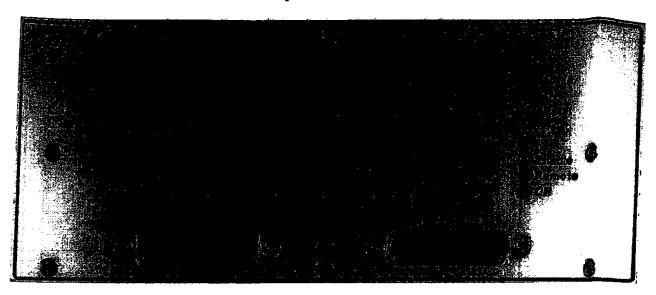



Figure 3: Picomotor driver chassis rear panel

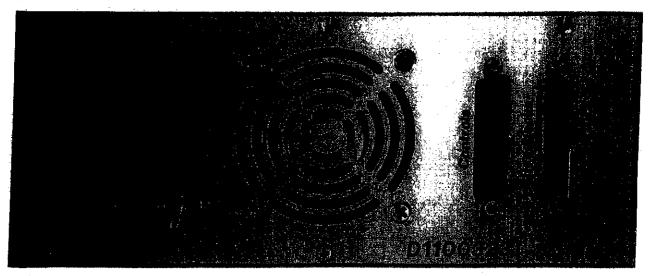
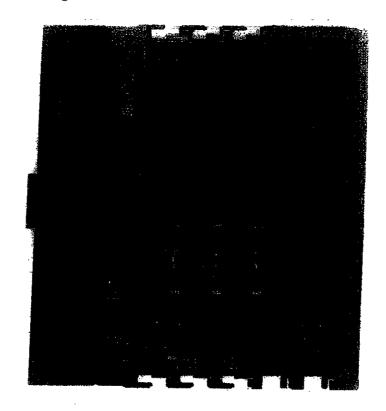




Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

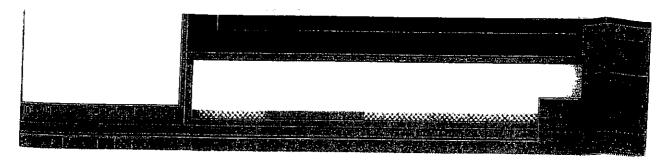
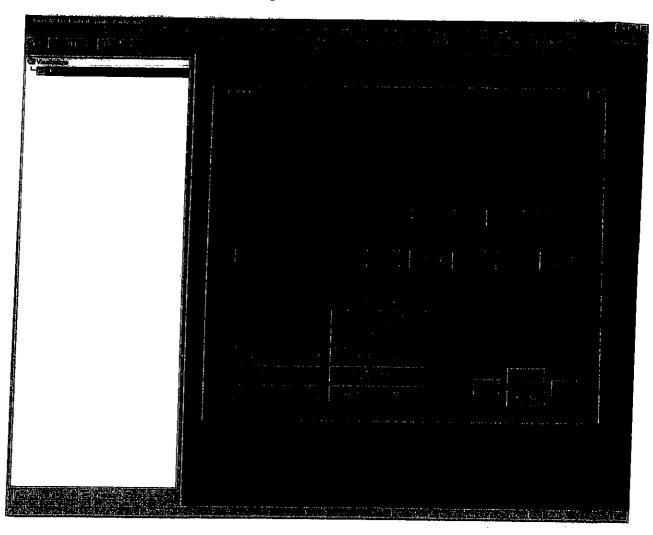




Figure 6: Step 5 of PLC controls setup



## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014

E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 US A

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121 E-mail: geco.cu@gmail.com

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |
|----------------------------------------|-------------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |
| Controller Serial #                    | 5107569     |
| lest Engineer:                         | Zach C      |
| Test Date:                             | 11/28/11    |
| Overall picomotor chassis testing:     | [ ] FAIL    |
| Signature/Initials:                    |             |
|                                        |             |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes

- 3. Speeds
  4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### <u>Software:</u>

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

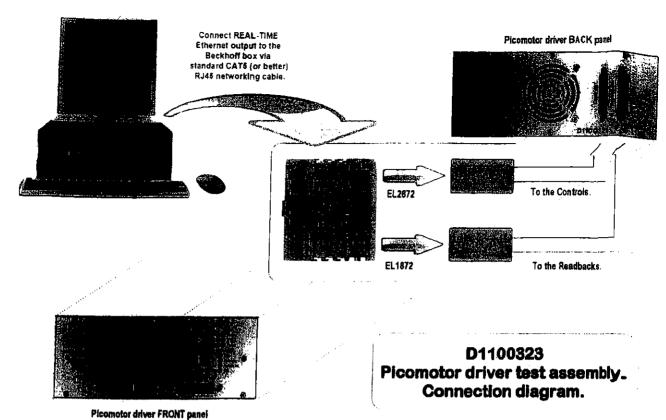
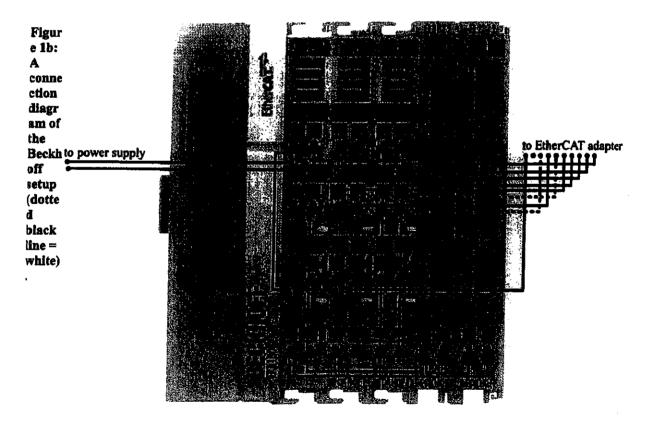




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |              | Softv   | vare Read | backs  |         |
|------------------|--------------------------|--------|--------------|---------|-----------|--------|---------|
|                  | IDLE                     | Enable | Fault X      | Fault Y | IDLE      | Enable | Power   |
| DRIVER DISABLED  | on                       | off    | off          | off     | on        | of     | on      |
| STARTING UP      | off                      | on     | flashes      | flashes | of        | on     | (13)    |
| READY            | off                      | on     | off          | off     | off       | 5      | (\sqrt) |
| Check if passed: | W.                       | [4]    | <del>-</del> | [7]     | []        | H      |         |

Table 1: LED response to picomotor status

- [ Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LJ   | LED   |  |
|----------|------|-------|--|
|          | Left | Right |  |
| 1        | [4]  | [J    |  |
| 2        | [4]  | [4    |  |
| 3        | [4]  | [4    |  |
| 4        | [4]  | [4]   |  |
| 5        |      | []    |  |
| 6        | [4   | [/    |  |
| 7        | W W  | [1    |  |
| 8        | [/   | [/]   |  |

#### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | H       | []      | [/]   | [/    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

#### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| VERY SMALL (1) | M              | M                  |  |
| MEDIUM (100)   | [4             | [9]                |  |
| MAGNUM (10000) | [4]            | 19                 |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Selecta speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | [9                 |  |
| JOG (50Hz)     | [4             | 19                 |  |
| SPRINT (500Hz) | [Y             | 19                 |  |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 35.00          | 34.64              |  |
| 2                | 35 · 83        | 35.47              |  |
| 3                | 36.54          | 36.27              |  |
| 4                | 3716           | 36.96              |  |
| 5                | 37.70          | 37. 62             |  |
| Check if passed: | [1]            | 19                 |  |

Check the "pass" box for each above if the temperature increases over time.

## 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [Y             | [4]                |  |  |
| 2        | [4]            | []                 |  |  |
| 3        | [4]            | [4                 |  |  |
| 4        | [-]            | [J                 |  |  |
| 5        | [4]            | []                 |  |  |
| 6        | []             | []                 |  |  |
| 7        | []             | [ ]                |  |  |
| 8        |                | []                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [1]            | [4]                |  |
| 2        | 14             | 14                 |  |
| 3        | [4]            | [/                 |  |
| 4        |                | 1/                 |  |
| 5        | [4]            | [1                 |  |
| 6        | [1]            | [/                 |  |
| 7        |                | [7]                |  |
| 8        |                |                    |  |

## **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [   Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [-]Pass  | [ ] Fail |
| Speeds                            | [ Pass   | [ ] Fail |
| Sep sizes                         | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [JPass   | [ ] Fail |

Test Engineer: Zach 6
Test Date: 11/29/1

Additional Comments:

## Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

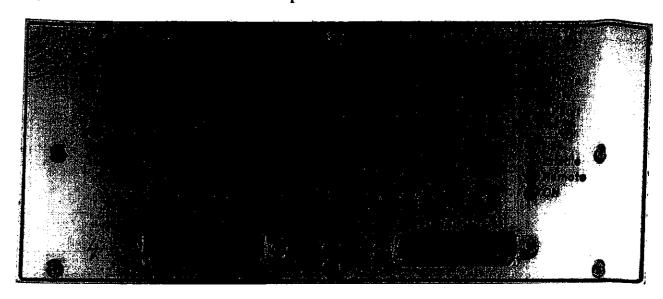



Figure 3: Picomotor driver chassis rear panel

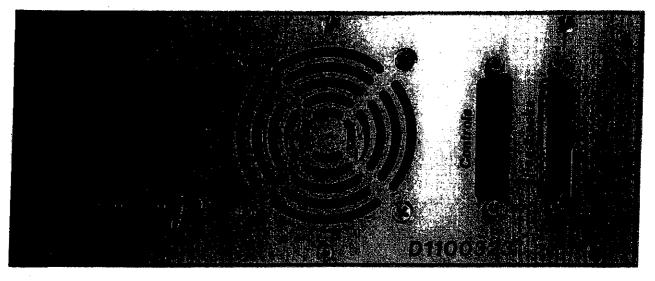
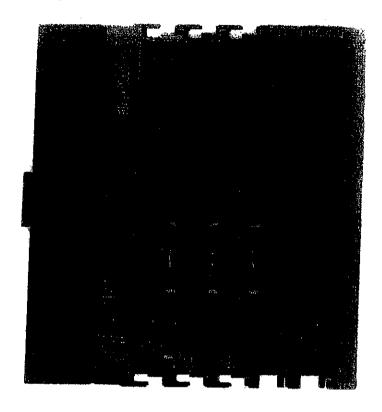




Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

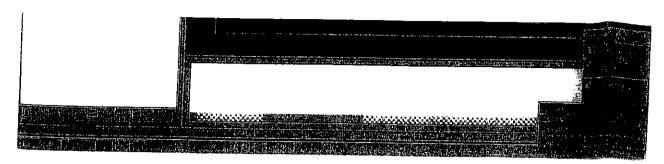
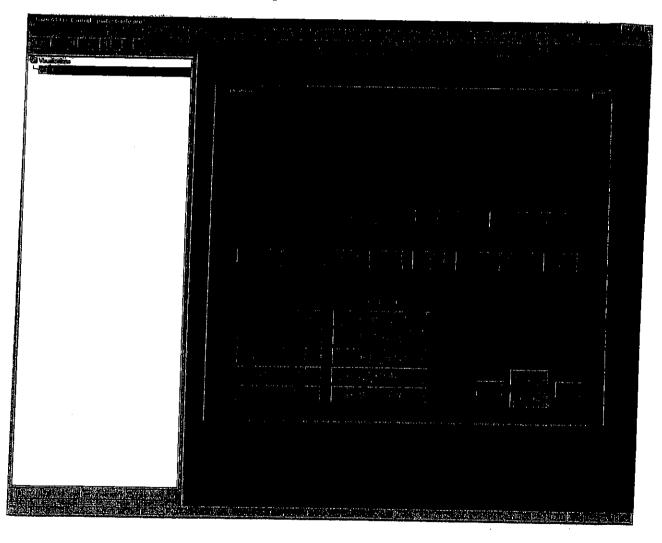




Figure 6: Step 5 of PLC controls setup



## LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

### CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129

Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 US A

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hail - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1        |              |  |
|----------------------------------------|--------------------|--------------|--|
| EtherCAT Adapters LIGO DCC#            | <u>D1100419-v3</u> |              |  |
| Controller Serial #                    | 51107              | 570          |  |
| Test Engineer:                         | _ Zach             | 6            |  |
| Test Date:                             |                    | <b>4</b> /11 |  |
| Overall picomotor chassis testing:     | [4] PASS           | []FAIL       |  |
| Signature/Initials:                    |                    |              |  |
|                                        |                    |              |  |
|                                        |                    |              |  |

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

# **Testing Schedule:**

Reference:

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- Hook-up wires
   Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

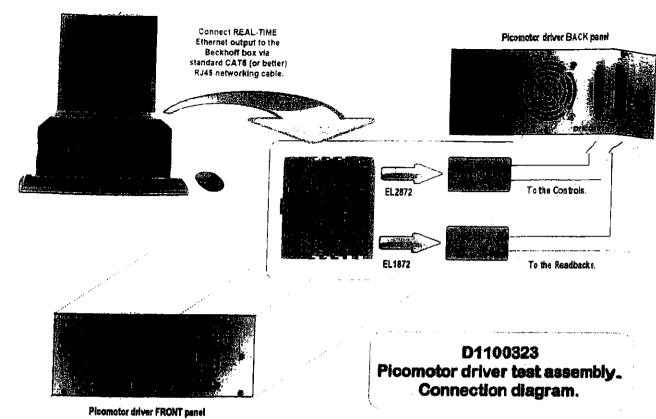
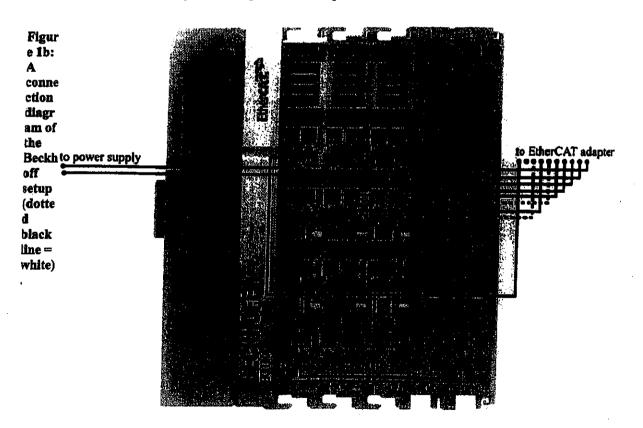




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the powerswitch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | On   | Of     | on    |
| STARTING UP      | off                      | on     | flashes | flashes            | 64   | on     | On    |
| READY            | off                      | on     | off     | off                | off  | 00/    | 021   |
| Check if passed: | [4]                      | [4]    | [4      | [4]                | [9]  | F      | +1    |

Table 1: LED response to picomotor status

- [ Y Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4   | [4]   |
| 2        | [4]  | [1]   |
| 3        |      | []    |
| 4        | [-]  | []    |
| 5        | H    | []    |
| 6        |      | [ 4   |
| 7        |      | [-]   |
| 8        | 1 [1 | [4]   |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CW Y  |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [4]     | [-]     | [}    |       |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a tep size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | [4]            | M                  |  |  |
| MEDIUM (100)   | [4             |                    |  |  |
| MAGNUM (10000) | [4             | 19                 |  |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| CRAWL (1Hz)    | [4             | [1]                |
| JOG (50Hz)     | [-]/           | il                 |
| SPRINT (500Hz) | [ <i>Y</i>     | 19                 |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 25.93          | 25.70              |  |
| 2                | 27.12          | 27.00              |  |
| 3                | 28.35          | 28.24              |  |
| 4                | 29,44          | 29.44              |  |
| 5                | 36.39          | 36.46              |  |
| Check if passed: | H              | 14                 |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [4             | [4]                |  |  |  |  |
| 2        | [4]            | 14                 |  |  |  |  |
| 3        | [y             | 19                 |  |  |  |  |
| 4        | [4             | 13                 |  |  |  |  |
| 5        | [4             | 14                 |  |  |  |  |
| 6        | T IY           | N                  |  |  |  |  |
| 7        |                | 11                 |  |  |  |  |
| 3        | H              | [1                 |  |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [i]            | 11                 |  |  |
| 2        | 14             | 11                 |  |  |
| 3        | [4]            | IT                 |  |  |
| 4        | [4]            | 11                 |  |  |
| 5        |                | [}                 |  |  |
| 6        | [1]            | 11                 |  |  |
| 7        |                | []                 |  |  |
| 3        |                | [-                 |  |  |

# Testing Summary

For each test, indicate the results in the table below:

| Overall picomotor driver testing: |        |          |
|-----------------------------------|--------|----------|
| Output terminals [~               | Pass [ | ] Fail   |
| Speeds [V                         | Pass [ | ] Fail   |
| Step sizes [                      | Pass   | [] Fail  |
| Front panel LEDs                  | Pass   | [ ] Fail |

Test Engineer: Zach G

Test Date: 11/29/11

Additional Comments:

# Appendix A: Physical Components

Ngure 2: Picomotor driver chassis front panel

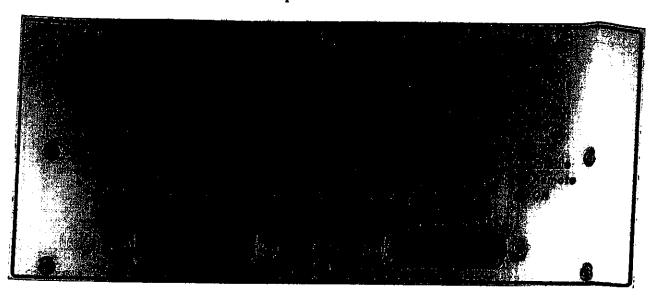
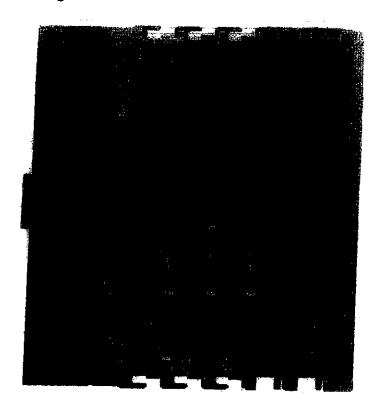




Figure 3: Picomotor driver chassis rear panel



Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

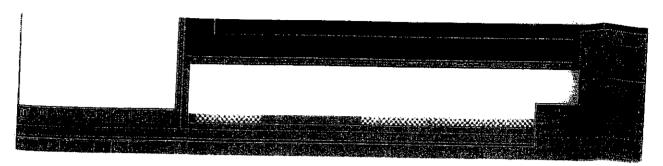
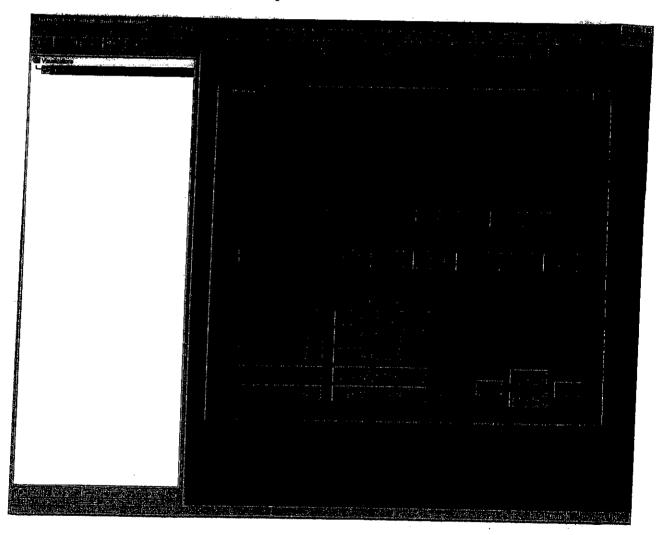




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

### CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project - MS 51-33 Pasadena CA 91125 Phone (626) 395-2129

Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| Picomotor controller chassis LIGO DCC# | D1100323-v1 |        |
|----------------------------------------|-------------|--------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |        |
| Controller Serial #                    | 511093      | 71     |
| Test Engineer:                         | Zach        | 9      |
| Test Date:                             | 11/29/4     |        |
| Overall picomotor chassis testing:     | [4PASS      | []FAIL |
| Signature/Initials:                    |             |        |
|                                        | •           |        |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

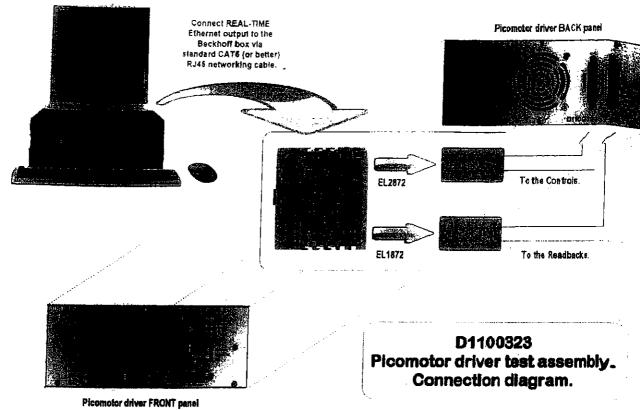
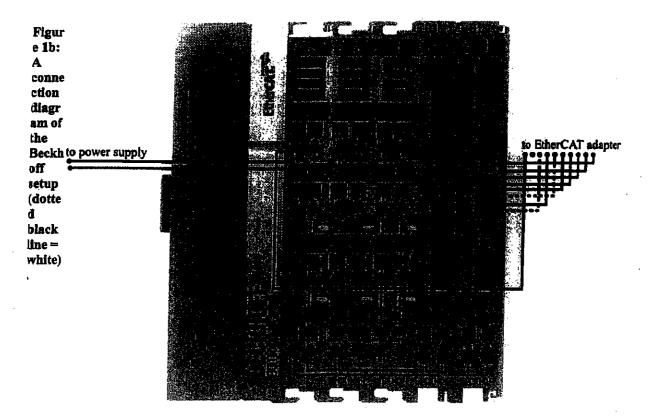




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the powerswitch is on, and that it goes off when the power switch is off.
- [ \ Check that the "ON" indicator on the visualization also responds to the powerswitch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | 500  | OFF.   | 97    |
| STARTING UP      | off                      | on     | flashes | flashes            | 6H   | on     | 57    |
| READY            | off                      | on     | off     | off                | 04   | 3      | 57    |
| Check if passed: | []                       | [ ]    | []      | [7]                | []   | []     | H     |

Table 1: LED response to picomotor status

- [ T Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L     | ED    |
|----------|-------|-------|
|          | Left  | Right |
| 1        | [4    | [1    |
| 2        | V     | []    |
| 3        |       | []    |
| 4        |       | [1]   |
| 5        | [/    | [1]   |
| 6        | [] [/ | M     |
| 7        |       | [1]   |
| 8        |       | [1]   |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CW Y  |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | []      | 打       | [1    | [/    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | [4]            | 11                 |  |  |
| MEDIUM (100)   | [4             |                    |  |  |
| MAGNUM (10000) |                | 11                 |  |  |

### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| CRAWL (1Hz)    | [1             | [}                 |  |  |
| JOG (50Hz)     |                | 11                 |  |  |
| SPRINT (500Hz) | [/             | ίγ                 |  |  |

### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |
|------------------|----------------|--------------------|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1                | 22.64          | 21.41              |  |  |
| 2                | 23 90          | 22.76              |  |  |
| 3                | 25.15          | 24.07              |  |  |
| 4                | 26.23          | 25.21              |  |  |
| 5                | 27.28          | 26.27              |  |  |
| Check if passed: | [1]            | [4                 |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [4]            |                    |  |  |  |
| 2        | [4]            | il                 |  |  |  |
| 3        | [9]            |                    |  |  |  |
| 1        | [1             | 17                 |  |  |  |
| 5        |                | 17                 |  |  |  |
| 5        |                | 11                 |  |  |  |
|          |                | [ <i>Y</i>         |  |  |  |
|          | [1             | [ <i>X</i>         |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [1             | IT                 |  |  |  |
| 2        | 11             | 1                  |  |  |  |
| 3        | [ ]            | [1                 |  |  |  |
| 4        | [1             | [1                 |  |  |  |
| 5        | [1             | į.<br>Į.           |  |  |  |
| 6        | - IT           | [X                 |  |  |  |
| 7        | [}             | []                 |  |  |  |
| 3        | 1              | [X]                |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

Front panel LEDs [ ] Fail Step sizes [ ] Fail Speeds [ ] Fail Output terminals [ / Pass [ ] Fail Overall picomotor driver testing: []Fail

Test Engineer: Zach C
Test Date: 1/29/1

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

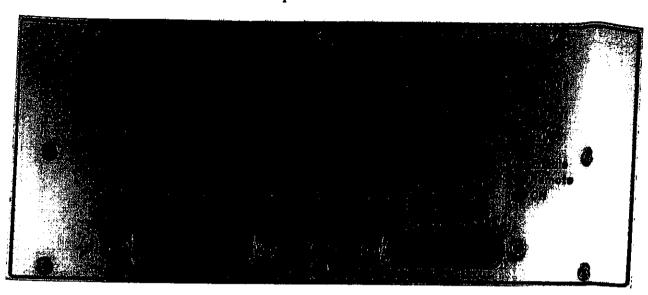



Figure 3: Picomotor driver chassis rear panel

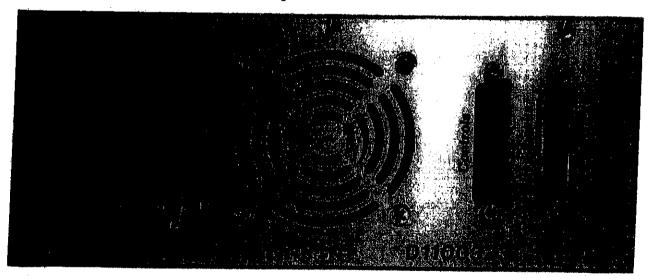
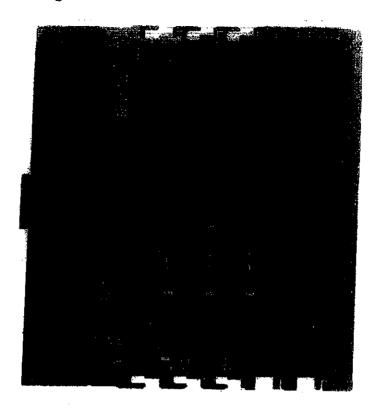




Figure 4: EtherCAT configuration



## **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

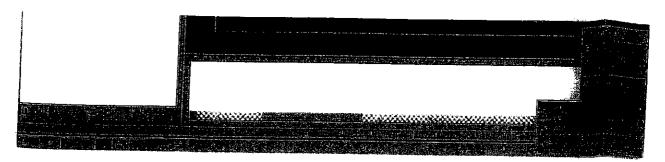
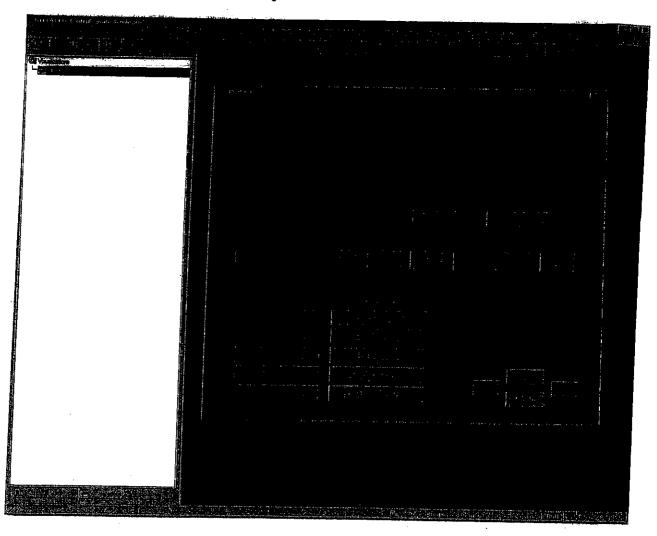




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 305-2120

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854 8200

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |          |
|----------------------------------------|-------------|----------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |          |
| Controller Serial #                    | 51107572    |          |
| lest Engineer:                         | Zach C      |          |
| Test Date:                             | 11/29/11    |          |
| Overall picomotor chassis testing:     | [4PASS      | [ ] FAIL |
| Signature/Initials:                    |             |          |
|                                        | *           |          |
|                                        |             |          |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
- 5. Output terminals

### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

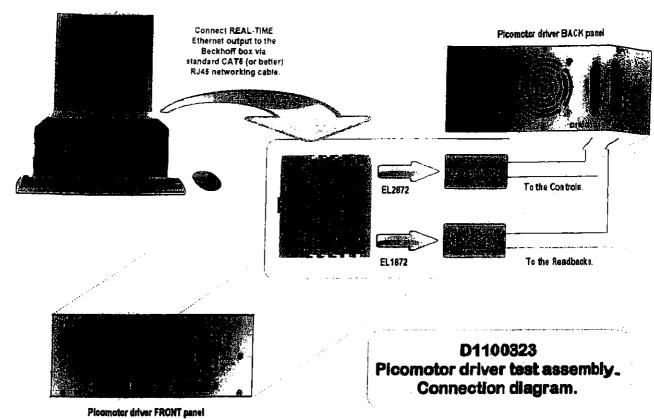
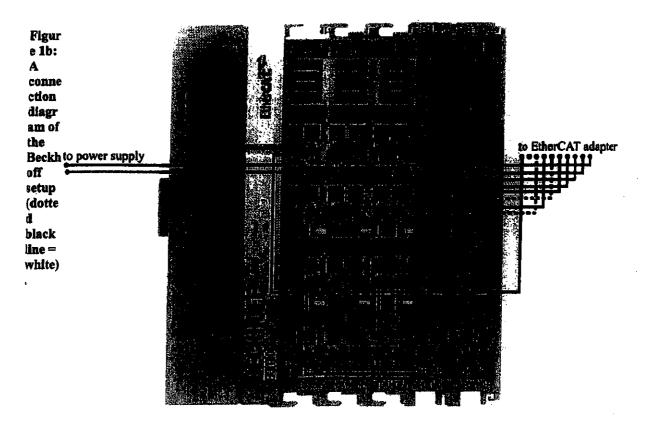




Figure 1a: A connection diagram of the picomotor setup.



### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the powerswitch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the powerswitch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [ Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | cm   | PCD    | On    |
| STARTING UP      | off                      | on     | flashes | flashes            | Off  | On     | on    |
| READY            | off                      | on     | off     | off                | AF.  | m      | v n   |
| Check if passed: | [4]                      | [ 4    | [4]     | [4]                | [4]  | [-     | -[4]  |

Table 1: LED response to picomotor status

- [ Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal |     | LED |       |  |
|----------|-----|-----|-------|--|
|          | Le  | ft  | Right |  |
| 1        | Ĺ   | 1   | [4]   |  |
| 2        | [\  | 1   | W     |  |
| 3        | [(  |     | (1)   |  |
| 4        | [5  | 1/  |       |  |
| 5        |     | 3   | []    |  |
| 6        | P   | Y   | H     |  |
| 7        | [-] |     | [1]   |  |
| 8        |     |     | []    |  |

#### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | M       | [-]     | []    | []    |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

### l. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there is that output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns) as you increase the step size for each axis (X and Y):

| J.                 | <i>J</i> <sub>1</sub> | (00001) MUNDAM        |
|--------------------|-----------------------|-----------------------|
| []                 |                       | MEDIUM (100)          |
|                    | 11                    | <b>NEKL SWALL (1)</b> |
| Y ("UP" OF "DOWN") | ("<" 10 ">") X        |                       |
| sixA               |                       | Step Size             |

## 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

In the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| [ZH00    | /1             | SPRINT (500 |
|----------|----------------|-------------|
| [/] (2   | [7]            | 10G (20Hz)  |
| [_] (zH) | [ا             | CKAWL (1H   |
| o ">") X | X ("<" Or ">") |             |
|          |                | Speed       |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 23.06          | 22.79              |  |
| 2                | 24.52          | 24.33              |  |
| 3                | 25.79          | 25.77              |  |
| 4                | 26.93          | 26.95              |  |
| 5                | 27.92          | 28.67              |  |
| Check if passed: | [4             | H                  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | [4             | [1                 |  |  |  |
| 2        |                | [1                 |  |  |  |
| 3        | [ ]            | []                 |  |  |  |
| 4        |                |                    |  |  |  |
| 5        |                | [1                 |  |  |  |
| 6        | [1             | [ ]                |  |  |  |
| 7        | IT             | Ħ                  |  |  |  |
| 3        |                | EI                 |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |
|----------|----------------|--------------------|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1        | V              | 17                 |  |  |  |
| 2        | [1             | IT                 |  |  |  |
| 3        | [,}            | IT                 |  |  |  |
| 4        | [1             | [ ]                |  |  |  |
| 5        | []             | [}                 |  |  |  |
| 6        | - U            | [}                 |  |  |  |
| 7        | [7             | [レ                 |  |  |  |
| 3        |                | [ <i>X</i>         |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | [] Fail  |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | [ TPass  | [ ] Fail |
| Front panel LEDs                  | [ Pass   | [ ] Fail |

Test Engineer: Zach C
Test Date: 1/29///

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

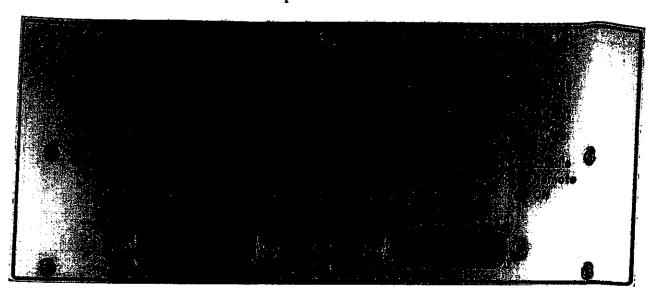
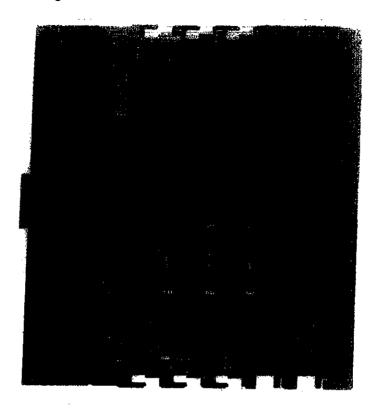




Figure 3: Picomotor driver chassis rear panel



Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

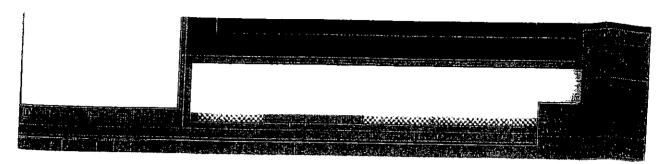
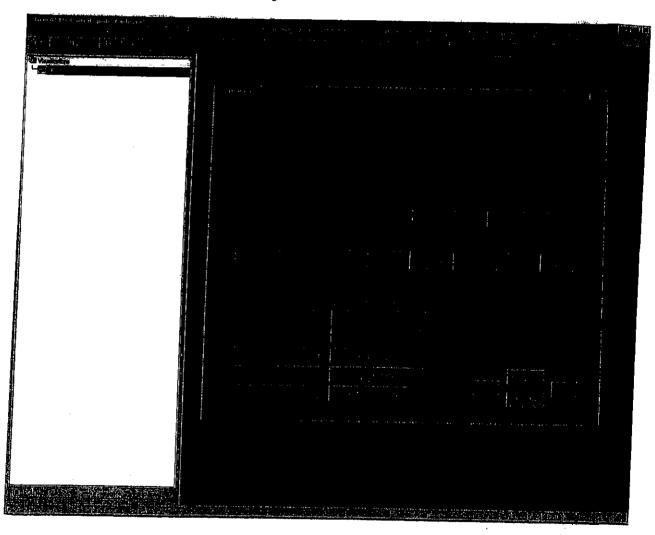




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 US A

Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hali - MS 5247
New York NY 10027
Phone (212) 854-8209

Fax (212) 854-8121 E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1     |
|----------------------------------------|-----------------|
| ltherCAT Adapters LIGO DCC#            | D1100419-v3     |
| Controller Serial #                    | 51107573        |
| Test Engineer:                         | Zach G          |
| Test Date:                             | 11/29/11        |
| Overall picomotor chassis testing:     | [ PASS [ ] FAIL |
| Signature/Initials:                    |                 |
|                                        |                 |
|                                        | [ ] FAIL        |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### **Testing Schedule:**

- Front panel LEDs
   Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

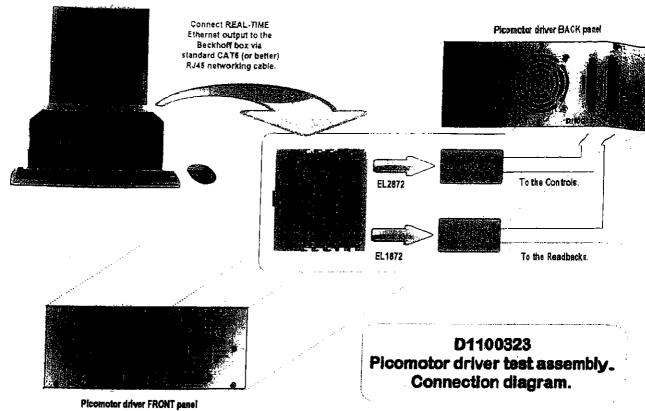
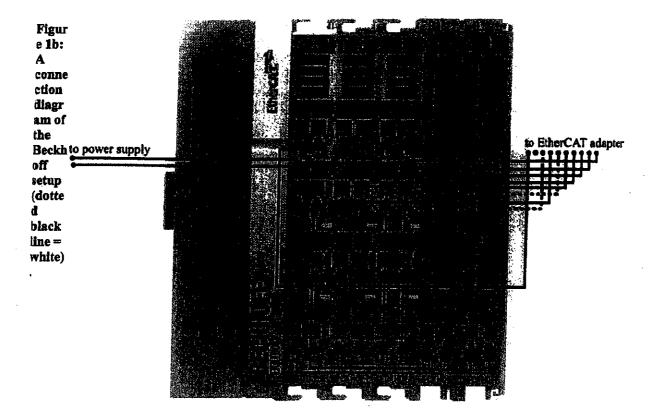




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

4. Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the powerswitch is on, and that it goes off when the power switch is off.
- [ Y Check that the "ON" indicator on the visualization also responds to the powerswitch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | C    | Chassis Front Panel LEDs |         |         | Software Readbacks |        | backs |
|------------------|------|--------------------------|---------|---------|--------------------|--------|-------|
|                  | IDLE | Enable                   | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on   | off                      | off     | off     | 9                  | Ro     | (TA)  |
| STARTING UP      | off  | on                       | flashes | flashes | Off                | (2)    | (37)  |
| READY            | off  | on                       | off     | off     | off                | (M     | (22)  |
| Check if passed: | []   | []                       | []      | Ħ       | []                 | 11     | 11    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the nicomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | W    | [4]   |
| 2        | [4]  | [4]   |
| 3        |      | [4]   |
| 4        | [4]  | [4]   |
| 5        |      | []    |
| 6        |      | [1    |
| 7        | [1   | [1    |
| 8        | [1   | [1    |

Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |
|------------------|---------|---------|-------|-------|
|                  | Drive X | Drive Y | CW X  | CWY   |
| DOWN             | off     | on *    | off   | on ** |
| UP               | off     | on *    | off   | off   |
| >                | on *    | off     | on ** | off   |
| <                | on *    | off     | off   | off   |
| Check if passed: | [4]     | [-]     | [}    | []    |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | [4]            | [9                 |
| MEDIUM (100)   | [4             | 1                  |
| MAGNUM (10000) | [4             | 1                  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | [4]            | []                 |  |
| JOG (50Hz)     | IT             | 17                 |  |
| SPRINT (500Hz) | [}             | H                  |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 25.85          | 26.33              |  |
| 2                | 27.16          | 27.77              |  |
| 3                | 28.43          | 29.11              |  |
| 4                | 29.51          | 30.27              |  |
| 5                | 30. 59         | 31.40              |  |
| Check if passed: | H              | [4]                |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | H              | [+                 |  |  |
| 2        | [6]            | []                 |  |  |
| 3        | [.]            | [7                 |  |  |
| 4        | []             | [7                 |  |  |
| 5        | [X             | [1                 |  |  |
| 5        | 1              | [}                 |  |  |
| 7        | [1             | 17                 |  |  |
| 3        | [1             | ī.*                |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | W              | 11                 |  |  |
| 2        |                | ij                 |  |  |
| 3        | [4]            | IT.                |  |  |
| 4        | ]              | IT                 |  |  |
| 5        | I I            | [+                 |  |  |
| 5        |                |                    |  |  |
| 7        |                |                    |  |  |
| 3        | 1              | [1                 |  |  |

# Testing Summary

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | []Fail   |
|-----------------------------------|----------|----------|
| Output terminals                  | [   Pass | [ ] Fail |
| Speeds                            | Pass     | [ ] Fail |
| Step sizes                        | Pass     | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zach G

Test Date: 11/24/11

Additional Comments:

# Appendix A: Physical Components

Mgure 2: Picomotor driver chassis front panel

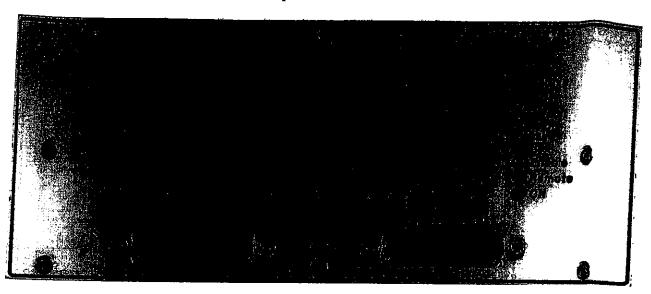



Figure 3: Picomotor driver chassis rear panel

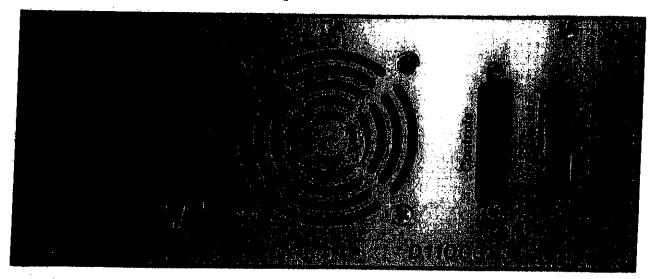
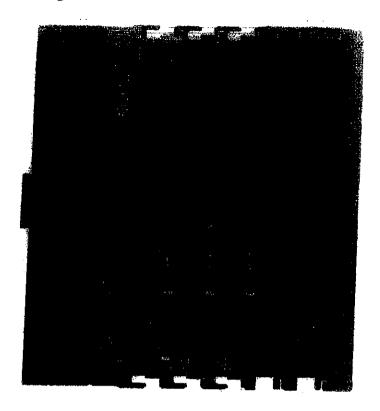




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

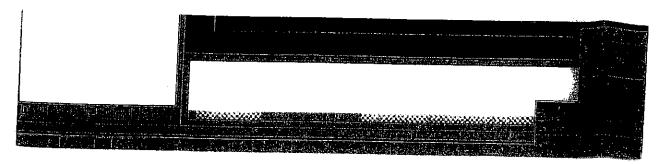
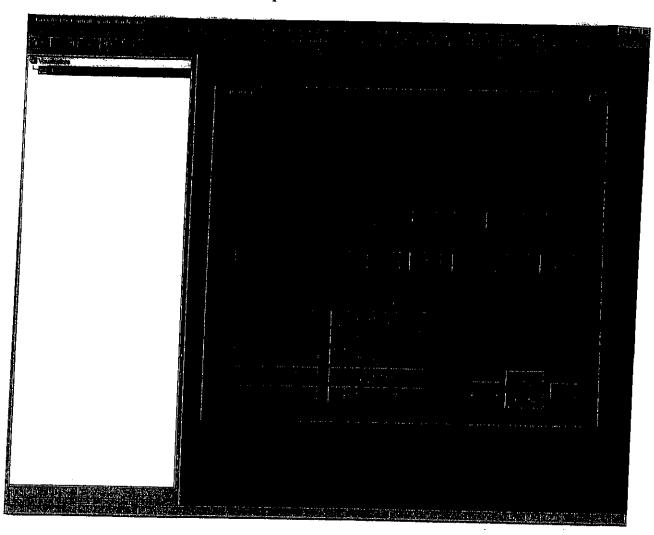




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | D1100323-v1 |          |
|----------------------------------------|-------------|----------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3 |          |
| €ontroller Serial #                    | <u></u>     | 1674     |
| Test Engineer:                         | Zach        | C        |
| Test Date:                             | 11/291      | 1]       |
| Overall picomotor chassis testing:     | PASS        | [ ] FAIL |
| Signature/Initials:                    |             |          |
|                                        | •           |          |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
  5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- Hook-up wiresBrown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

## Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

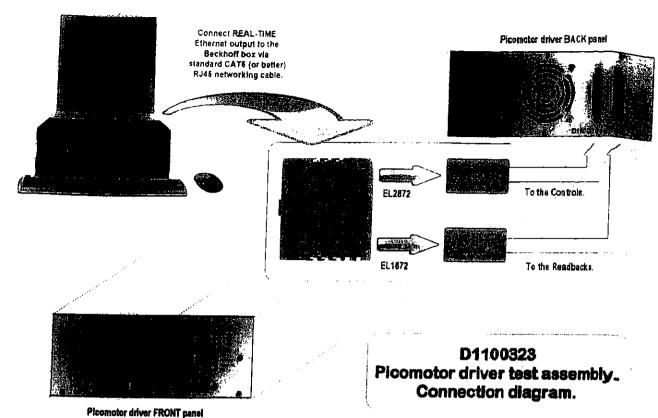
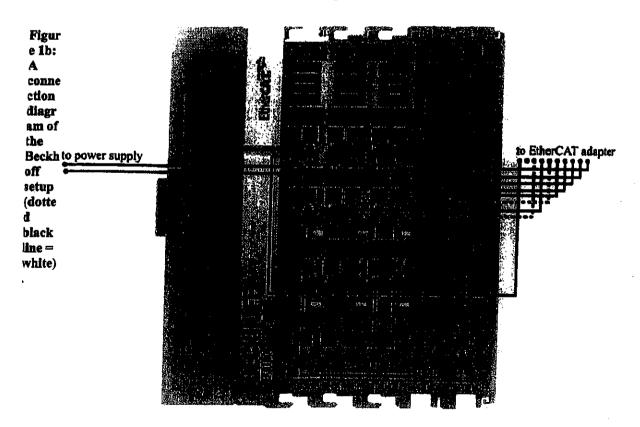




Figure 1a: A connection diagram of the picomotor setup.



## Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

## 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         | Software Readbacks |      |        |       |
|------------------|--------------------------|--------|---------|--------------------|------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y            | IDLE | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off                | on   | OF     | 011   |
| STARTING UP      | off                      | on     | flashes | flashes            | off. | Sn     | 571   |
| READY            | off                      | on     | off     | off                | off  | ω\     | on    |
| Check if passed: | [4]                      | [4]    | []      | [4]                | [4   | H      | 17    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LE     | ED    |
|----------|--------|-------|
|          | Left   | Right |
| 1        | [4]    | []    |
| 2        | [ ]    | [/    |
| 3        | N      | [1    |
| 4        | W      |       |
| 5        | []     | [1]   |
| 6        | <br>14 | [1]   |
| 7        | []     | [1]   |
| 8        | V      | []    |

#### Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |
|------------------|---------|---------|-------|-------|--|
|                  | Drive X | Drive Y | CW X  | CWY   |  |
| DOWN             | off     | on *    | off   | on ** |  |
| UP               | off     | on *    | off   | off   |  |
| >                | on *    | off     | on ** | off   |  |
| <                | on *    | off     | off   | off   |  |
| Check if passed: | [-]     | H       | [/]   |       |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      |                | Axis               |
|----------------|----------------|--------------------|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| VERY SMALL (1) | [4             | 11                 |
| MEDIUM (100)   | []             | 11                 |
| MAGNUM (10000) |                | 11                 |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |
|----------------|----------------|--------------------|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| CRAWL (1Hz)    | H              | 11                 |  |
| JOG (50Hz)     | []             | ΙÍ                 |  |
| SPRINT (500Hz) | [1             | iT                 |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |
|------------------|----------------|--------------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1                | 12.23          | 22.37              |  |
| 2                | 23.54          | 23.85              |  |
| 3                | 24.80          | 25.20              |  |
| 4                | 25.90          | 26.32              |  |
| 5                | 26.90          | 27.46              |  |
| Check if passed: | H              | 19                 |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | [4                 |  |  |
| 2        | [']            | 19                 |  |  |
| 3        |                | []                 |  |  |
| 4        | [ ]            | []                 |  |  |
| 5        | U              | 13/                |  |  |
| 5        | [/             | [ <i>Y</i>         |  |  |
| 7        |                | [X                 |  |  |
| 3        |                | [ ]                |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis                        |                    |
|----------|-----------------------------|--------------------|
|          | X ("<" or ">")              | Y ("UP" or "DOWN") |
| 1        | N                           | 11                 |
| 2        | [1                          | 11                 |
| 3        | [1                          | [X                 |
| 4        | [1                          | []                 |
| 5        | $\mathcal{C}_{\mathcal{X}}$ | [ <i>X</i>         |
| 5        | []                          | [7                 |
| 7        | [1                          |                    |
|          |                             | [ <i>7</i>         |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ ] Pass | []Fail   |
|-----------------------------------|----------|----------|
| Output terminals                  | [ YPass  | [ ] Fail |
| Speeds                            | [ ]Pass  | [ ] Fail |
| Sep sizes                         | [ ] Pass | [ ] Fail |
| Front panel LEDs                  | [JPass   | [ ] Fail |

Test Engineer: Zoch G
Test Date: 11/29/11

Additional Comments:

# **Appendix A: Physical Components**

Figure 2: Picomotor driver chassis front panel

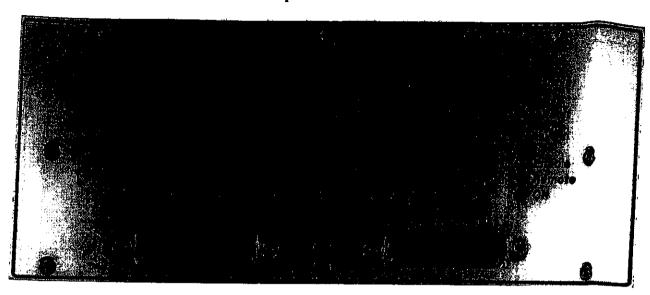



Figure 3: Picomotor driver chassis rear panel

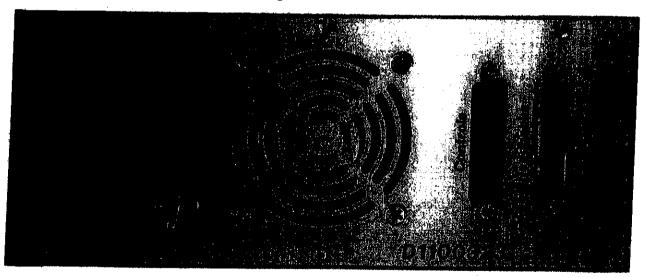
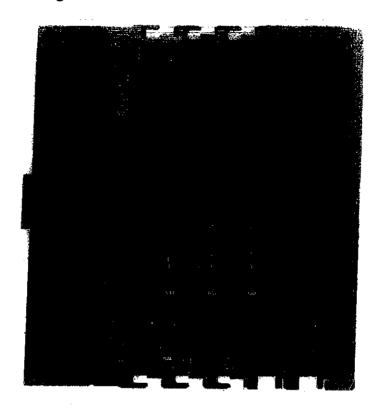
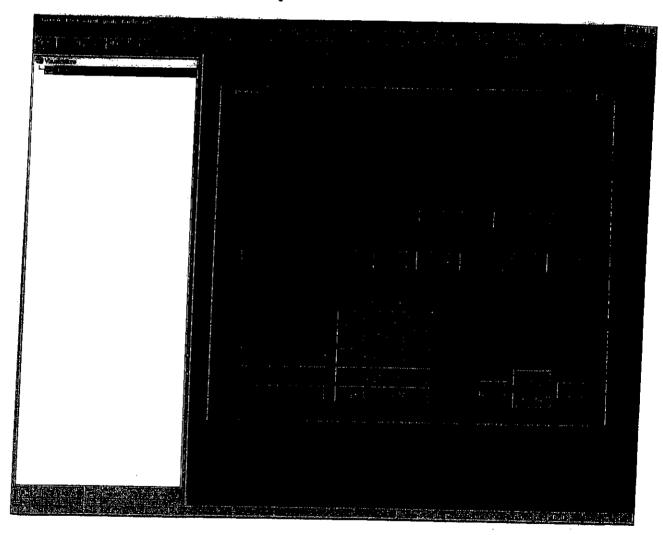




Figure 4: EtherCAT configuration




# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup



Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

## CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

**Technical Note** 

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

Phone (617) 253 4824

Fax (617) 253 7014

E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hail - MS 5247
New York NY 10027
Phone (212) 854-8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| licomotor controller chassis LIGO DCC# | <u>D1100323-v1</u> |
|----------------------------------------|--------------------|
| ItherCAT Adapters LIGO DCC#            | D1100419-v3        |
| Controller Serial #                    | S107575            |
| lest Engineer:                         | Zach G             |
| Test Date:                             | 11/29/11           |
| Overall picomotor chassis testing:     | PASS []FAIL        |
| Signature/Initials:                    |                    |

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- Front panel LEDs
   Step sizes
   Speeds

- 4. Temperature
- 5. Output terminals

#### System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5)
   EK1100, EL3102, EL1014, EL1872, EL2872
   (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

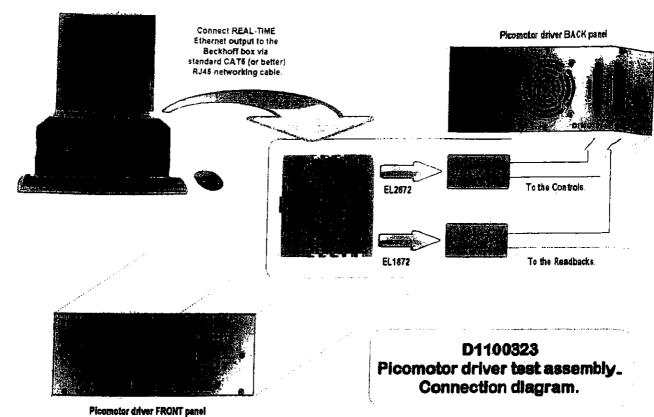
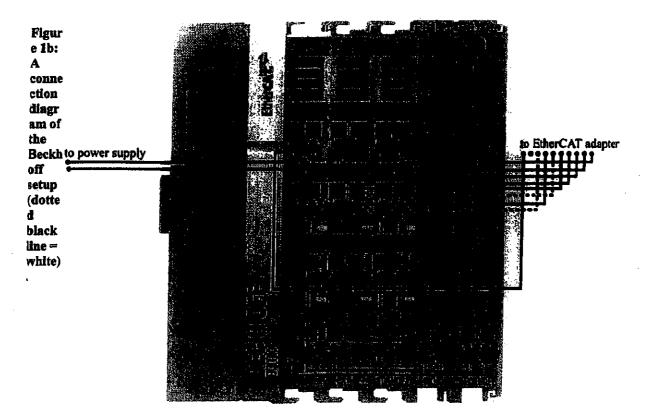




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that pops up, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

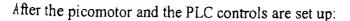
Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)


In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs



| Check that the "ON" LED is lit if the power cable is connected and the powerswitch |
|------------------------------------------------------------------------------------|
| is on, and that it goes off when the power switch is off.                          |

| [4 | Check that the "ON" indicator on the visualization also responds to the powerswitch. |
|----|--------------------------------------------------------------------------------------|
|----|--------------------------------------------------------------------------------------|

Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.

Before the next step, check that the fan (rear panel) is off.

Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | on                 | off    | on    |
| STARTING UP      | off                      | on     | flashes | flashes | off                | on     | on    |
| READY            | off                      | on     | off     | off     | off                | on     | 5     |
| Check if passed: | W                        | [4]    | [4]     |         |                    | [7]    | 17    |

Table 1: LED response to picomotor status

Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.

Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4]  | [1    |
| 2        | [4   | 1     |
| 3        | [4]  | []    |
| 4        | [4]  | []    |
| 5        |      | [7]   |
| 6        | [1   | [}    |
| 7        |      | []    |
| 8        | [1]  | [1    |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |            |
|------------------|---------|---------|-------|------------|
|                  | Drive X | Drive Y | CW X  | CWY        |
| DOWN             | off     | on *    | off   | on **      |
| UP               | off     | on *    | off   | off        |
| >                | on *    | off     | on ** | off        |
| <                | on *    | off     | off   | off        |
| Check if passed: | [4      | [1]     | [7]   | <i>{</i> } |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and there is time output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| [ ]                | M              | (00001) MUNDAM |
|--------------------|----------------|----------------|
| -F1                | <u>_</u> h]    | MEDIUM (100)   |
| المكر              | المر           | VERY SMALL (1) |
| Y ("UP" OF "DOWN") | X ("<" or ">") |                |
| six.A              | Step Size      |                |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| sixA               | Speed                          |                |
|--------------------|--------------------------------|----------------|
| Y ("UP" or "DOWN") | ( <sup>n</sup> <" or ">") $ X$ |                |
|                    | <u></u>                        | CKAWL (1Hz)    |
| <i>[</i> ]         | <b>★</b> ]                     | 10G (20Hz)     |
| <i>[</i> -]        | <u> </u>                       | SPRINT (500Hz) |

#### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  | Temperature |  |
|------------------|----------------|--------------------|--|-------------|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |             |  |
| 1                | 25.48          | 23.90              |  |             |  |
| 2                | 26.775         | 25.14              |  |             |  |
| 3                | 27.89          | 26,010             |  |             |  |
| 4                | 2504           | 27.57              |  |             |  |
| 5                | 30.04          | 28.59              |  |             |  |
| Check if passed: | [4             | [L]                |  |             |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

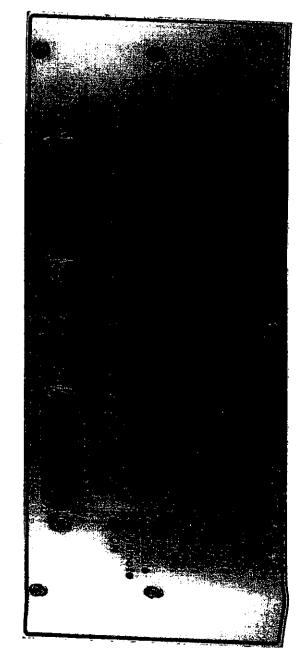
| Terminal | Axis           |                    |  |  |
|----------|----------------|--------------------|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| 1        | [4]            | [1                 |  |  |
| 2        | [9]            | [7                 |  |  |
| 3        | T M            | [7]                |  |  |
| 4        | [1             | []                 |  |  |
| 5        |                | 11                 |  |  |
| 6        |                | [1]                |  |  |
| 7        |                | И                  |  |  |
| 3        | [ ]            | 11                 |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal | Axis           |                    |  |
|----------|----------------|--------------------|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |
| 1        | [1             | [8]                |  |
| 2        | [1]            | И                  |  |
| 3        |                | 11                 |  |
| 4        | <b>一</b> [1    | IT                 |  |
| 5        | [1]            | [ }                |  |
| 6        | 11             | rí                 |  |
| 7        |                | [1                 |  |
| 3        | 11             | rΤ                 |  |

# **Testing Summary**

For each test, indicate the results in the table below:


| Overall picomotor driver testing: | [ ] Pass | [ ] Fail |
|-----------------------------------|----------|----------|
| Output terminals                  | [ ] Pass | [ ] Fail |
| Speeds                            | [ ] Pass | [ ] Fail |
| Step sizes                        | []Pass   | [ ] Fail |
| Front panel LEDs                  | Pass     | [ ] Fail |

Test Engineer: Zach G
Test Date: 11/29/11

Additional Comments:

# Appendix A: Physical Components

Ngure 2: Picomotor driver chassis front panel



Mgure 3: Picomotor driver chassis rear panel

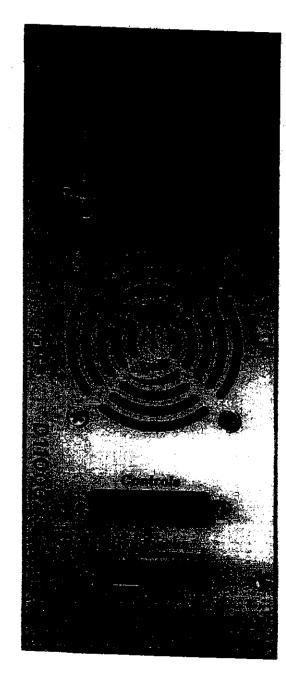
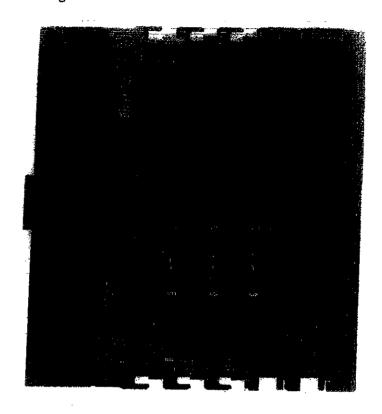




Figure 4: EtherCAT configuration



# **Appendix B: PLC Controls**

Figure 5: Step 3 of PLC controls setup

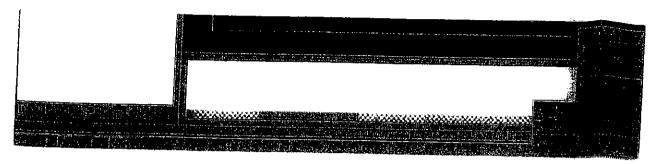
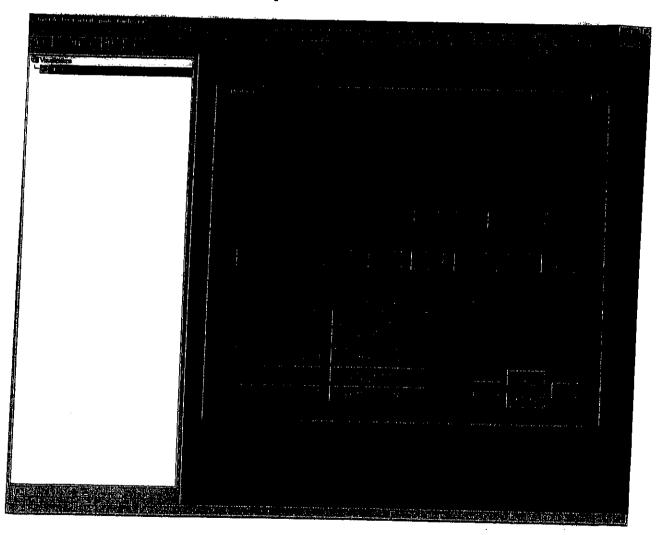




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

#### CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 US A Phone (617) 253 4824 Fax (617) 253 7014

E-mail: info@ligo.mit.edu

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| Picomotor controller chassis LIGO DCC# | D1100323-v1 |
| ItherCAT Adapters LIGO DCC# | D1100419-v3 |
| Controller Serial # | S|| 6 7 5 76 |
| Test Engineer: | 22 | |
| Test Date: | 9PASS | FAIL |
| Signature/Initials:

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1)
  (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- 8 Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- 2 Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the ELi872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

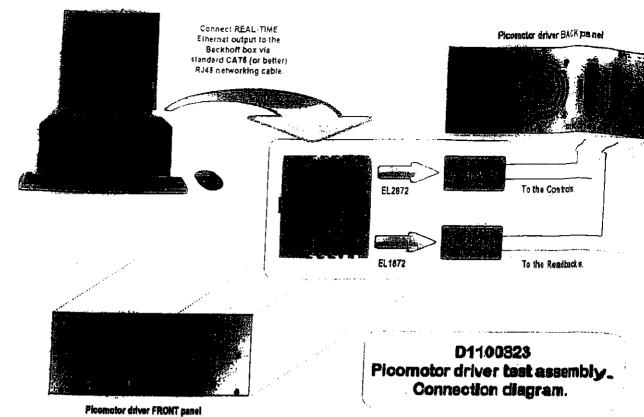
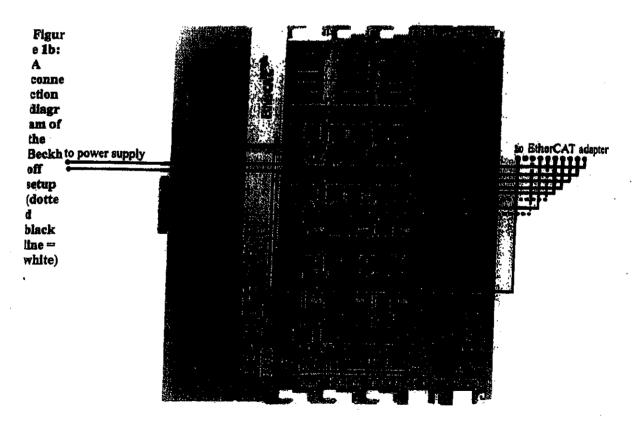




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that popsup, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)
Click "Yes" at the dialog:

"No program on the controller! Download the new program?"
Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [ Check that the "ON" indicator on the visualization also responds to the power switch.
- [ ] Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- [ ] Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | On                 | off    | On    |
| STARTING UP      | off                      | on     | flashes | flashes | 08                 | on     | m     |
| READY            | off                      | on     | off     | off     | 280                | on     | on    |
| Check if passed: | []                       | []     | N       | H       | []                 | [-]    | [+    |

Table 1: LED response to picomotor status

- [ ] Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [/] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

[ Check that the fan is running and blowing air out of the box (rear panel).

Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | LI   | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [9   |       |
| 2        | []   | []    |
| 3        | []   |       |
| 4        | [1   | []    |
| 5        | []   | []    |
| 6        | [1]  | H     |
| 7        | []   |       |
| 3        |      |       |

#### Select output terminal 1 and do the following:

[ ] Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |  |
|------------------|---------|---------|-------|-------|--|--|
|                  | Drive X | Drive Y | CW X  | CW Y  |  |  |
| DOWN             | off     | on *    | off   | on ** |  |  |
| UP               | off     | on *    | off   | off   |  |  |
| >                | on *    | off     | on ** | off   |  |  |
| <                | on *    | off     | off   | off   |  |  |
| Check if passed: | [-]     | []      | []    |       |  |  |

Table 2: LED response to picomotor direction

\* (while motor is running)

\*\* (stays on after motor is finished running, until opposite direction is selected)

## 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and theck that output terminal 1 is selected, then select "SPRINT (500Hz)" under "SPEED". Select a step size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns when it runs) as you increase the step size for each axis (X and Y):

| Step Size      | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| VERY SMALL (1) | []             | N                  |  |  |
| MEDIUM (100)   |                | IT                 |  |  |
| MAGNUM (10000) |                | 11                 |  |  |

#### 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected, then select "SMALL (10)" under "STEP SIZE". Select a speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| Speed          | Axis           |                    |  |  |
|----------------|----------------|--------------------|--|--|
|                | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |
| CRAWL (1Hz)    | []             | 11                 |  |  |
| JOG (50Hz)     | []             | IT                 |  |  |
| SPRINT (500Hz) | []             | []                 |  |  |

## 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Temperature    |                    |  |  |  |
|------------------|----------------|--------------------|--|--|--|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |
| 1                | 23.56          | 24.45              |  |  |  |
| 2                | 24.95          | 25-94              |  |  |  |
| 3                | 26-27          | 27.34              |  |  |  |
| 4                | 27.38          | 28.62              |  |  |  |
| 5                | 28.45          | 29.80              |  |  |  |
| Check if passed: | H              | U                  |  |  |  |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [6]            | [1                 |  |  |  |  |
| 2        | [4]            | 1                  |  |  |  |  |
| 3        |                |                    |  |  |  |  |
| 4        |                |                    |  |  |  |  |
| 5        | 11             |                    |  |  |  |  |
| i        | 11             | [/]                |  |  |  |  |
|          |                |                    |  |  |  |  |
|          |                |                    |  |  |  |  |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |  |  |  |  |
|----------|----------------|--------------------|--|--|--|--|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |  |  |  |  |
| 1        | [1]            | 11                 |  |  |  |  |
| 2        | []             | 11                 |  |  |  |  |
| 3        |                | 1/1                |  |  |  |  |
| 1        |                |                    |  |  |  |  |
|          |                | [1                 |  |  |  |  |
| •        |                |                    |  |  |  |  |
|          |                | 17                 |  |  |  |  |
|          |                |                    |  |  |  |  |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | Pass     | []Fail   |  |
|-----------------------------------|----------|----------|--|
| Output terminals                  | [ ] Pass | [] Fail  |  |
| Speeds                            | [ ] Pass | [ ] Fail |  |
| Step sizes                        | Pass     | [] Fail  |  |
| Front panel LEDs                  | Pass     | [ ] Fail |  |

Test Engineer: Zach C
Test Date: 12/21/11

Additional Comments:

# Appendix A: Physical Components

Mgure 2: Picomotor driver chassis front panel

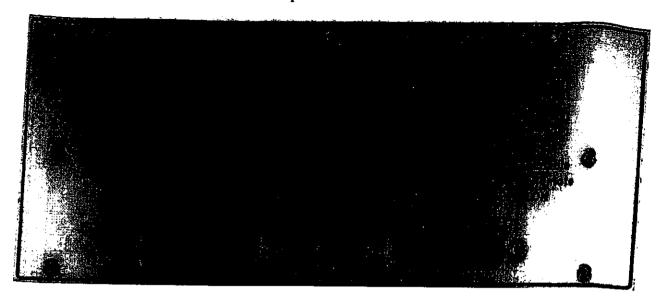
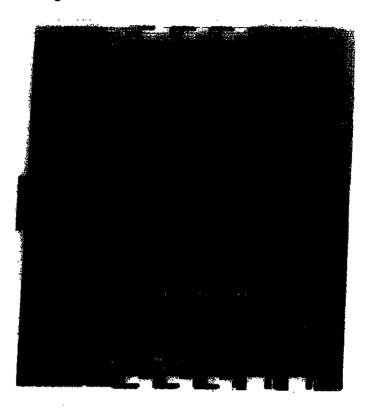




Figure 3: Picomotor driver chassis rear panel



Figure 4: Ether CAT configuration



# Appendix B: PLC Controls

Figure 5: Step 3 of PLC controls setup

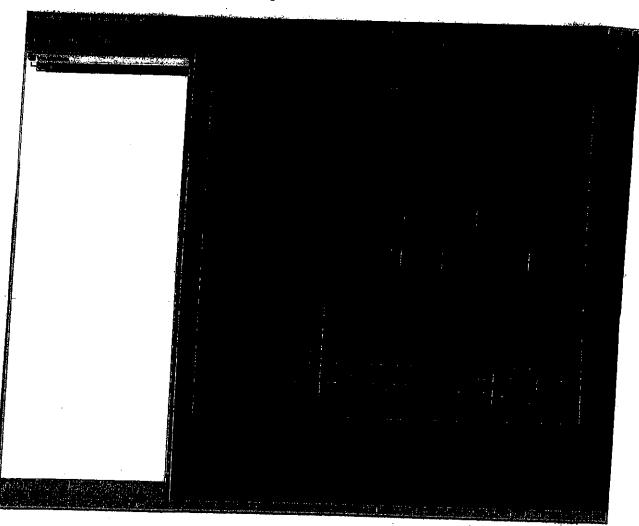




Figure 6: Step 5 of PLC controls setup



# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

# CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note

LIGO-T1100458-v1

08/26/11

# Testing Procedure for the Picomotor Driver for Advanced LIGO

Maxim Factourovich, Daniel Sigg and Maggie Tse

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125 Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 US A Phone (617) 253 4824

Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854-8209
Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

| Picomotor controller chassis LIGO DCC# | D1100323-v1 |
| EtherCAT Adapters LIGO DCC# | D1100419-v3 |
| Controller Serial # | S | 107577 |
| Test Engineer: | Zachary |
| Test Date: | 1/2/11 |
| Overall picomotor chassis testing: | YPASS [] FAIL

#### Reference:

https://awiki.ligo-wa.caltech.edu/aLIGO/Picomotor%20Controller

#### Testing Schedule:

Signature/Initials:

- 1. Front panel LEDs
- 2. Step sizes
- 3. Speeds
- 4. Temperature
- 5. Output terminals

## System requirements

#### Hardware:

- Picomotors (2)
  Compatible models: Newport 8302
- Picomotor driver D1100323-v2 (1) (Figures 2 and 3 in Appendix A)
- 3 LIGO standard 24V M-F-M DB3 power cable
- 4 EtherCAT adapter D1100419-v3 (1)
- 5 DB25 F/M cables (2)
- 6 Hook-up wires
  Brown, Green, White, Black, Grey, Purple
- 7 IDC 20-pin cable assemblies (2)
- Beckhoff EtherCAT boxes (5) EK1100, EL3102, EL1014, EL1872, EL2872 (Figure 4 in Appendix A)
- 9 24V power supply for Beckhoff boxes (1)
- 10 Ethernet cable (1)
- 11 Computer equipped with TwinCAT-Intel PCI Ethernet Adapter (100BASE-T)

#### Software:

- 1 MS Windows XP/7, 32-bit
- Beckhoff TwinCAT software bundle, v2.11.1551

#### Setting up

#### Steps for setting up the picomotor:

- 1. Connect the EtherCAT adapter for controls to the left DB25 port on the rear panel of the driver chassis
- 2. Connect the EtherCAT adapter for readbacks to the right DB25 port on the rear panel of the driver chassis
- 3. Using a ribbon cable, connect the EtherCAT adapter for controls to the EL2872 Beckhoff box
- 4. Using a ribbon cable, connect the EtherCAT adapter for readbacks to the EL1872 Beckhoff box
- 5. Connect an Ethernet cable to the X1 IN port on the EK1100 Beckhoff box
- 6. Connect the EK1100 Beckhoff box to a DC power source (24V)
- 7. Connect the other end of the Ethernet cable to the PC through the realtime Ethernet port
- 8. Connect the picomotor driver to a DC power source (24V) and turn the power switch on

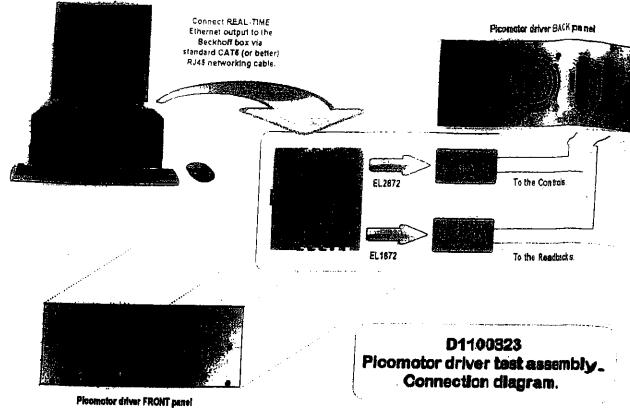
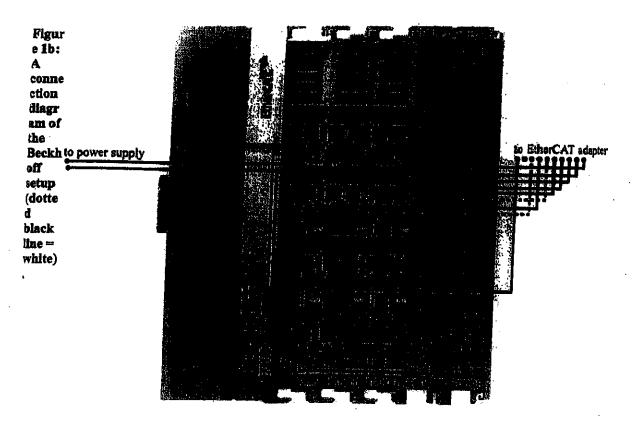




Figure 1a: A connection diagram of the picomotor setup.



#### Setting up

#### Steps for setting up the PLC controls:

1. Open up the TwinCAT System Manager software and go to:

File > Open > Picomotor\_test.tsm

2. Open up the TwinCAT PLC Control software and go to:

File > Open > pmtestcode.pro

3. Go to the system tray, click on the TwinCAT icon and in the menu that popsup, go to: (see Figure 5 in Appendix B for a screenshot)

System > Start

Go to the TwinCAT PLC Control window and go to:

Online > Login (F11)

Click "Yes" at the dialog:

"No program on the controller! Download the new program?"

Online > Run (F5)

5. At the bottom of the left sidebar in the TwinCAT PLC Control window, click on the "Visualizations" tab, and under the "Visualizations" folder, double-click and open "VIS\_PICO", and a visualization window should appear.

(see Figure 6 in Appendix B for a screenshot)

In the "VIS\_PICO" visualization window:

in the "RAW" section, the "IDLE" indicator should be lit in the "USER" section, the status should read "DRIVER DISABLED"

On the controller front panel:

the "IDLE" LED should be lit the "Enable" LED should be off the "ON" LED should be on

#### 1. Testing the front panel LEDs

After the picomotor and the PLC controls are set up:

- Check that the "ON" LED is lit if the power cable is connected and the power switch is on, and that it goes off when the power switch is off.
- [Y Check that the "ON" indicator on the visualization also responds to the power switch.
- Check that the "Remote" LED turns off if the EtherCAT adapter for controls is disconnected.
- Before the next step, check that the fan (rear panel) is off.
- Toggle the "ENABLE" button on the visualization screen and check that the following LEDs respond to the picomotor status according to Table 1:

| Status           | Chassis Front Panel LEDs |        |         |         | Software Readbacks |        |       |
|------------------|--------------------------|--------|---------|---------|--------------------|--------|-------|
|                  | IDLE                     | Enable | Fault X | Fault Y | IDLE               | Enable | Power |
| DRIVER DISABLED  | on                       | off    | off     | off     | ms                 | off    | CDA   |
| STARTING UP      | off                      | on     | flashes | flashes | off                | CD     | 0.724 |
| READY            | off                      | on     | off     | off     | SF                 | (5)4   | Con   |
| Check if passed: | [4]                      | [4]    | []      |         | FT                 | H      | []    |

Table 1: LED response to picomotor status

- Check that the "DUAL AXIS" indicator on the visualization lights up when the picomotor is enabled.
- [ ] Check that the temperature readouts on the visualization, under the "RAW" section, are positive values near room temperature if motor was previously off.

Enable the picomotor by pressing the "ENABLE" button on the visualization, wait until the picomotor status is "READY", then do the following:

- Check that the fan is running and blowing air out of the box (rear panel).
- [ 9 Check that the two LEDs for each output terminal are lit when that output terminal is selected on the visualization (terminals 1-8 under the "USER" section):

| Terminal | L    | ED    |
|----------|------|-------|
|          | Left | Right |
| 1        | [4   |       |
| 2        |      | []    |
| 3        |      | []    |
| 4        |      | []    |
| 5        | []   |       |
| 5        |      |       |
| 7        |      |       |
| 3        | []   | []    |

Select output terminal 1 and do the following:

Select "MEDIUM (100)" under "STEP SIZE" and "SPRINT (500Hz)" under "SPEED" and then click each direction. Check that the following lights respond to the selected direction according to Table 2:

| Direction        | LEDs    |         |       |       |  |  |
|------------------|---------|---------|-------|-------|--|--|
|                  | Drive X | Drive Y | CWX   | CW Y  |  |  |
| DOWN             | off     | on *    | off   | on ** |  |  |
| UP               | off     | on *    | off   | off   |  |  |
| >                | on *    | off     | on ** | off   |  |  |
| <                | on *    | off     | off   | off   |  |  |
| Check if passed: | [-]     | []      | []    |       |  |  |

Table 2: LED response to picomotor direction

- \* (while motor is running)
- \*\* (stays on after motor is finished running, until opposite direction is selected)

# 2. Testing the step sizes

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and then to output terminal I is selected, then select "SPRINT (500Hz)" under "SPEED". Select a kep size and then a direction. Check that the motor runs for a longer time (the motor clicks and turns) as you increase the step size for each axis (X and Y):

| (10000) MUNDAM | <i>X</i> ]        | £1                 |
|----------------|-------------------|--------------------|
| MEDIUM (100)   |                   | [,]                |
| VERY SMALL (1) | [1]               | 1                  |
|                | X (" < " Or " >") | X ("UP" OF "DOWN") |
| Step Size      | sixA              |                    |

## 3. Testing the speeds

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and speed and then a direction. Listening for the 10 clicks, check that the motor runs faster as you increase the speed for each axis (X and Y):

| SPRINT (500Hz) |                |                    |
|----------------|----------------|--------------------|
| 10G (50Hz)     | []             | 11                 |
| CRAWL (IHz)    |                | £]                 |
|                | X ("<" or ">") | Y ("UP" or "DOWN") |
| Speed          | sixA           |                    |

#### 4. Testing the temperature readout

On the visualization screen, make sure the picomotor is enabled and that the status is "READY", and check that output terminal 1 is selected. Then under the "TEMPERATURE" section, click the "Reset Values" button, then click the "Test" button, which will drive the motors continuously for 5 minutes, and read the temperature every minute for each axis (X and Y). Record the five temperatures in the table below:

| Time (minutes)   | Tem            | perature           |
|------------------|----------------|--------------------|
|                  | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1                | 23.55          | 23-Y3              |
| 2                | 25.00          | 25.40              |
| 3                | 26-32          | 26.92              |
| 4                | 29.50          | 28.18              |
| 5                | 28.59          | 29.37              |
| Check if passed: | [ ]            | IT                 |

Check the "pass" box for each above if the temperature increases over time.

# 5. Testing the output terminals

Make sure the picomotor is enabled and that the status is "READY". Connect the picomotor to one of the 8 terminals, then select "MEDIUM (100)" under "STEP SIZE" and "JOG (50Hz)" under "SPEED". For each terminal, check that the motor runs on each axis (X and Y):

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        |                | [1]                |
| 2        | [1             |                    |
| 3        | []             | []                 |
| 4        | []             | [X                 |
| 5        |                | []                 |
| 6        |                |                    |
| 7        | [1             | ſΧ                 |
| 3        | [/]            | [7]                |

Repeat the above, but connecting the picomotor(s) through the D-sub connectors instead:

| Terminal |                | Axis               |
|----------|----------------|--------------------|
|          | X ("<" or ">") | Y ("UP" or "DOWN") |
| 1        | [1]            | 11                 |
| 2        | W              | 11                 |
| 3        |                | 11                 |
| 4        |                |                    |
| 5 .      | 16             |                    |
| 5        | 1/1            | [/]                |
| 7        |                | 1/                 |
|          | 1              | [/]                |

# **Testing Summary**

For each test, indicate the results in the table below:

| Overall picomotor driver testing: | [ Pass   | 10 M | []Fail   |  |
|-----------------------------------|----------|------|----------|--|
| Output terminals                  | Pass     |      | []Fail   |  |
| Speeds                            | [ ] Pass |      | [ ] Fail |  |
| Step sizes                        | [ ]Pass  |      | [ ] Fail |  |
| Front panel LEDs                  | [ ] Pass |      | [ ] Fail |  |

Test Engineer: Z / 21/1/

Additional Comments:

# Appendix A: Physical Components

Figure 2: Picomotor driver chassis front panel

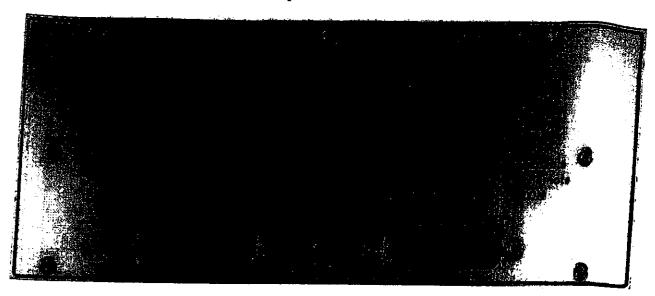



Figure 3: Picomotor driver chassis rear panel

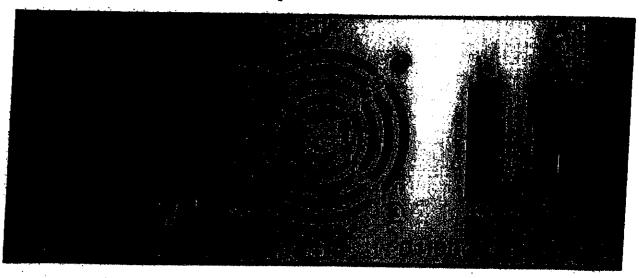
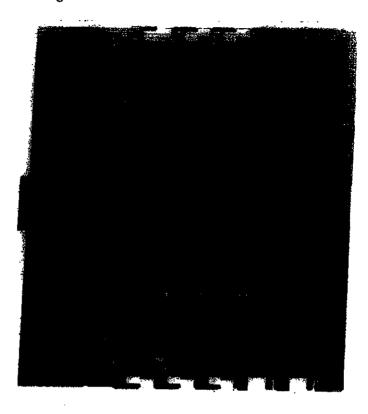




Figure 4: EtherCAT configuration



# Appendix B: PLC Controls

Figure 5: Step 3 of PLC controls setup

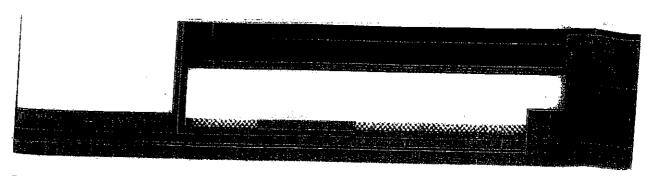
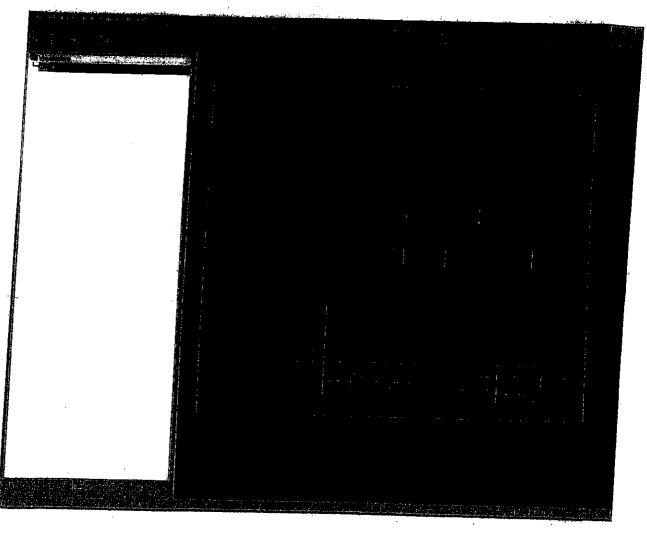




Figure 6: Step 5 of PLC controls setup

